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Regulation of cell growth rate is essential for maintaining cellular homeostasis and 

survival in diverse conditions. Changes in cell growth rate result in changes in rRNA and 

tRNA content, but the effect of cell growth rate on mRNA abundance is not known.  We 

developed a new method for measuring absolute transcript abundances using RNA-seq, 

SPike in-based Absolute RNA Quantification (SPARQ), that does not assume a constant 

transcriptome size and applied it to the model eukaryote, Saccharomyces cerevisiae 

(budding yeast), grown at different rates.  We find that increases in cell growth rate 

result in increased absolute abundance of almost every transcript, with significant 

coordinated changes in abundances among functionally related transcripts.  mRNA 

degradation and synthesis rates increase with increased growth rate, but to differing 

extents, resulting in the observed net increases in absolute abundance. We propose that 

regulation of ribosome abundance links environmental conditions to transcriptome 

amplification via nutrient-sensing pathways. 

 

Control of gene expression by transcription factors, chromatin regulators1 and factors that act 

post-transcriptionally2 results in changes in mRNA abundance. Physiological properties of cells 

such as cellular growth rate3-6, size7,8 and ploidy9 have also been shown to affect gene 

expression programs. Typically, it is assumed that the majority of the transcriptome remains 

unchanged in response to different stimuli, and in different conditions or physiological states, 

and this assumption underlies standard normalization methods for comparative global studies 

of gene expression10.  However, over-expression of the c-myc oncogene has recently been 

shown to result in globally elevated mRNA levels11 and variation of total RNA content has been 

previously described in mammalian cell cultures12. A global increase in total transcriptome pool 
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size between samples violates assumptions underlying standard comparative differential gene 

expression analysis and requires the development of alternative approaches to global 

transcriptome analysis13,14. 

 

Growth rate (GR) changes result in co-directional changes (i.e. a monotonic increase or 

decrease) in total cellular RNA content in both prokaryotic and eukaryotic cells. Previous 

studies found that changes in the total abundance of rRNA and tRNA contribute to the GR-

dependent changes in RNA content in yeast cells15,16.   Whether other types of RNAs, including 

mRNAs, are increased in absolute abundance with GR remains unknown. In this study, we 

aimed to determine the effect of GR on the absolute levels of all transcript classes and whether 

changes in rates of synthesis and/or RNA degradation underlie GR-associated changes in gene 

expression. 

 

Rates of cell proliferation in unicellular and multicellular organisms vary dramatically between 

environmental conditions, cell types and developmental stages.  Continuous culturing using 

chemostats17, in which a single essential nutrient is present at GR-limiting concentrations, 

provide an experimental means of maintaining exponentially growing populations at precise 

GRs.  In a steady-state chemostat, the culture dilution rate is equal to the specific GR of the 

population (i.e. the exponential GR constant).  We established steady-state cultures of 

Saccharomyces cerevisiae in carbon- and nitrogen-limited chemostats maintained at GRs of 

0.12, 0.20, and 0.30 h-1 corresponding to population doubling times of 5.8, 3.5, and 2.3 hours 

respectively (online methods and Figure 1A). This experimental design enables discrimination 

of GR-specific from nutrient-specific effects on gene expression4. 
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Consistent with earlier studies15, quantitative RNA extractions revealed a ~2.5-fold increase of 

total RNA (Figure 1B and Figure S1A) and rRNA (Figure S1B) content per cell as GR 

increases 2.5-fold.  Although cell volume increases with GR too (Figure S2), we find increased 

total RNA concentrations in faster growing cells (Figure 1C, Figure S1C and Figure S1D).  

 

To dissect effects of GR on the expression levels of all transcript classes we developed SPike 

in-based Absolute RNA Quantification (SPARQ) (online methods). The method relies on 

adding a fixed amount of synthetic RNA spike-ins to a constant number of cells prior to RNA 

extraction (Table S1, Figure S3) followed by directional RNA-seq. The number of counts 

produced for each spike-in and its molar abundance (attomoles) informs a model relating the 

number of aligned reads for each gene to the number of transcripts per cell. By maximum-

likelihood methods, we derive estimates of (a) the relative yield coefficient for each spike-in 

(number of aligned fragments produced per original RNA molecule) and (b) the attomoles of 

each RNA species multiplied by its relative yield coefficient. With the addition of a specific 

model for biological noise, we derive a complete statistical model for sequencing counts that 

allows parametric hypothesis testing and generation of synthetic data for model testing. Our 

normalization method is completely linear, unlike a recently published method13, and it does not 

seem to suffer from undue noise in the spike-in sequencing reads identified in a previous 

study18. Absolute mRNA abundances estimated using SPARQ are in good agreement with 

independent estimates from single-molecule FISH studies19 (Figure S4).  
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We find that the absolute abundance of all types of RNA, including mRNAs, increase with GR 

(Figure 1D and Figure S5) contrasting the results from a recent study20.  In agreement with 

previous observations21,22 most mRNAs (97% - 64% of total detected) are estimated to be 

expressed at less than 1 molecule/cell (Table S2 and Table S3, Figure S6). This suggests that 

only a fraction of cells express a given mRNA at any given moment in time, due to either cell 

cycle-related, or stochastic, gene expression.  

 

Although tRNA transcripts comprise approximately 10% of the transcriptome15, our abundance 

estimates for this class of RNA are much lower (Figure 1D(v)). We attribute this to the 

presence of extensive post-transcriptional modifications in tRNAs that affect the efficiency of 

cDNA synthesis23, greatly reducing their sequencing yield relative to the synthetic spike-in 

RNAs and other endogenous RNAs.  Despite lower sequencing yields an overall increase in the 

abundance of tRNAs is observed with increasing GR, consistent with earlier studies15. 

 

To quantify the response of each mRNA to GR, we modeled absolute abundance as an 

exponential function of GR (online methods). The exponential constant (EC) from this model 

reflects the magnitude of absolute transcript abundance change with GR (Figure 1E) and is 

equivalent to the slope of a log-linear relationship between relative expression and GR used in 

a prior study4. We find that the majority of mRNAs respond significantly to GR (80 % in the 

nitrogen (Table S2) and 73% (Table S3) in carbon samples at 5% FDR).  EC values are 

independent of absolute abundance and well correlated (r=0.53, p-value<2.2 10-16) between the 

two different nutrient limitations (Figure S7B) indicating that GR is the primary determinant of 

the response. Overall higher EC values in the nitrogen-limited samples indicate that the 
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magnitude of the response to growth rate depends on the source of GR limitation (Figure 1E, 

inset).  

 

Virtually all coding transcripts increase in absolute abundance with increased GR (Figure S7A).  

This predominantly positive response of mRNA abundance to GR contrasts with the study by 

Brauer et al4 in which the gene expression response to GR (quantified as a linear response of 

relative expression to growth rate) was centered around zero with an approximately equal 

number of genes responding positively and negatively to GR. This discrepancy between results 

is consistent with expectations when the assumption of a constant transcriptome size between 

conditions underlies normalization13. Indeed, inappropriate application of standard RNA-seq 

normalization and analysis to our dataset yields both positive and negative changes in gene 

expression with GR that are centered around zero (online methods).   

  

Despite a concomitant increase in cell volume with GR (Figure S2), increasing absolute mRNA 

abundances result in increased cellular concentrations for the vast majority of mRNAs (Figure 

S1D and Figure S8), suggesting the GR effect on gene expression amplification is distinct from 

previously reported absolute mRNA abundance increases with increased cell volume7. 

 

The broad range of calculated EC values (1.86-16.26 in carbon-limitation and 4.21-25.88 in 

nitrogen-limitation) indicates that absolute transcript abundance does not scale uniformly with 

GR, but that different genes respond to GR with different intensities.  To assess the similarity of 
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positive EC values (4,279 and 4,260 positive EC values, in nitrogen and carbon respectively) 

within sets of functionally related transcripts (i.e. the coherence) we used a modified gene set 

enrichment analysis algorithm (online methods, Figure 2).  We found 61 gene sets in carbon-

limitation and 107 gene sets in nitrogen-limitation that show significant coherence in EC values 

(Table S4, Table S5). These gene sets were manually grouped to seven broad categories as 

shown in Figure 2. 

 

Genes involved in translation, especially those encoding ribosomal subunits, are highly 

coordinated in their response to GR and have high EC values (Figure 2(ii)). Additional groups 

of genes responding to GR in a coordinated way are related to post-translational modifications 

(Figure 2(iii)) and transcription (Figure 2(iv)). Gene sets associated with cell membrane and 

cell wall (Figure 2(v)) show unique behavior: although their response to GR is highly 

coordinated in both nutrient limitations, they are more sensitive to GR changes in nitrogen-

limitation than carbon-limitation. This is consistent with our observation that cell size is much 

more sensitive to GR under nitrogen limitation (Figure S2).  

 

The only cases in which we observed nutrient-specific coherence of EC values were genes 

involved in proton-coupled energy production (Figure 2(vi)) and biosynthesis of organic 

nitrogen biomolecules (Figure 2(vii)), under carbon- or nitrogen-limitation respectively. This 

likely reflects specific responses to the increased steady-state abundance of carbon and 

nitrogen with increased GR in carbon- and nitrogen-limited chemostats respectively.   
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Negative EC values reflect an inverse relationship between mRNA abundance and GR and are 

found for only a small number of transcripts (Figure S7A). These transcripts show significant 

overlap between the two nutrient limitations (33 shared transcripts, p-value<10-6) and are 

enriched in genes involved in nutrient transport (Figure S9), which may reflect a common 

nutrient-scavenging response.  

 

Changes in transcript abundance are the result of changes in the rate of RNA synthesis, RNA 

degradation, or a combination of both (modeled as d[RNA]/dt = k – α*[RNA], where 

k = synthesis, and α= degradation rate).  We performed RATE-seq24 to determine the mRNA 

degradation rates at the two slowest GRs under nitrogen-limitation. We chose nitrogen-

limitation because it elicits the strongest response to GR, which is most striking when 

comparing GRs of 0.12 h-1 and 0.2 h-1. We find that mRNA degradation rates increase for the 

vast majority of transcripts by an average of 3.1-fold. At steady state (d[RNA]/dt = 0) synthesis 

rates can be inferred from degradation rates and mRNA abundance (k = α*[RNA). Synthesis 

rates increase by an average of 7.7-fold, exceeding the increase in degradation rates and 

thereby accounting for the observed net increase in transcript abundance (Figure 3A).  

 

Our results reveal a global effect of GR on absolute RNA levels produced by all three RNA 

polymerases that cannot be explained by a target-specific differential expression model.  We 

propose that environmental control of ribosome abundance plays a central role in mediating 

transcriptional amplification and can explain our observations (Figure 3B). According to this 

model, elevated ribosome abundance results in increased translation rates and abundance of 

all proteins including RNA polymerases and RNA degradation components. Increases in these 
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key enzymes lead to global increases in transcription and RNA degradation activity. Synthesis 

appears more responsive to GR than degradation, perhaps due to the protective effect of 

translation on mRNA stability25, leading to global transcriptome amplification.  

 

Various lines of evidence support a universal role of regulated ribosome biosynthesis in 

determining global expression changes. Increasing nitrogen and carbon availability in our 

experimental conditions are known to activate the conserved TORC1 and cAMP-PKA pathways 

respectively26, both of which regulate GR and ribosome biogenesis. Ribosomes have been 

proposed to act as a mechanism coordinating GR and expression in bacteria27. In mammals, 

the c-Myc oncogene, over-expression of which leads to transcriptome amplification11, has been 

shown to also regulate ribosome biosynthesis28. Finally co-directional changes in mRNA 

synthesis and degradation have been observed under environmental stress29,30. Deciphering 

the effect of GR in baseline gene expression has important implications in understanding cell 

physiology and homeostasis, differentiation and dysregulation of gene expression. RNA-seq 

analysis using SPARQ provides a means of testing the extent of global gene expression 

amplification across a variety of conditions and cell types. 
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Figures 

 

 

Figure 1. The total abundance of all RNA species increases with increased GR. A) 

Experimental design. Eighteen chemostats (three repeats of six experimental conditions) were 

established at the indicated GRs and nutrient limitations. The intensity of each chemostat color 

indicates the steady-state limiting nutrient concentration. B) Total RNA content per cell was 

estimated using quantitative extractions and performed in triplicate. Each biological replicate 

and their mean are shown. C) The concentration of RNA in the cell (fg/fL) increases with 

increased GR. The error bars represent the standard deviation of the mean across biological 

replicates. *p<0.05, t-test. D) The summed transcript abundance for each RNA category, 

measured by SPARQ. Samples grown in nitrogen limitation are blue and samples grown in 
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carbon limitation are orange. In nitrogen and carbon limitation respectively: (i) 6408 and 6444 

different detected transcripts (ii) 68 and 69 different detected transcripts (iii) 4 and 5 different 

detected transcripts (iv) 13 different detected transcripts each (v) 270 and 284 different 

detected transcripts (vi) 11 and 10 different detected transcripts. E) Use of SPARQ data for 

modeling the response to GR for an exemplary transcript, ADE3. Error bars depict SEM. The 

error bars for the nitrogen limited sample are too small to be drawn: SEMGR=0.12=4.51 10-6, 

SEMGR=0.20=1.16 10-5, SEMGR=0.30=2.33 10-5. Inset: the calculated exponential constants are 

independent of the transcript’s abundance (GR=0.12 h-1 plotted). F) GO enrichment analysis of 

the mRNAs with negative exponential constants. * adj.p<0.05, ** adj.p<0.01, *** adj.p<0.001, 

Bonferroni correction.  
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Figure 2. Gene set enrichment analysis of transcripts responding positively to GR. 

Distribution of positive exponential constants among mRNAs in A) carbon-limited and B) 

nitrogen-limited samples. The vertical line is the median response to GR. Panels (ii-ix): each 

point represents the average exponential constant of all genes in the gene set, error bars depict 

SEM. Gene Ontology super-groups are (ii) Protein synthesis, (iii) Post-translational 

modifications (iv) Transcription, (v) Cell membrane and cell wall, (vi) Proton-coupled energy 

production (vii) Amino acid biosynthetic process. 
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Figure 3. Kinetics of global gene expression amplification.  A) RATE-seq was used to 

measure transcript degradation rates for all mRNAs at GRs of 0.12 h-1 and 0.20 h-1 in nitrogen-

limited chemostats. Synthesis rates were calculated from the measured abundance and 

degradation rates.  B) Proposed model of how regulation of ribosome biosynthesis results in 

globally increased RNA synthesis and degradation rates leading to global amplification of 

mRNA. Increasing concentrations of nitrogen and carbon activate the TORC1 and cAMP-PKA 

pathways respectively, which control ribosome biogenesis. A weaker effect of the cAMP-PKA 
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pathway on activation of ribosome biogenesis (depicted by the different arrow weights), may 

explain the weaker response of gene expression to GR at the carbon-limited cultures. 

Increased ribosome biosynthesis and abundance leads to increased protein production rates 

including all proteins required for transcription and mRNA degradation. The two feed-forward 

loops created by the predicted accumulation of ribosomal proteins and RNAs may underlie the 

exponential increase of most mRNAs with GR. The net result of differentially increased RNA 

synthesis and degradation rates is a global increase in absolute mRNA expression levels. 
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