
Predicting Cellular Growth from Gene Expression
Signatures
Edoardo M. Airoldi1,2., Curtis Huttenhower1,2., David Gresham1,3, Charles Lu1,3, Amy A. Caudy1,

Maitreya J. Dunham4, James R. Broach3, David Botstein1,3*, Olga G. Troyanskaya1,2*

1 Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, New Jersey, United States of America, 2 Department of Computer

Science, Princeton University, Princeton, New Jersey, United States of America, 3 Department of Molecular Biology, Princeton University, Princeton, New Jersey, United

States of America, 4 Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America

Abstract

Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology,
particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and
cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed
by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes
in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify
quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that
the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture
with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental
methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast
Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying
regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of
the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory
network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate
nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes.
More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale,
inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://
function.princeton.edu/growthrate.
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Introduction

Proper regulation of growth rate is a key systems-level challenge
for all cells, particularly microorganisms facing a fast-changing and
often hostile environment. Cell growth, defined as an increase in
cellular biomass due to biosynthetic processes, is one of the
primary functions that must be coordinated with the environment
in order for cells to maintain viability and reproduce. The
determination of how cells integrate information from the external
environment with information from their internal state to mount
an appropriate response—growing in the presence of nutrients,
arresting growth when stressed, and resuming afterwards— is of
central importance to our understanding of basic biology. From a
genomic perspective, growth also raises the issue of disentangling
correlated systems-level behaviors. When the expression levels of
thousands of genes change due to a growth-related stimulus, which
underlying regulatory parameters are responsible?

In this paper, we identify quantitative aspects of the
transcriptional regulatory mechanisms underlying cellular growth

in Saccharomyces cerevisiae, and we develop a model to predict
instantaneous growth rates of cellular cultures based on gene
expression data. The model enables the estimation of growth
rates under any conditions for which expression data is
available, even on a very short time scale, where standard
experimental techniques cannot measure cellular growth directly
[1]. For example, a culture undergoing continuous growth in a
chemostat [2] can be perturbed from steady state by means of a
brief heat pulse, but the departure from and the return to steady
state growth is too brief to capture with optical density
measurements. Our model allows such a decrease (and
subsequent resumption) of growth rate to be quantified under
a variety of conditions: batch or chemostat cultures, different
microarray platforms, and under any environmental stimulus for
which gene expression can be assayed. Surprisingly, this model
also successfully predicts growth rates from Saccharomyces bayanus
and Schizosaccharomyces pombe expression data, the latter of which
is evolutionarily diverged from S. cerevisiae by an estimated billion
years [3].
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Our findings suggest that the proposed statistical model of
cellular growth provides a broadly applicable biological charac-
terization of the transcriptional regulatory network underlying
growth rate control. We have previously observed that the
expression of ,25% of the yeast genome responds to changes in
growth rate [4]. The response is functionally cohesive, with genes
up-regulated with increasing growth enriched for translational and
ribosomal functions, and with down-regulated genes enriched for
oxidative metabolism and the peroxisome. This functional portrait
provides a rich environment in which to study transcriptional
regulation of growth; for example, production of new proteins at
the ribosome is vital to cellular proliferation, and yeast devotes
some ,60% of its transcriptional throughput to ribosomal RNA
[5]. Similarly, growth rate regulation is highly interconnected with
a variety of other cellular processes (e.g. the environmental stress
response [6], metabolic cycling [7], and the cell cycle [8]), and we
discuss potential causative regulatory signals from the Ras/PKA
pathway [9] and growth-related transcription factors.

Our recent analysis of gene expression measurements from a
collection of S. cerevisiae chemostat cultures across several nutrient
limitations and growth regimes [4] offered intriguing evidence for
a notion of instantaneous growth rate. In this paper, we develop a
model to characterize such a notion quantitatively, in a statistically
principled fashion. We further assess the robustness of the
proposed characterization by presenting new computational
evidence on six additional published data sets and on four newly
collected data sets. More in detail, we demonstrate that the model
can accurately predict relative growth rates under a variety of
conditions and is robust to the conditions of the originating
culture, the technological platform used to assay gene expression,
and evolutionary conservation to other organisms (S. bayanus and S.
pombe). The model allows us to predict growth rates for published
genome-wide collections of expression data (e.g. the stress response
[6] or gene deletions [10]) and for four new data collections we
have generated for this work (Tables S1, S2, S3, S4), providing
biological insight into the growth rate response at very short time
scales—minutes, rather than the hours necessary to experimentally

assay doubling times. This biological validation of the predictions
is accompanied by an out-of-sample validation and outlier analysis
to assess the statistical accuracy of the model. We have made an
implementation of this model available to the public at http://
function.princeton.edu/growthrate.

Additional analyses offer biological insights that support and
further substantiate the empirically observed robustness of the
predictions based on the newly characterized growth-rate genes.
Our insights rely, in part, on the quantitative identification of
binding motifs of known (and uncharacterized) transcription
factors associated with the genes responding to growth. Moreover,
our model enables a quantitative characterization of growth
profiles underlying puzzling experimental evidence that provides a
first convincing explanation of observed cell death in response to a
perturbation in the Ras/cAMP/PKA pathway. More in detail, we
apply our model to study two important aspects of cell growth
regulation: nutrient sensing and the cell cycle. Artificial activation
of the Ras/cAMP/PKA pathway has been previously observed to
recapitulate approximately 85% of the expression response
associated with increased growth in the presence of glucose [11];
here, we show that the cell’s regulatory state during this activation
is indicative of an up-regulated growth response, even in the
absence of appropriate nutrient availability. This conflict between
internal regulatory state and the external environment leads to
rapid cell death. In contrast, analysis of growth rate regulation
during metabolic cycling [12] and synchronous cell cycles [8,13]
indicates that growth rate regulation is not specific to cell cycle
phases, but it is strongly limited to the oxidative phase of the
metabolic cycle. These observations, coupled with an analysis of
putative transcription factors mediating the growth response,
establish a substantial foundation on which to base further
experimental work on the systems-level control of cellular growth
rate.

Background: Measuring Growth
Cellular growth is typically quantified in one of two experi-

mental environments: batch culture or the chemostat. In a batch
culture, cells are provided with a saturating amount of nutrient [1].
Growth is quantified by measuring the optical density (OD) of the
culture over time, X. Figure 1 illustrates three typical phases of an
OD growth curve: a slow initial phase (lag), a fast exponential
growth phase (exp), and a slow saturation phase (stationary).
Solving the appropriate differential equation leads to an
exponential model of cellular growth, X = e m?t. In practice, the
OD of a culture is sampled at discrete points over time, and the
growth rate parameter m (in units of inverse hours h21) is estimated
from an exponential fit to the OD measurements.

In the chemostat, a specific growth rate is maintained by
limiting the concentration of a controlling nutrient provided to the

Figure 1. Growth phases of a typical cellular culture.
doi:10.1371/journal.pcbi.1000257.g001

Author Summary

A major challenge for living organisms is the regulation of
cellular growth in a fluctuating environment. Sudden
changes in nutrient availability or the presence of stress
factors typically require rapid adjustments of cellular
growth. The misregulation of growth control in higher
organisms is a major factor in the development of cancer.
A statistical characterization of cellular growth based on
gene expression levels provides a quantitative perspective
to understand the regulatory network that controls
growth. We develop a model of cellular growth in the
yeast Saccharomyces cerevisiae, grounded in the expres-
sion levels of a small set of genes. The model is able to
predict the growth rate of new cellular cultures from
expression data and is robust to changing biological
conditions, experimental methods, and technological
platforms. The predictions are informative about changes
in growth at very short time scales, which direct
experimental methods cannot generally access. The model
also predicts growth rates in Saccharomyces bayanus and
in Schizosaccharomyces pombe, a yeast diverged by
approximately a billion years of evolution. Our findings
suggest that the model describes fundamental character-
istics of the unicellular eukaryotic growth regulatory
program. A case study explores the role of nutrient
sensing in the yeast growth regulatory system.

Predicting Cellular Growth
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cells [14]. Figure 2 illustrates the principle behind the chemostat.
A limited concentration (S0 in the tank) of the controlling growth
factor is provided in media flowing continuously into a growth
tube of limited capacity. Changes in density of the culture, X, and
in concentration of the controlling nutrient (S), in the growth tube,
are driven by Michaelis-Menten dynamics [15]. In this regime, the
growth rate is a function of the concentration of the controlling
nutrient, m= m(S). In particular, dX/dt = [m(S)2D] X; at steady
state, the density of the culture no longer changes, dX/dt = 0, and
the concentration of the controlling growth factor also stabilizes,
dS/dt = 0. The growth rate then equals the flow rate set by the
experimenter, m(S*) = D.

In a batch culture, the growth rate is generally not controlled; it
is determined by a complex interaction of environmental and
genotypic states, and it is maximal during the exponential phase of
growth (mmax). Under these conditions, the growth rate of the
culture (the first derivative of the curve in Figure 1) changes with
time. In a chemostat, the growth rate is controlled by setting the
nutrient flow rate D below an organism’s maximum possible
growth rate mmax as estimated from batch culture. In either
experimental environment, the growth rate m is directly related to
the doubling time, Td = ln(2)/m.

Our model is built on a collection of gene expression data from
chemostats at known growth rates, and it allows us to quantify a
notion of instantaneous growth rate in chemostat and batch
cultures, even in cultures in which the growth rate is changing
rapidly over time.

Materials and Methods

We fit a linear model to a collection of expression data drawn
from S. cerevisiae chemostat cultures over several growth rates and
nutrient limitations. Estimates of the parameters characterize each
gene’s response to changes in growth rate, and provide insight into
the transcription factors and regulatory network responsible for
yeast growth homeostasis. By applying this model to new expression
data sets, we are able to predict instantaneous growth rates for any

yeast culture. The model is robust to the biological and technical
conditions of the originating gene expression data and enables the
prediction of growth rates at instantaneous time scales inaccessible
to standard experimental methods (e.g. optical density). We have
also successfully applied the model to the related organisms S.
bayanus and S. pombe. Data and tools relating to this model are made
available at http://function.princeton.edu/growthrate.

Experimental Design and Data
Our model is based on a collection of gene expression

measurements from steady state (chemostat) cultures limited across
several nutrients and growth regimes. Briefly, 36 CEN.PK derived
S. cerevisiae chemostat cultures were grown under six nutrient
limitations: Glucose (G), Nitrogen (N), Phosphate (P), Sulfur (S),
Leucine (L), and Uracil (U). Six growth rates were used for each
nutrient, ranging by steps of 0.05 h21 from 0.05 h21 to 0.3 h21.
Agilent Yeast V2 microarrays were used to measure gene
expression in the resulting 36 chemostats; for details, see [4]. This
experimental design provides the opportunity to discover gene
expression patterns correlated with growth rate, independently of
nutrient-specific responses.

Figure 3 highlights the sources of variability in the gene
expression profiles that the experimental design aims at capturing.
The resulting data contain a number of characteristic gene
expression patterns, including genes with strong growth-specific
transcriptional regulation and negligible nutrient-specific response
(Figure 3A). Other genes include a growth-specific expression
component but are also strongly up- or down-regulated under
specific nutrient limitations (Figure 3B). Finally, Figure 3C displays
expression profiles that show unsystematic or negligible responses
under these conditions. The linear model described below
summarizes the variability in the expression profiles of individual
genes specifically due to changes in growth rate, which leads to a
characterization of growth-specific calibration genes such as those
shown in Figure 3A. This growth-specific signature enables
predictions of the instantaneous growth rate of any cellular culture
based on the relative expression values these growth-specific genes.

Table 1 summarizes the collections of expression data analyzed
in this study. Six collections were previously published by others,
one was published in our previous work [4], and four are new to
this study: 1. chemostats limited for different nitrogen sources, 2.
heat pulses inducing a temporary departure from steady state
growth, 3. artificial activation of the Ras/PKA pathway, and 4. S.
bayanus diauxic shift and heat shock time courses. All gene
expression collections were pre-processed as in [16]. The gene
expression values for all growth-specific genes are provided in
Tables S1, S2, S3, S4, respectively.

Linear Models and Identification of Growth-Specific
Signature

We sought to identify a small set of genes providing a
quantitative summary of cellular growth rate regulation. Ge-
nome-wide expression measurements underlying the 36 chemostat
cultures provided us with the opportunity to determine which
genes were responding linearly to changes in growth rate, and not
to differences in nutrient limitation. To identify such gens in a
statistically principled fashion, we performed four steps, beginning
by using maximum likelihood to fit a linear model of each gene g’s
expression under all training conditions (Yg) based on the
conditions’ known growth rates (Xc):

Yg~agzbgXczeg ð1Þ

Figure 2. Schematic of a chemostat. In the chemostat, cells are
grown in liquid media [14]. A tank contains a large supply of nutrient
containing high concentrations of all growth factors, but a limited
concentration (S0) of the controlling growth factor. The nutrient flows
continuously into a growth tube of limited capacity, where the culture
grows. The dynamic behavior of the density of the culture (X) and of the
concentration of the controlling nutrient (S) in the growth tube is
summarized with a system of Michaelis-Menten differential equations.
The desired growth rate is attained by manually limiting the
concentration of the controlling growth factor in the nutrient provided
to the cells.
doi:10.1371/journal.pcbi.1000257.g002
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This step yields two learned parameters per gene, a baseline
expression level ag and a growth rate response bg. The model is fit
to minimize the residual error eg, which can capture either non-
growth-related biological variability or technical noise. We fit this
model for the yeast genome using the expression levels from our 36
chemostat conditions, recording each gene’s ag and bg parameters
and its goodness of fit (total explained variability) R2

g.
We next used the bootstrap (i.e. a randomized re-sampling

technique) to assess the expected background distributions of these
parameters in the absence of a growth-related biological signal (i.e.
the null distributions). We constructed 100,000 randomized
expression vectors of length 36 by sampling each component
(with replacement) from the collection of gene expression values in
the corresponding condition, i.e., the same combination of growth
rate and nutrient limitation. For example, the first value randomly
chosen for such a vector could be drawn from any gene or nutrient
limitation in our chemostat data at a flow rate of 0.05 h21, the
second from any flow rate of 0.1 h21, and so forth. Note that by
re-sampling the expression values of putative genes column-by-
column, we do not wash away the average transcriptional response

that is expected to be associated with nutrient-growth rate pairs. In
this sense, the null distribution we derive carries information about
how genes respond to growth across nutrient limitations, on
average. As a consequence, the statistical significance of the
differential response we compute is biologically justified. In other
words, this sampling scheme maintains average nutrient specific
and growth rate specific information, and leads to an estimate of
the null distribution in the absence of gene-specific growth related
and nutrient related gene expression. This process yields null
distributions for parameters ag, bg, and the goodness of fit R2

g.
Third, from these null distributions, we assign false discovery

rate corrected p-values [17] to each gene’s ag, bg, and R2
g values.

Finally, a gene was deemed to have a significant expression
response to changes in growth rate if it fit this model well (R2

g

p,0.05) and was up- or down-regulated significantly with growth
(bg p,0.05); this information is available in [4]. We further
characterized a specific set of growth-specific calibration genes
responding only and significantly to changes in growth rate (bg

p,1025 and R2
g p,1025) that we used to infer instantaneous

growth rates in new expression data (Table S5 and Dataset S1).

Figure 3. Representative genes responding to growth rate, specific nutrients, or unsystematically in our chemostat-derived
training data. Our statistical model of growth rate regulation is based on expression data collected from 36 chemostats at six growth rates
(0.05 hr21 through 0.3 hr21) under six nutrient limitations (Glucose, Nitrogen, Phosphate, Sulfur, Leucine, and Uracil) as described in [4]. By
employing the genes responding strongly, consistently, and only to changes in growth rate (and not specific nutrients) as growth-specific genes, we
can apply our model to predict relative growth rates in new expression data. Gene expression in our original 36 conditions fell into three main
categories as shown here. (A) Genes strongly up- or down-regulated in response to changes in growth rate, independent of limiting nutrient. The
most statistically significant members of this set became our growth-specific calibration genes for application of the linear model to other expression
data. (B) A subset of conditions highlighting genes with expression levels showing some correlation with growth rate, but with a strong nutrient-
specific component. This represents a sizeable portion of the genome (,25%), with positively growth-correlated genes enriched mainly for ribosomal
function and negatively correlated genes enriched for oxidative metabolism. (C) A subset of conditions highlighting genes showing a non-systematic
or negligible change in gene expression. Unresponsive genes were enriched for a variety of cellular processes not expected to show a strong
relationship with growth, e.g. transcription, DNA metabolism and packaging, secretion, and many others.
doi:10.1371/journal.pcbi.1000257.g003
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Model-Based Prediction of Instantaneous Growth Rates
from Expression Data

The set of growth-specific genes identified with the four-step
procedure above represents a quantitative signature of a cellular
culture’s transcriptional regulation of growth rate, i.e. the speed at
which cells are proliferating. By examining these genes’ expression
levels in a new collection, we can predict the instantaneous growth
rate of the cellular culture the expression measurements
correspond to. This notion of instantaneous growth rate is
comparable to the derivative of an optical density growth curve,
but it can be inferred robustly by our model on any time scale, e.g.
minutes, from expression data, without the need to measure one or
more full doubling times of a culture.

Given expression data for a new experimental condition, we
use an iterative maximum likelihood approach to infer its
growth rate using the parameters captured by our linear model.
Formally, consider a vector of expression measurements for n
growth-specifc genes, Z1:n. As described above, the expression of
these growth-specific genes varies primarily in response to
changes in a condition’s growth rate, which we model as the
mean m of a Gaussian with variance s2. Using our previously
calculated maximum likelihood estimates of the calibration gene
parameters a1:n and b1:n, the expected value of a gene’s
expression is thus:

E Zi½ $~aizbimzd ð2Þ

Here, d is a condition-specific parameter that captures the
condition’s baseline gene expression, i.e. an average offset between
a new experimental condition and our training expression data. In
dual-channel data, this parameter may capture differences
between a new condition’s reference channel and our training
data’s reference channel; for a single-channel array, d may capture
the absolute difference between the platform baseline and our
training data. In any event, the expected variability of a new
measurement is:

V Zi½ $~b2
i s2 ð3Þ

The likelihood of the expression measurements Z1:n is thus a
product of Gaussians:

L Z1:Nð Þ~ P
n

i~1
Gaussian aizbi

:mzd, b2
i
:s2

! "
: ð4Þ

From this, we derive the maximum likelihood estimate of the
condition’s growth rate mML:

mML~
1

n

Xn

i~1

Zi{ai{dML

bi

ð5Þ

Similarly, the maximum likelihood estimate of the condition’s
baseline dML is given by:

dML~
1

n

Xn

i~1

Zi{ai{bimML ð6Þ

Note that the estimate of dML depends on the estimate of mML,
and vice versa. To calculate these estimates, we initialize mML

(0)

assuming dML
(0) = 0 and iterate subsequent computations of

mML
(t+1) and dML

(t+1) to convergence. In practice, individual
growth-specific genes with residuals outside the inner fences of
all growth-specific gene residuals (more than 1.5 inter-quartile
ranges from the lower or upper quartiles, [18]) are noted as
outliers and do not participate in that condition’s growth rate
inference procedure. This allows outlier genes responding to non-
growth related stimuli (which are, in general, infrequent, e.g. six in
one of our most variable conditions as discussed below) to be noted
for further investigation, while also decreasing the cross-validated
error of predicted growth rates.

Extending Predictions to Additional Organisms
In principle, this model of growth rate can be extended to study

and predict instantaneous growth in any organism for which
appropriate homology to growth-specific genes exists. To analyze

Table 1. Overview of expression data analyzed in this study.

Experimental Conditions Method Platform Organism Publication/Experimenter

Nutrient-limited growth Chemostat Agilent S. cerevisiae [4]

Cell cycle synchronization Batch Spotted S. cerevisiae [13]

Cell cycle synchronization Batch Spotted S. cerevisiae [8]

Metabolic cycling Batch/Chem. Affymetrix S. cerevisiae [12]

Environmental stress Batch Spotted S. cerevisiae [6]

Gene deletion mutants Batch Spotted S. cerevisiae [10]

Heat pulses Chemostat Agilent S. cerevisiae C. Lu, Table S1

Nitrogen-limited growth Chemostat Agilent S. cerevisiae D. Gresham, Table S2

RAS/PKA activation Batch Agilent S. cerevisiae J. R. Broach, Table S3

Diauxic shift, heat shock Batch Spotted S. bayanus A. A. Caudy, M. J. Dunham, Table S4

Hydroxyurea response Batch Spotted S. pombe [29]

Of the 11 gene expression data sets for which we predict and discuss growth rates, four are previously unpublished; excerpts of this data relevant to the growth rate
analysis are provided in Tables S1, S2, S3, S4. These data span various experimental conditions, dual- and single-channel expression array platforms, batch and steady-
state growth regimes, and three species of yeast. Under these varied conditions, our growth model predicts instantaneous growth rates and provides insight into
regulatory mechanisms for growth homeostasis.
doi:10.1371/journal.pcbi.1000257.t001
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growth rates in expression data from S. bayanus and S. pombe, the S.
cerevisiae calibration genes were mapped to known orthologs. This
mapping was performed using the unambiguous pairings from
[19] for S. bayanus and the curated orthologous groups from [20]
for S. pombe. This resulted in 51 growth-specific genes for S. bayanus
and 74 for S. pombe, the increase being due to one-to-many
mappings; see Table S5.

Online Tool Availability
The parameter estimates driving our predictions and tools

allowing users to predict growth rates in new data sets are available
at http://function.princeton.edu/growthrate. Specifically, users
can upload S. cerevisiae expression data (single- or dual-channel in
standard PCL format) to receive estimates of relative growth rate
for each condition. If a reference with known growth rate is
provided, absolute rate estimates will be generated. This growth
rate prediction tool has been implemented in R and is also
available for offline use, allowing further customization (such as
application to additional organisms).

Results

We apply our linear model of growth rate regulation to predict
instantaneous growth rates for a variety of expression data. This
includes new chemostat cultures used to assess prediction quality,
publicly available stress response and gene deletion microarrays
from batch cultures, growth differences between metabolic cycling
and the cell cycle, several different microarray platforms, and an
out-of-sample validation to quantify model accuracy. We also
observe good predictive performance for growth rates in S. bayanus
and S. pombe data sets, the latter despite up to a billion years of
evolutionary divergence from our S. cerevisiae training data. This
suggests that the growth-related transcriptional regulation cap-
tured by our model is a key feature of unicellular homeostasis, a
feature we explore by examining nutrient sensing inputs through
the Ras/PKA pathway and potential growth rate transcription
factors and binding sites.

Relative Growth Rate Prediction in Novel Experimental
Settings

Our model of the growth rate transcriptional response can be
used to predict relative instantaneous growth rates from any S.
cerevisiae gene expression data. For example, Figure 4A shows our
predicted growth rates for a gene expression time course sampled
from a steady state culture exposed to a brief (,30 s) heat pulse
(Table S1). The predictions clearly show a departure from steady
state within five minutes of the heat pulse, followed by recovery
within 15 minutes. Similar predictions over a range of chemostat
flow rates (Figure S1) reveal that this cellular behavior is consistent,
although there is some variation in the degree of growth cessation
during stress, in agreement with tolerance and sensitization models
of the yeast stress response [21]. Notably, standard experimental
assays for growth rate (e.g. optical density) would be incapable of
monitoring such a response, while our model is able to observe
these growth changes on an instantaneous time scale.

A similar application of our model to predict relative growth
rates for the stress response conditions of [6] is presented in
Figure 4B (see Figure S2 for complete results). These data
represent yeast batch cultures assayed using a variety of different
reference mRNA samples on a custom spotted microarray
platform, none of which differences from our training data impair
the growth rate estimation process. While there are no direct
measurements of growth rate in these non-steady-state conditions,
our predictions are consistent with known yeast biology and agree

with expected growth behavior. Most shock time courses,
including all heat shocks, peroxide, diamide, and hyper-osmotic
stress, provoke an initial sharp decrease in growth rate followed by
a return to initial or near-initial rate; shorter shocks, such as DTT,
menadione, and peroxide responses, capture only the rate
decrease. Batch growth proceeds at a fairly constant rate until
nutrients become depleted, at which point the rate decreases
sharply; this pattern is also seen in intentional nitrogen depletion.
Growth rates across varying temperatures peak as expected at
25 C [1], falling off at lower and higher temperatures. Finally,
response to varying carbon sources is also as expected [22], with
ethanol inducing the slowest growth and fructose, sucrose, and
glucose allowing the most rapid. Our model’s inference of growth
rate from gene expression data alone allows both post hoc growth
analysis (e.g. years after the original experiment) and an estimation
of growth rates for cultures where direct growth measurements
would be unfeasible, difficult, or time consuming.

When applied to expression data from yeast mutant strains, in
which one or more genes have been deleted, predicted growth
rates can be used to quantify single mutant fitness. We used our
model to analyze the knockout collection assayed in [10];
predictions on the complete data set are available in Table S6.
Direct fitness measurements for 199 of the ,300 mutants assayed
via microarrays is available as supporting information [10]. Our
predictions for these 199 growth rates correlate very strongly with
the direct fitness measurements (r= 0.473, p,10211) and are
derived solely from expression data. In contrast, methods for
experimentally estimating single mutant fitness from high-
throughput growth curves showed substantially less agreement
(r= 0.321, p,1026 [23]; r= 0.108, p.0.2 [24]) with the original
publication’s direct fitness measurements. These results represent a
compelling argument as to the relevance of our growth rate model
for fitness estimation.

Absolute Growth Rate Prediction with One Shared
Reference

With a small amount of additional information (i.e., a scalar) the
relative growth rates inferred by our model can be made absolute,
in units of chemostat flow rate (hr21). Our model’s predicted rates
for a collection of arrays are relative estimates, to one another.
This is due to the unknown quantitative effects of the reference
mRNA in our dual-channel training data; it is impossible to know
a priori the relationship between this reference channel and the
relative (for dual-channel) or absolute (for single-channel) expres-
sion levels in new microarray data. However, if the absolute
growth rate is known for some array in a given collection, our
model can make absolute rate predictions for other two-color
arrays in the collection, given that they all share the same
reference channel.

Figure 4C shows actual growth rates (dotted, black lines) for a
collection of chemostats at various flow rates limited on one of
several different nitrogen sources (Table S2) along with estimates
of the relative instantaneous growth rates (red, dashed lines) and of
the absolute instantaneous growth rates (solid, blue lines). Absolute
growth rates are estimated by recording the growth rate in the
Proline limited chemostat at m= 0.35 hr21, and shifting all the
estimates accordingly, since the dual-channel microarrays in this
study all share the same transcriptional readout in the reference
channel. We sought to evaluate the goodness of the predictions in
Figure 4C by computing the statistical significance of their
correlation with the actual growth rates. To this end, we computed
the correlation between the true growth rates and the predicted
instantaneous growth rates. The correlation is the same for both
absolute and relative predicted rates, as they differ by a constant,
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and equals r= 0.956 (p-value<0). This computation provides
statistical support to the goodness of the predictions produced with
the proposed model. More in general, on normalized dual-channel
microarrays, the doubling of any gene’s mRNA level in these
conditions results in the same increase in its expression readout.
Thus one unit of predicted relative rates to corresponds to one unit
of absolute chemostat flow rate. However, since the reference
channel differs from that of the arrays used to train the model, all
rate predictions are typically off by a corresponding constant
factor. By normalizing to any one of the N arrays’ known growth
rates, this shift can be automatically corrected for the N-1 other
arrays, employing the same reference channel.

Accuracy of the Predictions and Outlier Detection
We assessed the quality of our growth rate predictions using

1,000 out-of-sample experiments, according to a hybrid boot-
strap/cross-validation setup, using the data from [4]. Results are
shown in Figure 5A. In each experiment, we randomly withheld
12 of the 36 conditions for testing, fit our linear model on the

remaining 24, derived bootstrapped null distributions using only
these data, and determined growth-specific gene sets to use for
growth rate inference on the held-out conditions. This experi-
mental setup leads to absolute growth rate predictions directly, as
all the dual-channel microarrays share the same transcriptional
readout in the reference channel. This out-of-sample validation
allowed us to assess the accuracy and variability of our predictions
on conditions with known growth rates not included in the model
building procedure. In addition to the performance indicated by
Figure 5A, the out-of-sample experiments demonstrated robust-
ness of p-value cutoffs and number of growth-specific genes; these
ranged in number from ,50 to ,110 across the randomized
validations (of a total ,5,500 possible genes), and changes of this
magnitude in the final calibration gene set had little impact on
predicted growth rates. We further quantified a notion of
reliability for each of the 72 growth-specific genes. Specifically,
we computed the percentage, P, of bootstrap experiments in which
each individual gene was selected as a member of the growth-
specific gene set. The percentages provide an expectation about

Figure 4. Predicted growth rates for S. cerevisiae gene expression datasets. Our model of the growth rate transcriptional response can be
used to predict the growth rate of a cellular culture from gene expression data, robust to the originating biological conditions, growth regime, and
experimental platform. Here, we apply the model to three selected data sets to infer relative and absolute growth rates. (A) A brief (,30 s) heat pulse
was administered to a steady state chemostat culture immediately before time zero, and gene expression was assayed with an expression time
course (see Figure S1 and Table S1). The relative growth rates inferred from this data show an abrupt departure from steady state growth, followed
by a return to steady state (including a brief regulatory overshoot). Our predictions monitor these changes in growth rate at an instantaneous time
scale (,5 m) inaccessible by standard experimental assays for growth rate. (B) Predicted growth rates for a portion of the environmental stress
response data [6], assaying the response to a 30–37uC heat shock. Our model captures the cessation and resumption of growth induced by the stress,
even for a batch culture in which the growth rate is not fixed a priori. (C) A collection of 24 chemostats were run at four growth rates (0.05 hr21

through 0.2 hr21) and limited on six different nitrogen sources. Using only expression data from each condition, our model predicts accurate relative
growth rates. However, when provided with the known growth rate for a single condition, the model is additionally able to infer absolute growth
rates for all other data sets sharing that condition’s mRNA reference channel. Note that the actual growth rate is measured empirically and thus
deviates slightly from an ideal straight line due to technical variation in the growth equipment.
doi:10.1371/journal.pcbi.1000257.g004
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whether each individual gene should be considered reliable in a
new study. We found that 69 genes were selected in more than half
of the experiments, P.0.5. Full results are reported in Table 2.

In the process of estimating growth rates and determining this
confidence score, growth-specific genes with outlying expression
values are also detected. While most conditions induce few
outlying growth-specific genes, when they occur, they are not
indicative of the quality of growth rate predictions. We have found
that neither the number of outliers nor their variability correlates
with prediction error (data not shown), but they call out genes that
may be responding to non-growth stimuli under specific biological
conditions. Excluding outliers from the growth rate estimation
process improves the accuracy of the predictions, and these
outliers can in turn be biologically informative: an outlying
growth-specific gene is likely responding specifically to a stimulus
other than change in growth rate. For example, some of the only
outliers in the mild heat shock time course from [6] occur towards
the end of a shift from 29 C to 33 C (Figure 5B). These include
HSP26 and HSP78, both known heat shock chaperones [25,26].
Three genes of unknown function (YLR327C, MOH1 and the
neighboring dubious ORF YBL048W, and TMA10) are also
outliers in this condition, which is evidence that these genes may
have specific expression responses (and thus biological functions)
during heat shock. HSP26 and YLR327C are frequent outliers in
stress-related conditions, perhaps suggesting a more general stress
response function.

Predicting Growth Rates in S. bayanus and S. pombe
While our growth rate model is based on a transcriptional

growth signature in S. cerevisiae, the model can be applied to any
organism with sufficiently orthologous transcriptional activity.
This is likely to be the case within the sensu stricto yeasts, separated

by ,25 million years of evolution [27]. By finding the ,50 S.
bayanus genes orthologous to our ,70 S. cerevisiae growth-specific
calibration genes [19], we can apply our model directly to S.
bayanus expression data (Table S4). Figure 6 demonstrates such a
result for two S. bayanus time courses assaying the diauxic shift and
a response to heat shock. These results have comparable profile to
those from S. cerevisiae and are similarly biologically compelling.
For example, the diauxic shift in S. bayanus results in a very similar
growth pattern to the known response in S. cerevisiae, with a near-
cessation of growth during the shift and subsequent rebound.
Conversely, S. bayanus is less resistant to high temperatures than S.
cerevisiae [28], and our growth rate inferences show a correspond-
ing failure in its ability to grow following severe heat shock.

We have also extended our model to a significantly further
diverged yeast, specifically the yeast Schizosaccharomyces pombe,
separated from S. cerevisiae by an estimated one billion years of
evolution [3]. A mapping of our growth-specific calibration genes
to S. pombe using information from [20] results in ,75 genes due to
one-to-many correspondences, but these provide sufficient cali-
bration information to make high quality predictions (Figure 6C).
Calibration gene outliers and expression cohesiveness are not
substantially changed relative to S. cerevisiae and S. bayanus, and the
inferred relative rates reflect various biological expectations. All
cultures (data from [29]) show an initial increase from low growth
rates due to stalled growth during synchronization. An expected
decrease in growth rate is predicted during increased exposure to
hydroxyurea (HU), and a rad3D deletion (S. cerevisiae ortholog
MEC1) incurs a mild overall growth impairment as well as
exacerbating HU sensitivity. While MEC1 is essential in S.
cerevisiae, this sensitivity has previously been noted for deletions
sod1D and lys7D, both members of the MEC1 pathway [30], which
is necessary for the cell cycle checkpoint function.

Figure 5. Assessment of accuracy and outlier detection during growth rate inference. (A) We performed an out-of-sample cross-validation
of our model by randomly sub-sampling 24 of the 36 training expression arrays 1,000 times. We refit our linear model in each random sample,
calculated bootstrapped null distributions for all gene parameters, and found sets of the most significant growth-specific genes. These were then
used to infer growth rates for the 12 held-out conditions, providing an estimate of the accuracy of the model’s growth rate predictions. (B) When
predicting the growth rate of a new collection of expression data, our model excludes any calibration gene with an expression level outside the inner
fence (1.5 times the inter-quartile range below or above the first or third quartiles). This improves predicted growth rate accuracy while also calling
out genes potentially responding to specific non-growth stimuli under some biological condition. For example, in the [6] mild heat shock time
course, two of the six outliers are known heat shock genes (HSP26 and HSP78). The other four (YLR327C, MOH1, YBL048W, and TMA10) are
uncharacterized genes, suggesting potential roles in the response to heat shock.
doi:10.1371/journal.pcbi.1000257.g005
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The extent to which transcriptional regulation is conserved
between S. cerevisiae and S. pombe, which allows us to successfully
apply the model despite the evolutionary distance that separates
these species, is reflective of cellular growth’s central role,
particularly in unicellular organisms. While this model would
become less meaningful in metazoans, where the growth of
individual cells is subjugated to the growth and differentiation of
the organism as a whole, certain transcriptional growth behavior is
of necessity conserved in single celled organisms [31]. This is
particularly true of the ribosome, one of the main contributors to
our model’s predictive power; rRNA regulation is purely
transcriptional, and ribosomal proteins must be expressed
stoichiometrically. Since any cellular growth requires translation,
observation of ribosomal transcription is a strong indicator of
unicellular growth [5]. This is one aspect of the transcriptional
growth response made quantitative by our model.

Insights into Growth Homeostasis
To further investigate the biological basis of growth rate

correlated gene expression, we used our model to predict relative
growth rates for two interesting cases: the yeast metabolic cycle
[12] and the mitotic cell division cycle [8,13]. The expression data
published by Tu et al. was obtained for cells grown at high density
in a glucose-limited chemostat. Under this regime, cells within the
culture become metabolically synchronized and undergo periodic
consumption of oxygen (defined as the oxidative phase of the
metabolic cycle) followed by periods of undetectable oxygen
consumption (termed the reductive building and reductive
charging phases). The cell cycle data sets by Spellman et al and
Pramila et al were obtained from experiments in which cells were
uniformly arrested in the cell division cycle using a variety of
methods and then released to undergo synchronous cell division
cycles.

Growth rate prediction applied to the yeast metabolic cycle data
revealed a striking periodicity (Figure 7A). The cyclical pattern of
growth rate variation occurs completely in concert with the
metabolic cycle as defined by Tu et al. Specifically, the culture’s
growth rate is predicted to be at minima during the reductive
phase of the metabolic cycle, when oxygen consumption is at a
minimum, and reach maxima during the peak of the oxidative
phases when oxygen consumption is maximal. In contrast, growth
rate prediction for the cell cycle (Figure 7B and 7C) show virtually
no variation in predicted growth rate during the different stages of
cell division.

These data support and extend our previous assertions [4] that
the there is a close connection between the metabolic cycle
identified in [7] and [12] and the association we identify between
growth rate and gene expression levels. This result is consistent
with two possible explanations. The first is that there is variation in
the growth rate of cells throughout the metabolic cycle. [12] and
[32] have shown that under their specific experimental conditions,
DNA replication and cell division is restricted to the reductive
phases of the metabolic cycle. It is conceivable that growth per se
(i.e. the accumulation of biomass) is paused during the reductive
phases of the metabolic cycle so that the cell can replicate and
segregate DNA and complete the complex processes of cell
division; growth may then be restricted to the oxidative phase of
the metabolic cycle. Alternatively, it is possible that as any
heterogeneous culture grows faster, a greater fraction of cells are in
the oxidative phase at any point in time. Thus, the growth rate
gene expression signature we detect might reflect the fraction of
cells in the oxidative and reductive phases of the metabolic cycle in
a metabolically unsynchronized population.

The absence of growth rate differences during the cell division
cycle (Figure 7B and 7C) supports our previous claim [4] that the
growth rate expression signature is unrelated to the cell cycle.
Moreover, since the published cell cycle experiments were

Table 2. Reliability study for the 72 growth-specific genes.

Gene Percentage Gene Percentage Gene Percentage Gene Percentage

UTR2 1 NOP1 0.78 HSP26 0.98 HSP30 0.83

AMS1 0.96 OLI1 1 DCS2 0.97 GND2 0.87

CTP1 0.64 SNO4 0.97 GSC2 0.84 RPL24A 0.62

YOL014W 1 RPL7A 0.97 FUR1 0.57 OM45 0.77

HXT5 1 HSP78 0.67 MOH1 1 BTN2 0.63

YPT53 0.99 RPL18A 0.89 RPL20A 0.67 POT1 0.74

YJR008W 0.61 NCA3 1 YHR138C 0.6 RPL31B 0.69

HSP32 0.96 HSP42 1 RPP2A 0.89 NDE2 0.75

GPG1 1 MSC1 1 YLR312C 1 UGX2 0.63

YBL048W 1 YDR379C-A 0.57 UIP4 0.96 YDR070C 0.8

DDR2 0.99 PAI3 0.95 YGR043C 0.97 PHM7 0.76

YJL161W 0.94 TFS1 0.79 YLL067C 0.63 CTT1 0.7

RPL23A 0.65 RPP1A 0.89 YMR196W 0.93 HSP12 0.62

YOR338W 0.62 ROM1 0.56 SPG1 0.84 GPH1 0.63

RPL18B 0.82 RPP1B 0.81 PET10 0.8 SOL4 0.68

SSE2 0.97 SNU13 0.64 RPS28A 0.79 YIR016W 0.37

HSP104 0.97 YBR116C 1 YLR327C 0.86 GRE1 0.44

AAC3 0.69 IMD4 0.96 YTP1 0.58 GDH2 0.28

Reliability for an individual gene was quantified by computing the percentage of 1,000 bootstrap experiments where the gene was selected in the set of growth-specific
genes. Results suggest that 69 genes are expected to be reliable in a new study, P.0.5.
doi:10.1371/journal.pcbi.1000257.t002
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performed in rich media using a fermentable carbon source, the
results suggest that rapidly growing cells (which are almost
exclusively fermenting) do not partition metabolic activity into
discrete phases, as their energetic requirements are met in a
continuously reductive metabolic state. It is only when slowed
growth is imposed upon the cell, due to stress, nutrient limitation, or
other suboptimal environments, that the metabolic cycle is required.

We sought to distinguish whether nutrient availability directly
determines the transcriptional state related to growth rate or
whether nutrient availability is integrated through an internal
signaling pathway that controls the appropriate transcriptional
state. To address this issue, we examined the regulatory circuit
responsible for transcriptional changes in response to glucose
availability in yeast. Glucose addition to cells growing on glycerol
elicits a rapid and massive change in the pattern of gene expression,

with more than half of all genes changing at least twofold in
expression. Previous work has shown that the Ras/cAMP/PKA
pathway is the major source for eliciting this transcriptional change
in response to glucose addition [9,11]. Activation of the Ras/PKA
pathway in the absence of environmental signals, through induction
of an activated allele of RAS2 (RAS2G19V), recapitulates in
magnitude and direction more than 85% of the changes observed
by glucose addition, and inhibition of PKA (concurrent with
addition of glucose) blocks most of the glucose induced transcrip-
tional changes ([11], Table S3). This mutation thereby represents a
useful model connecting S. cerevisiae’s glucose sensory signaling to its
transcriptional regulation of growth rate.

We used a gal1D strain carrying the activated allele RAS2G19V

under control of the galactose inducible GAL10 promoter.
Addition of galactose activates the Ras/PKA pathway, but since

Figure 6. Predicted growth rates for S. bayanus and S. pombe expression datasets. By examining genes orthologous to our ,70 S. cerevisiae
growth-specific calibration genes, we successfully applied our model to predict growth rates in S. bayanus (,50 orthologous growth-specific genes,
,20 M years diverged) and S. pombe (,75 growth-specific genes due to one-to-many mappings, ,1B years diverged). (A) Predicted growth rates for
S. bayanus undergoing the diauxic shift from fermentative to respiratory growth (Table S3). As observed for the S. cerevisiae diauxic shift in [4], growth
pauses as glucose is exhausted and resumes as the yeast begins consuming ethanol. (B) Predicted growth rates for S. bayanus exposed to a 25–37 C
heat shock (Table S3). In contrast to Figure 4B, in which S. cerevisiae is observed to recover from a 37 C heat shock, the less-thermotolerant S. bayanus
[28] is predicted to halt growth at high temperatures. (C) Predicted growth rates for S. pombe wild-type and rad3D time courses, grown normally and
exposed to hydroxyurea (HU, an inhibitor of DNA synthesis and thus growth) [29]. Despite the wide evolutionary divergence between S. pombe and
our S. cerevisiae training data, predicted growth rates are in substantial agreement with expected biology. Each time course begins with low growth
in a synchronized culture. When the synchronization block is released, cells begin growing, wild-type more efficiently than the rad3D mutant.
Exposure to HU decreases growth over time, and this effect is exacerbated by RAD3 deletion. While the S. cerevisiae RAD3 ortholog MEC1 is essential,
knockouts of the MEC1 pathway members SOD1 and LYS7 have been previously observed to induce HU sensitivity [30].
doi:10.1371/journal.pcbi.1000257.g006
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galactose cannot be metabolized by this strain, the metabolic state
of the cell remains unaltered [9]. When grown on glycerol our
model predicts a relative growth rate of ,0.2 for this strain
(Figure 8A), which changes to ,0.6 within twenty minutes
following glucose addition, consistent with the change in doubling
time from 5.8 hr to 2.6 hr. When we performed the same
experiment on glycerol media and induced the RAS2G19V by
means of galactose addition, we detected a transcriptional response
within sixty minutes. The predicted growth rate of the RAS2G19V

mutant strain was comparable to the addition of glucose despite
the fact that galactose addition does not yield an increase in
growth, as measured by optical density, since the cells are unable
to metabolize galactose. In fact, while the model’s summarization
of gene expression state indicates that the culture is attempting to
increase growth, induction of the RAS2G19V allele results in an
immediate decrease in growth rate and complete cessation of
growth within four hours [33]. These results are consistent with
the cell setting its growth-specific transcription program on the
basis of its perception of nutrients present in the environment, rather
than on the direct availability of energy or metabolites produced
from such nutrients. The mechanism by which the cell integrates
this external state in order to set the appropriate growth rate
expression state must be mediated, at least in part, through the
Ras/cAMP/PKA pathway.

Potential Transcriptional Regulators of Growth Rate
To investigate the regulatory basis of growth-associated gene

expression, we identified motifs enriched in the 39 and 59 regions
of genes with strong growth rate responses (Figure 8B). We
assigned genes to clusters based on their growth rate response
parameter (bg) using k-means clustering with k = 10. Using the
FIRE motif identification program [34], we identified enriched
motifs in seven of the resulting ten clusters. Consistent with the
functional enrichments of negatively growth rate correlated genes
[4], we identified known binding sites associated with the stress
responsive transcription factors Msn2p and Msn4p in genes
negatively correlated with growth rate. Conversely, genes that
increase in expression with increased growth rate are enriched for
the Rap1p consensus motif, which is commonly found upstream of
genes encoding protein components of the ribosome.

We also found enrichment of the Ino4p binding site in genes
upregulated with increasing growth rate. Ino4p forms a hetero-
dimer with Ino2p to activate genes involved in phospholipid, fatty
acid, and sterol biogenesis, all of which are required in greater
abundance with increased growth rates. Furthermore, Ino4p has
been proposed to have an inhibitory effect on a number of genes,
including those that encode the heat shock proteins (Hsp12p,
Hsp26p) and catalase (Ctt1p) [35]. We also identified two
additional enriched motifs in the 59 UTR for which the binding

Figure 7. Differences in growth characteristics of a metabolically cycling culture compared to cells synchronously undergoing the
cell division cycle. We predict periodic bursts of growth during the oxidative phase of the metabolic cycle as described by [12]. Conversely, we
observe essentially no variation in growth in cultures synchronously undergoing the cell division cycle, which has been shown to primarily occupy
the reductive phase of the metabolic cycle [32]. (A) In cells undergoing metabolic cycling, growth rates are predicted to peak during the oxidative
phase of the cycle, where [12] also observes strong upregulation of translational and ribosomal genes. (B) The predicted growth rate for the [13]
alpha-factor synchronized cell cycle is essentially constant, after an initial release from the synchronization block. (C) Predicted rates for the [8] alpha-
factor synchronized cell cycle also show an initial resumption of growth after alpha-factor block followed by relatively constant growth rate. Taken
together, these observations support the claim that growth rate regulation is not specific to any one cell cycle phase. This also agrees with the fact
that rapidly growing (and thus fermenting) S. cerevisiae does not partition metabolism into discrete stages, a phenomenon only occurring when
reductive metabolism is hindered by nutrient limitation or other stresses.
doi:10.1371/journal.pcbi.1000257.g007
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Figure 8. Perturbations and potential transcriptional regulators of the growth rate response. (A) Predicted growth rates for gal1D cells
shifted to glucose, to galactose, and to galactose with a constitutively active RAS2G19V allele. On glucose, rapid growth is induced within ,40 m;
growth on galactose falls to low levels within ,40 m, as it cannot be metabolized by this mutant. However, when glucose sensing is emulated by
artificial activation of the Ras/PKA pathway, the transcriptional regulatory network attempts to induce rapid growth within ,60–80 m despite the
unavailability of appropriate nutrients. This disconnect between actual and perceived cellular state leads to cell death within 4–6 hours and suggests
that nutrient sensing (as opposed to metabolic activity or internal cellular state) is responsible for a large portion of the transcriptional growth rate
response. (B) Regulatory binding sites enriched in growth up- and down-regulated genes. We clustered the yeast genome by degree of growth rate
response, yielding ten clusters with average responses ranging from 212.0 (strongly downregulated with increasing growth rate) to 8.6 (strongly
upregulated). The FIRE program [34] predicted 10 regulatory motifs in the upstream flanks and 39 UTRs of the most up- and down-regulated clusters.
These included the known stress-responsive MSN2/4 binding sites in downregulated genes, the ribosomal regulators RAP1 and PUF4 in upregulated
genes, and INO4 sites in upregulated genes (possibly corresponding to its role in the stress response and fatty acid biosynthesis [35]. We also
identified five additional putative growth regulatory sites for which the binding factor is not yet known.
doi:10.1371/journal.pcbi.1000257.g008
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factor is not known, suggesting that additional activators of
growth-related transcriptional programs remain to be determined.

In addition to 59 upstream motifs, we identified five enriched
39UTR motifs, which are potential binding site for proteins that
promote mRNA degradation. Only a small number of mRNA
binding consensus sequences are known in yeast, all of which
belong to the Puf family of mRNA binding proteins [36]. Our
analysis identified five enriched motifs in 39UTRs. Two of these
motifs, found in genes positively correlated with growth rate, were
identified by the FIRE program as being targets of Puf4p. As an
independent test, we compared the distribution of growth rate
responses in the known gene targets of the five Puf proteins with
the overall distribution of growth rate slopes. Targets of both
Puf3p (220 genes) and Puf4p (205 genes) are enriched for genes
that are upregulated with increasing growth (Wilcoxon-Mann-
Whitney two sample p-values 9610223 and 7.23610216, respec-
tively; Figure S3). The consensus motifs of Puf3p and Puf4p are
very similar; investigation of the PUF4 motif identified by FIRE
suggests that the enrichment signal for at least one of the motifs
denoted PUF4 is likely to result from a composite of Puf3p and
Puf4p target genes (Figure 8B).

Overall, this analysis is consistent with tight transcriptional
regulation underlying the cellular growth program; it is likely that
mRNAs involved in this process are also subject to extensive post-
transcriptional control. Interestingly, since our growth-rate
prediction method is sensitive to changes in gene expression levels
that occur within minutes of a perturbation, we expect that post-
transcriptional regulation (both mediated decay of and stabiliza-
tion of transcripts) is involved in this response. Experimental
analyses of the effects of perturbations within this regulatory
network promise to shed further light on its organization.

Discussion

We present a statistical model of the gene expression response to
changes in growth rate in S. cerevisiae. Developed on expression
levels from a variety of steady state growth rates and nutrient
limitations, the model captures information regarding each gene’s
linear response to growth rate. As detailed in [4], approximately
half of the genome shows a significant transcriptional response to
growth rate with strong functional cohesiveness; here, we extend
this model to show its robustness, applicability to new data, and
ability to provide insight into the biological systems driving cellular
regulation of growth rate. New experiments with more complex
models (quadratic and hierarchical) demonstrated that additional
model parameters did not provide substantial performance gains,
in terms of growth rate prediction accuracy, particularly relative to
their added complexity (data not shown). Similarly, variations in
the definitions of responding genes or of growth-specific genes did
not substantially alter results. This stability is reflected in the out-
of-sample validation results, which quantify the model’s accuracy
in predicting relative growth rates from gene expression data, and
in Table 2, which suggest that growth-specific signal is localized to
a small number of genes consistently across experiments.

The model can be applied to new gene expression data to
estimate the instantaneous growth rate of the originating cellular
culture. The estimated instantaneous rate represents a measure-
ment of the transcriptional state of cellular growth rate control,
and it provides insight into the cell’s growth rate at arbitrarily short
time scales inaccessible by experimental measurements (e.g. optical
density). Moreover, genes with unexpectedly high or low
expression values can be detected during growth rate inference,
and may indicate biological responses to non-growth stimuli. The
predictions based on the proposed model are robust to changing

biological conditions, experimental methods, and technological
platforms; they also extend to the related yeast S. bayanus and the
highly diverged yeast S. pombe, suggesting that the transcriptional
control of growth rate captured by the model are a fundamental
aspect of unicellular biology.

Through further analysis, we discovered several putative
transcription factor binding sites enriched in growth-correlated
genes, most notably the stress-responsive Msn2p and Msn4p, the
Rap1p ribosomal factor, and Ino4p. Importantly, we have
identified a likely role for post-transcriptional regulation in
modulating transcriptional states related to growth rates. This
finding is consistent with our ability to measure changes in growth
rate over very short time scales using gene expression signatures.
The abundance of any messenger RNA is a function of both its
rate of production and of its rate of degradation; however, since
transcription is relatively slow, changes in mRNA abundance can
be most rapidly instantiated by altering the stability of the existent
mRNA population. The Puf proteins have known roles in
mediating mRNA degradation [37] and in mediating the
association of functionally related transcripts [36]. It has recently
been proposed that modulation of mRNA stability is an important
factor in metabolic regulation [38]. The association of Puf protein
binding domains in the 39 UTRs of genes with increased
expression at higher growth rates suggests that modulating mRNA
stability is also important in the regulation of the growth response
at short time scales.

From a statistical perspective, it is notable that a simple linear
model accurately and robustly captures a specific biological
phenomenon. The model represents a concise, functionally
cohesive set of expression profiles regarding the genome’s
transcriptional response to growth. This functional interpretation
of the model agrees with known aspects of the growth response,
such as the transcription of ribosomal components, and provides
insight as to the mechanistic roles of internal feedback,
environmental sensing, and the stress response as growth rate
varies. By monitoring a small ensemble of genes—with few
parameters per individual gene—the model is easily applicable to
new conditions and organisms and is robust to technical and
biological sources of variation. These features enable our model to
serve both as a practical tool for growth rate estimation (available
at http://function.princeton.edu/growthrate) and as a mechanis-
tic building block in the pursuit of a systems-level understanding of
cellular growth processes.

Supporting Information

Dataset S1 An RData archive containing the complete
collection of programs and results. The archive includes a Table
(named frmeGRParameters) with the growth rate slope, goodness
of fit, and other parameters based on our expression data and
linear model. The linear model assigns each gene a growth rate
slope (i.e. response to increased growth rate), baseline response,
and goodness of fit (i.e. linearity of response) based on our 36
expression arrays. The statistical significance of these parameters
was tested against a null distribution based on 100,000 bootstrap
samples. We have also indicated whether each gene is in our
positively or negatively growth correlated gene sets, whether it is
up- or down-regulated in the Environmental Stress Response
(ESR) [6], whether it was used as a growth-specific gene for
inferring instantaneous growth rates, and whether it was reliably
unresponsive to changes in growth rate.
Found at: doi:10.1371/journal.pcbi.1000257.s001 (10.88 MB ZIP)

Figure S1 Growth rate predictions for chemostat cultures
subjected to a brief heat pulse at various flow rates. Expression
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time courses were taken for a collection of chemostats at increasing
growth rates, each subjected to a brief (,30 s) heat pulse at time
zero; see Supplemental Table S1 for details. Predicted growth
rates show an immediate departure from steady state as the heat
pulse is administered immediately before time zero, followed by a
gradual return to steady state and regulatory overshoot. This
behavior is consistent across growth rates, with the lowest growth
rates potentially showing a lesser shock response due to stress
tolerance.
Found at: doi:10.1371/journal.pcbi.1000257.s002 (0.02 MB PDF)

Figure S2 Growth rate predictions for all conditions in the stress
response expression arrays in [6]. These predictions are generally
consistent with known yeast biology and agree with expected
growth behavior; most shock time courses, including all heat
shocks, peroxide, diamide, and hyper-osmotic stress, provoke an
initial sharp decrease in growth rate followed by a return to initial
or near-initial rate. Shorter shocks, such as DTT, menadione, and
peroxide responses, capture only the rate decrease. Batch growth
proceeds at a fairly constant rate until nutrients become depleted,
at which point the rate decreases sharply; this pattern is also seen
in intentional nitrogen depletion. Growth rates across varying
temperatures peak as expected at 25 C, falling off at lower and
higher temperatures. Response to varying carbon sources is also as
expected, with ethanol inducing the slowest growth and fructose,
sucrose, and glucose allowing the most rapid. The model’s
inference of growth rate from expression data alone thus allows
both post hoc growth analysis (e.g. years after the original
experiment) and an estimation of growth rates for cultures where it
would be difficult or time consuming to measure directly.
Found at: doi:10.1371/journal.pcbi.1000257.s003 (0.03 MB PDF)

Figure S3 PUF3 and PUF4 targets are enriched for genes that
respond positively to growth. We plotted the distribution of PUF3
targets (220 genes; black line) and PUF4 targets (205 genes; red
line) identified in [36] on the distribution of slopes reported in [4].
Targets of both these mRNA-binding proteins are enriched for
genes that are increased in expression at higher growth rates. This
is consistent with an important role for post-transcriptional
regulation in modulating the growth-related gene expression
program.
Found at: doi:10.1371/journal.pcbi.1000257.s004 (0.05 MB PDF)

Table S1 Expression of growth-specific genes for chemostat
cultures at increasing growth rates exposed to a brief heat pulse. A
collection of chemostats was run at growth rates ranging from
0.05/hr to 0.25/hr. A brief (,30 s) heat pulse was administered
immediately before time zero, and expression arrays were
collected in a time course from before the pulse (pre.) to two
hours after the pulse using the 0.1/hr pre-pulse time point as a
reference. (Here we provide expression data for all the growth-
specific genes. The genome-wide collection of gene expression
data will appear in a subsequent publication.)
Found at: doi:10.1371/journal.pcbi.1000257.s005 (0.06 MB XLS)

Table S2 Expression of growth-specific genes for chemostat
cultures at increasing growth rates limited on various nitrogen
sources. A collection of chemostats was run at growth rates from
,0.06/hr to ,0.21/hr limited on one of several different nitrogen
sources, including ammonium, allantoin, glutamate, arginine,
glutamine, urea, and proline. (Here we provide expression data for
all the growth-specific genes. The genome-wide collection of gene
expression data will appear in a subsequent publication.)
Found at: doi:10.1371/journal.pcbi.1000257.s006 (0.04 MB XLS)

Table S3 Expression of growth-specific genes for batch cultures
grown on glucose, galactose, and galactose with a constitutively
activated Ras/PKA pathway. We constructed a gal1 deletion
strain carrying the activated allele RAS2(G19V) under control of
the galactose inducible GAL10 promoter. Addition of galactose
activates the Ras/PKA pathway, but since galactose cannot be
metabolized by this strain, the metabolic state of the cell remains
unaltered. Gene expression was then assayed at 20, 40, 60, and
80 minutes (relative to time 0) after nutrient exposure. (Here we
provide expression data for all the growth-specific genes. See [9]
for additional data.)
Found at: doi:10.1371/journal.pcbi.1000257.s007 (0.03 MB XLS)

Table S4 Expression of growth-specific genes for Saccharomy-
ces bayanus orthologs under the diauxic shift and heat shock.
Gene expression was measured for time courses of S. bayanus
undergoing the diauxic shift and for a culture heat shocked by
shifting from 25 to 37 C. (Here we provide expression data for all
the growth-specific genes. The genome-wide collection of gene
expression data will appear in a subsequent publication.)
Found at: doi:10.1371/journal.pcbi.1000257.s008 (0.03 MB XLS)

Table S5 S. cerevisiae growth-specific genes used for growth
rate prediction in this study with S. bayanus and S. pombe
orthologs. S. cerevisiae growth-specific genes were defined to have
a bootstrapped p-value of growth rate response and linear fit less
than 1025. S. bayanus orthologs were drawn from [19] and S.
pombe orthologs from [20].
Found at: doi:10.1371/journal.pcbi.1000257.s009 (0.00 MB XLS)

Table S6 Predicted relative growth rates for expression data
from the deletion collection in [10]. Our predictions for the 199
mutants for which Hughes et al directly measured growth rates
show significant correlation to the experimental gold standard
(rho = 0.473, p,10211), in contrast to other single mutant fitness
estimates based on growth curve analysis (e.g. [23] reports
rho = 0.321, p,1026; [24] reports rho = 0.108, p.0.2).
Found at: doi:10.1371/journal.pcbi.1000257.s010 (0.01 MB XLS)
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