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The details in the distributions: why and how to study phenotypic
variability
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Phenotypic variability is present even when genetic and

environmental differences between cells are reduced to the

greatest possible extent. For example, genetically identical

bacteria display differing levels of resistance to antibiotics,

clonal yeast populations demonstrate morphological and

growth-rate heterogeneity, and mouse blastomeres from the

same embryo have stochastic differences in gene expression.

However, the distributions of phenotypes present among

isogenic organisms are often overlooked; instead, many

studies focus on population aggregates such as the mean. The

details of these distributions are relevant to major questions in

diverse fields, including the evolution of antimicrobial-drug and

chemotherapy resistance. We review emerging experimental

and statistical techniques that allow rigorous analysis of

phenotypic variability and thereby may lead to advances

across the biological sciences.
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Introduction
Although biologists are accustomed to thinking about the
phenotypic variation that results from genetic or environ-
mental diversity, even genetically identical individuals
raised in nominally identical environments can display
heterogeneity. We refer to this residual variation as ‘phe-
notypic variability.’ Phenotypic variability among clonal
cells can be an advantageous and even necessary feature
of biological systems [1,2]. For example, tri-chromatic
vision, as found in humans, depends upon stochastic
processes that underlie the photoreceptor choice of indi-
vidual cone cells [3]. On the other hand, phenotypic
variability can be highly undesirable and even buffered
during development [4]; for example, numerous poly-
morphisms interact to promote invariant heart formation
[5]. Mechanisms that buffer phenotypic variability may
degrade with age, as evidenced by several studies that

find phenotypic variability correlates with age in mice [6],
yeast [7], rats and humans [8]. Phenotypic variability is
also relevant to drug resistance. In microorganisms, noisy
gene expression creates heterogeneous growth strategies
within clonal populations that allow some cells to survive
antibiotic treatment [9]. Growth heterogeneity also con-
tributes to chemioresistance in tumors [10!]; a recent
study identified an epigenetic basis for growth hetero-
geneity that allows some cancer cells to survive che-
motherapy [11]. Understanding the causes of
phenotypic variability could reveal treatment strategies
that minimize drug resistance [12!] or could elucidate the
genetic bases of congenital diseases (like heart disease).

Despite tremendous potential gain from an improved
understanding of phenotypic variability, few research
programs focus on variance, while studies of trait averages
abound. Consequently, important phenomena go unstu-
died. As Islam et al. captured with a pithy analogy: ‘. . .
analyzing gene expression in a tissue sample is a lot like
measuring the average personal income throughout
Europe — many interesting and important phenomena
are simply invisible at the aggregate level [13].’ Even
when phenotypic measurements have been meticulously
obtained from single cells or individual organisms, count-
less studies ignore the rich information in these distri-
butions, studying the averages alone.

As a result, the mechanistic basis of phenotypic variability
is only beginning to be understood. Phenotypic variability
may result from environmental differences that are diffi-
cult to measure, such as unevenness in nutrient concen-
trations or unequal numbers of adjacent cells [14–16].
Alternatively, phenotypic variability may result from sto-
chastic differences in gene expression that stem from the
nondeterministic nature of molecular kinetics [17,18].
Such differences can propagate; for example, a difference
in the concentration of a single transcription factor can lead
to different levels of transcription for many downstream
genes [19]. Therefore, phenotypic variability is present at
many levels of biological organization (Figure 1).

Understanding the causes of phenotypic variability will
not only inform medical questions, but is also important to
evolutionary biology, the agricultural industry and other
branches of biological science. Recent evolutionary stu-
dies suggest that phenotypic variability may allow rapid
adaptation to new conditions [20], or may represent a bet-
hedging strategy that enhances fitness in fluctuating
environments [7,21]. Theoretical studies also suggest that
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phenotypic variability can be adaptive [22–26]. A critical
challenge for evolutionary biologists is to understand how
often phenotypic variability influences evolutionary tra-
jectories [27]. In agriculture, variability is largely a nui-
sance, as uniformity in crop size, shape and ripeness
increase harvesting efficiency and overall crop yield.
However, selection for uniformity has its downside, as
exemplified by the unfortunate loss of flavor in most
supermarket tomatoes [28], not to mention the risks of
monoculture [29]. Further work is needed to understand
and ultimately control the degree of variability in crop
production, as well as in industrial-production cell cul-
tures [16].

In order to encourage greater attention to variability
phenotypes, we discuss emerging experimental and stat-
istical methods that allow rigorous study of phenotypic
distributions. We then conclude by discussing the major
open questions and the opportunities to make advances of
intellectual and practical importance.

Experimental methods for studying
phenotypic variability
The study of phenotypic variability presents three unique
experimental challenges. Firstly, it requires measure-
ments from single cells or individual organisms rather
than measurements of population averages. This pre-
cludes many standard techniques from being used to

quantify phenotypic variability, such as growth-rate
measurements that rely on increases in cell density over
time, or gene-expression measurements from bulk cul-
ture, as measured by microarrays or RNA-seq. Secondly,
larger numbers of observations are required to accurately
estimate phenotypic variability because the sampling
error on variance is greater than on mean [30!!]. Thirdly,
it requires an experimental design that enables separation
of multiple factors that can affect phenotypic variation
(e.g., measurement error and environmental differences)
(Figure 2). We describe three methodologies — flow
cytometry, high-content imaging, and single-cell RNA
sequencing — that address the above challenges.

Flow cytometry allows large-scale measurements (millions
of cells) of single-cell phenotypes making it an ideal
technique to study phenotypic variability. Flow cytometry
is often used to study phenotypic variability within tumors
[31!]; for example, recent flow-cytometry experiments
demonstrated that initially homogeneous breast cancer
[32] as well as melanoma [10!] tumors become hetero-
geneous as cells switch between different functional states.
Several recent experiments used flow cytometry to survey
expression-level variability in yeast. Two revealed higher
than expected expression-level variability for stress-
responsive proteins, suggesting a diverse response to stress
maximizes survival in harsh or unpredictable environments
[33,34]. Another experiment identified naturally occurring
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Phenotypic variability is present at many levels of biological organization. (a) A within-cell difference in abundance between two fluorescent proteins
expressed by the same promoter. This difference is not deterministic as different cells have different relative levels of each fluorescent protein;
reproduced with permission from [44]. (b) A between-cell difference in JARID1B expression gives some melanoma cells larger, rounder nuclei and
slower doubling times than others from the same cell line; reproduced with permission from [10!]. (c) A difference within structured, clonal populations
of HeLa cells. Those at the islet edges (greener) are more susceptible to dengue virus; reproduced with permission from [14]. (d) A difference between
multicellular organisms from the same inbred line. Morphological abnormalities in A. thaliana are revealed after drug treatment; reproduced with
permission from [20].
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polymorphisms that affect expression-level variability [35].
Still another used flow-cytometry data from a previous
study [36] to identify gene deletions that affect expres-
sion-level variability in yeast [37!!] (Table 1). In all four
studies, the experimental design incorporated replicates or
controls in order to separate variability differences caused
by genetic perturbation from technical variation among
experiments.

Although flow cytometry almost always reports data on
single cells, thus providing information about variance,
many researchers ignore these data, opting instead to
focus on means or on proportions of cells surpassing an
arbitrary threshold for whatever trait is being measured.
The overlooked, but information-rich, data from previous
studies can be used to answer questions about phenotypic
variability without ever picking up a pipette [37!!].

High-content imaging (HCI) is another technique that
overcomes the aforementioned three challenges associ-
ated with the study of phenotypic variability. It presents
an advantage over flow cytometry in that it allows obser-
vation of more diverse phenotypes, including firstly,
subcellular protein localization and cell morphology in
fixed cells (reviewed in [38]); secondly, protein transloca-
tion and dynamic gene expression in live cells (reviewed
in [39]); and finally single-organism phenotypes like

behavior in Caenorhabditis elegans and leaf shape in Arabi-
dopsis thaliana (reviewed in [40]). Another advantage of
HCI is that it allows many phenotypes to be measured
simultaneously, and a growing number of open-source
software projects automate analysis of the resulting data-
rich image files (reviewed in [41]). Although HCI pro-
vides single-cell, high-throughput data that are ideal for
studying phenotypic variation, most studies do not ana-
lyze phenotypic distributions, and instead focus on
measures of central tendency (e.g., means). Our recent
study revisited these distributions, using previously col-
lected HCI data [42] to identify candidate genes that
buffer morphological variability within genetically iden-
tical yeast populations, then validating these candidates
by collecting additional HCI data [43].

Relatively few other HCI studies have focused on varia-
bility phenotypes. In a landmark study in Escherichia coli,
researchers designed a now widely used [33,36,37!!] dual
reporter system that quantifies stochastic expression-level
variability [44]. Recent work in C. elegans used HCI to
count individual mRNA molecules in intestinal precursor
cells, demonstrating that stochastic gene expression varia-
bility underlies incomplete penetrance of a mutant phe-
notype [45]. We recently used HCI to study variation in
single-cell growth-rate in yeast, revealing a correlation
between slow growth and survival of acute stress [7]
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Example experimental designs using 96 well plates. (a) A fully crossed design where multiple effects, both fixed (e.g., genotype, environment) and
random (e.g., technical error), contribute to yeast phenotypes. Any residual variance not explained by these factors may result from within-genotype
variability. The experiment shown is balanced, meaning that equal numbers of cells are assayed for each genotype in each condition. (b) A design that
is not fully crossed. Instead, technical errors specific to each plate are confounded with the environmental effect. Additionally, this experiment is
unbalanced, which will influence statistical modeling. Although confounding effects can often be avoided by strategic experimental design, HCI
experiments almost always produce unbalanced sample sizes between groups.
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(Table 1). Another recent HCI experiment quantified the
responses of single-cells to a signaling molecule, revealing
variability in binary phenotypes (whether to activate the
transcription factor NF-kB) and continuous phenotypes
(activation time) [46]. HCI studies in human cells have
shown that stochastic differences in gene expression
underlie variability in apoptosis rates [47], proliferation
rates [10!], and drug survival [48!], whereas a determi-
nistic response to microenvironmental differences affects
virus susceptibility [14]. Given its wide range of measur-
able phenotypes, HCI has the potential to provide broad
insights about phenotypic variability.

Single-cell RNA-seq is an emerging technology that is
poised to yield insights about expression-level variability
between genetically identical cells, but that currently is
not high-throughput. It is limited (by cost and time) to
analysis of "100–200 single cells per experiment [13,49].
Additionally, single-cell RNA-seq can only reliably
quantify expression of medium-abundance to high-abun-
dance transcripts [50]. Despite these limitations, a few
studies have used single-cell RNA-seq to answer questions
about phenotypic variability. One such study developed a
kinetic model of transcription that explains stochastic
differences in gene expression [50] among mouse embryo-
nic stem cells (single-cell RNA-seq data from [51]) (Table
1). Another study found that individual blastomeres from
the same early mouse embryo have stochastic, allele-
specific expression differences for 6% of heterozygous
genes [52]. Rapidly advancing sequencing technology
may soon overcome the limitations of single-cell RNA-
seq to allow a new wave of genome-wide studies focused on
expression variability at the RNA level.

The aforementioned technologies — flow cytometry,
HCI, and single-cell RNA-seq — are primarily used to
study phenotypes in single cells. Study of phenotypic
variability in larger multicellular animals and plants may
be enabled by agricultural data [15,53!!]. The agriculture
industry performs many phenotypic measurements of
individual organisms, uses large sample sizes, and has
increasingly turned to monoculture, thus minimizing
genetic sources of variation. Nevertheless, these data
remain largely unexploited by variability studies.

Statistical methods for studying phenotypic
variability
Experiments that quantify phenotypic variability will pro-
duce distributions representing the phenotypes of hun-
dreds to millions of single cells or organisms. Analyzing
these distributions is challenging because they are influ-
enced by multiple factors. For example, expression-level
variability depends on stochastic processes, cell size, and
mRNA abundance [33]. A clever experimental design can
facilitate separation of these factors during downstream
statistical analysis, for example, by simultaneously measur-
ing single-cell expression level, size, and mRNA abun-
dance, as well as the technical variation unique to the
experimental methodology. Statistical modeling allows
estimation of the relative contribution from each factor
to the observed phenotypic distribution. However, classic
statistical models make many assumptions, including that
the variance is normally distributed, equal across all
samples, and independent of the mean [54]. We first discuss
how paying attention to these often-violated assumptions
can provide insight about phenotypic variability, and then
discuss how this guides selection of a statistical model.
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Table 1

Example studies combining experimental and statistical techniques to isolate phenotypic variability from other sources of variation

Reference Major question Experimental platform How did the experimental design
isolate sources of variation?

How did the statistical
methods isolate
sources of variation?

Rinnot et al. [37!!] How much cell-to-cell
variability in protein
levels is due to stochastic
events?

Flow cytometry A fluorescent 2-reporter system
distinguishes global variability,
which coordinately affects
reporters, from stochastic variability,
which independently affects
reporters (data from [36]).

The residuals from plots
of fluorescence mean
versus CV are utilized to
distinguish effects on
variability from effects
on mean.

Levy et al. [7] Does variation in
single-cell growth and
gene expression correlate
with survival of
acute stress?

High content
imaging (HCI)

An experimental design similar to that
in Figure 2 quantifies effects on
growth variability from instrument error,
genotypic differences, and
clonal heterogeneity.

GLM is used to estimate
the relative effect on
heat-shock survival of
clonal heterogeneity in
growth rates versus
genotypic differences.

Kim et al. [50] Can expression-level
variability present in
mouse embryonic
stem (ES) cells be
explained by a
kinetic model for
transcriptional bursting?

Single-cell RNA-seq Correlations between expression-level
variability (data from [51]) and histone
modifications (data from [78]) suggest
a biological basis for cell-to-cell
variation in gene expression.

A Poisson-beta distribution
is used to model the
kinetics of stochastic gene
expression caused by
transcriptional bursting.

Single-cell RNA-seq data
from mouse ES cells fit
this model.
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The shape of a phenotypic distribution depends strongly
on the phenotype of interest, and can provide clues about
the mechanistic underpinnings of phenotypic variability.
For example, our recent imaging study found that the
distribution of growth rates among genetically identical
yeast microcolonies is strongly left-tailed; this prompted
experiments revealing a subpopulation of slow-growing
cells that overexpress a stress tolerance protein, TSL1,
and that have enhanced survival of high heat [7].
Although consideration of a distribution’s shape can yield
valuable insights, sometimes a transformation such as
taking the logarithm [53!!,55] or the more general
Box–Cox power transformation [43,56] can make data
sufficiently approximate a normal distribution. This could
allow analysis via a more common or more powerful
statistical model than would be possible for non-normally
distributed data. Such transformations should be applied
with caution, as they may change the scale of the resulting
data [54,57], or may be inappropriate if the data are known
to follow a particular non-normal distribution, as is the
case for count data (e.g., RNA-seq) [50,58].

Another property of biological data that may provide insight
about phenotypic variability is the presence of unequal
variances among samples (heteroscedasticity). The com-
mon view that heteroscedasticity is simply an obstacle to
overcome completely misses the main point of this review:
that differences in variance between groups may be the
most interesting aspect of a dataset [59]. Indeed, screens for
genes that modulate phenotypic variability explicitly
search for significant differences in variance between popu-
lations, for example, between different single-gene knock-
out strains [43]. To test for unequal variance, previous
phenotypic variability studies have used Levene’s test
[60,61], Bartlett’s test [55] or the Fligner-Killeen test
[62]. These tests look for variance differences between
discrete, researcher-defined groups yet ignore continuous
covariates like age or measurement timing that create
differences within groups; this may reduce the power of
these tests [30!!]. Alternate approaches to model hetero-
scedasticity are discussed below.

A special case of heteroscedasticity occurs when variance
depends upon the mean. Mean-variance relationships,
although potentially informative, can be problematic
for studies of phenotypic variability because the effect
of interest (variance) is confounded by another effect
(mean). Mean-variance relationships might also be a
symptom of improper transformation [30!!,56]. A favored
way to deal with mean-variance relationships (and with
heteroscedasticity in general) is to extract variances that
are independent of the mean and to model these separ-
ately. This extraction can be done by using nonlinear
regression of standard deviation on mean to estimate the
mean-variance relationship, and then using the residuals
from such a regression as mean-corrected measures of
variation [30!!,37!!,43,53!!]. The first step in this

approach, plotting standard deviation versus mean, is a
very useful diagnostic for whether and how variation
depends on mean, and it should be standard procedure
in all studies of phenotypic variability. Simple linear
corrections for mean-variance dependence, such as the
coefficient of variation (CV, standard deviation divided by
mean), are occasionally used without first assessing
whether such a correction makes any sense, and indeed
biological traits often show unpredicted, nonlinear mean-
variance relationships [43]. Such nontrivial dependencies
might be informative, perhaps suggesting a mechanistic
link between the molecular machineries that affect mean
and variance, but at the very least they must be taken into
consideration in analyses of variation.

Statistical modeling can separate multiple sources of
variation that contribute to phenotypic distributions.
These sources are often mixed, which means some are
‘fixed’ effects whereas others are ‘random’ effects. Fixed
effects take values that are repeatable and of inherent
interest (e.g., genotype), whereas random effects take
values that are sampled from a potentially infinite set
(e.g., measurement error). Two commonly used statistical
approaches to separate mixed effects that contribute to
trait variation are analysis of variance (ANOVA), which
works best with balanced experimental designs, and
linear mixed modeling (LMM), which is more flexible
and can handle unequal sample sizes in both nested and
crossed (Figure 2) experimental designs [54,57]. The lme4
package in R provides a free, open-source implementation
of LMM [63]. LMM-based and ANOVA-based methods
can yield biased results when applied to data derived from
non-normal distributions [30!!]. An extension of LMM,
Generalized linear mixed modeling (GLMM) accommo-
dates non-normal distributions and is implemented in R
through the lme4 package [54]. However, GLMM has some
drawbacks [57] that can be avoided if a log or Box–Cox
transformation makes data approximate a normal distri-
bution allowing analysis via LMM.

These methods model trait averages and can be extended
to model trait variability. One such extension is to apply
LMM or GLMM to model sample means and then to
model the residuals from the first model as a measure of
variance as described above. One drawback of this two-step
approach is that mean effects are estimated assuming equal
variances because heteroscedasticity is not modeled until
step two, which may bias estimates [30!!,53!!]. An alternate
approach, double generalized linear modeling (DGLM),
iteratively estimates sample means and residuals until
estimates converge [56,64]. Although estimates do not
always converge [53!!,65!!], DGLM has been successfully
used to detect polymorphisms that contribute to phenoty-
pic variability [56,65!!]. For large, balanced, normally dis-
tributed datasets, two-step models and DGLM perform
with similar power and false-positive rates on simulated
data [30!!]. A well-documented extension of DGLM that
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allows mixed modeling is implemented in the hglm package
in R [66].

Conclusion
Previous studies of genetically identical individuals have
provided the first clues about the phenotypic variability
present in nature, illuminating cases where it is influ-
enced by a genetic component, and assessing — for
particular phenotypes — which genes have the greatest
effect on variance. Three fundamental questions about
phenotypic variability should be the focus of current
research efforts:

(1) How many genes modulate phenotypic variability?
Comprehensive studies have found that disruption
of almost any gene in S. cerevisiae [67] and C. elegans
[68] reduces average fitness (population growth rate)
in at least one condition. Yet these studies are unable
to determine which genes influence variance in
fitness because, like most growth assays, they
measure the average fitnesses of bulk cultures [69].
Very few genome-wide studies have sought to
identify genes that modulate fitness variability. Our
recent study developed new tools to quantify growth-
rate variability among thousands of yeast microco-
lonies and identified mutations that alter the extent of
microcolony growth-rate variation [7]. Only three
genome-wide screens have identified genes or
genomic regions that modulate variability in other
phenotypes including gene expression (yeast) [37!!],
morphology (yeast) [43] and sensory bristle traits
(Drosophila) [70]. The results from these studies
suggest that genes contributing to phenotypic
variability are common, with hundreds of genes
identified in the two yeast studies, and 28 genomic
regions (on average encompassing "40 genes each)
identified in the Drosophila study. Identifying genes
that influence variability is a first step toward
controlling the degree of variability in agricultural
populations, cell-production cultures, and even
among tumor cells.

(2) How common is natural genetic variation that modifies
phenotypic variability, and is such variation adaptive?
Countless screens have identified polymorphisms
that alter the mean values of fitness-related traits
ranging from flowering time in plants to disease
susceptibility in humans. Yet only a few studies have
identified polymorphisms that alter the variances of
such traits [35,55,56,60,62,65!!,71–74]; many of these
identified polymorphisms affect trait variance while
also altering trait mean, which might imply that mean
and variance effects are confounded. More studies are
needed to illuminate the prevalence and adaptive
values of polymorphisms affecting trait variability in
nature.

(3) What is the mechanistic basis of phenotypic variability?
The mechanistic basis of most phenotypic variability

present in nature is not understood, with a few
exceptions. Differences in gene expression can arise
from asymmetric cell division, as in the bacteria
Sinorhizobium meliloti [75] and Mycobacterium [76], and
from chromatin-mediated switching in lung cancer
cells [11]. Stochastic differences in gene expression
can be transiently heritable [47] and are sometimes
reinforced by dedicated regulatory circuits (reviewed
in [2]). Genome-wide studies suggest that stochastic
gene expression is common [33,34]. Other studies
suggest that stochastic gene expression may drive the
evolution of mechanisms that buffer its phenotypic
effects [45]; a breakdown of this buffering can reveal
mutant phenotypes [45] and may underlie many
human diseases [4]. Some mechanisms that buffer or
otherwise modulate phenotypic variability may do so
for multiple phenotypes at once. For example,
impairment of a protein chaperone increases varia-
bility for many leaf and root phenotypes within inbred
A. thaliana lines [20] and deletions of particular genes,
including some encoding chromatin regulators,
increase variability of many morphological pheno-
types within clonal yeast populations [43]. How
variability at different levels (i.e., variability in
chaperone levels, chromatin structure, transcript
abundance) interacts to manifest in higher-order
phenotypes is not well understood.

Many questions remain, but the experimental and stat-
istical tools are now available to facilitate rigorous analysis
of phenotypic variability. Such analyses promise to reveal
ecologically, evolutionarily and physiologically important
phenomena that had been obscured in the aggregate. The
practical benefits of understanding phenotypic variability
could be great. For example, a study using flow cytometry
showed that maximum antibody fragment production in
E. coli industrial cultures occurs not when total biomass is
at its maximum value, but when the subpopulation of
metabolically active cells is greatest [77]. Understanding
the range of phenotypes present within cell populations
also has practical medical applications. For example, in a
tumor or a population of pathogenic bacteria, it might be
possible to develop drugs that attack various population
subsets rather than targeting the population average. An
alternative approach might be to target a gene or protein
that promotes variability, and then to treat the population
with an anti-cancer drug or antibiotic effective against the
cell type that dominates the resulting, more-uniform
population. The ability to modify phenotypic heterogen-
eity remains to be realized, but existing evidence suggests
it is a worthy — and attainable — goal.
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