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ABSTRACT 

 

Understanding the dynamics and mechanisms of adaptive evolution is a central 

question in evolutionary biology. However, realizing this goal remains challenging 

due to the difficulty of observing adaptive evolution in real time and deducing the 

its molecular basis. Long-term Experimental Evolution (LTEE) using microbes and 

chemostats provides a means of overcoming to these limitations to address these 

central questions. I studied the evolution of genetic networks in Saccharomyces 

cerevisiae (budding yeast) populations propagated for more than 200 generations in 

different nitrogen-limiting conditions using chemostats. I find that rapid adaptive 

evolution in nitrogen-poor environments is dominated by the de novo generation 

and selection of copy number variants (CNVs), a large fraction of which contain 

genes encoding specific nitrogen transporters. The large fitness increases associated 

with these alleles limits the genetic heterogeneity of adapting populations even in 

environments with multiple nitrogen sources. Complete identification of acquired 

point mutations, in individual lineages and entire populations, identified 

heterogeneity at the level of genetic loci but common themes at the level of 

functional modules, including genes controlling phosphatidylinositol-3-phosphate 

metabolism and vacuole biogenesis. Adaptive strategies shared with other nutrient-

limited environments point to selection of genetic variation in the TORC1 and 

Ras/PKA signaling pathways as a general mechanism underlying improved growth 

in nutrient-limited environments. By studying the fitness of individual alleles, and 



their combination, as well as the evolutionary history of the evolving population, I 

find that the order in which adaptive mutations are acquired is constrained by 

epistasis. I observed the repeated selection of non-synonymous mutations in the 

zinc finger DNA binding domain of the GATA transcription factor, GAT1, an 

activator of the nitrogen catabolite repression (NCR) regulon. The functional 

effects of GAT1 mutations are exerted both directly, and indirectly by rewiring of 

incoherent feed-forward loops comprising multiple GATA transcription factors and 

their common NCR regulon targets. This suggests that under strong selection the 

evolution of gene expression is highly repeatable and that rewiring transcriptional 

networks can lead to both direct and indirect effects. Studies using LTEE are 

potentially applicable to understanding pathogenic strategies adopted by viruses, 

microbes and even human cancer cells. For example, recurrent mutations in the 

DNA binding domain of GAT1 is reminiscent of recurrent missense mutations in 

the DNA binding domain of TP53 found in a variety of tumors. 
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CHAPTER1: INTRODUCTION 

 

Natural selection has been one of the most influential ideas in biology since Charles 

Darwin brought his insight to the field in his seminal work On the Origin of Species 

[1] 150 years ago. Darwin’s theory of evolution provides an explanation for the 

incredible biodiversity of taxa he observed in the natural world. Adaptive evolution 

is driven by natural selection in which a population becomes more suited to a 

particular environment by selecting variations that confer a reproductive advantage. 

Selection and heritable (genetic) variations are two major determinants of adaptive 

evolution. Since Darwin’s idea, the concept of adaptive evolution has been applied 

to a variety of fields ranging from microbiology [2], ecology [3] and impacts 

virtually every aspect of biology.  

Understanding the dynamics and mechanisms of adaptive evolution is a long-

standing question in the field. Indeed, the Darwinian evolutionary framework has 

contributed to predictions concerning the evolutionary dynamics and outcomes. In 

adaptive evolution, mutation increases genetic diversity while selection favors only 

fitter genotypes thereby decreasing diversity. If selection is strong and the mutation 

supply rate is low, the fittest allele will fix in the population (i.e. be present in every 

individual) before the next mutation occurs, making the dynamics of evolution 

relatively simple (sequential hard sweep) [4,5]. By contrast, if multiple mutations 

that are near-equally beneficial can be introduced together, they can compete with 

each other in a process, which results in soft sweep [6].  
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However, a consensus about which evolutionary dynamics dominate in adapting 

populations has not been reached and our understanding remains mostly theoretical. 

One of the fundamental bottlenecks is that evolution is rarely observable in real-

time as Darwin already remarked in his original work in 1859. The forces and 

processes underlying adaptive evolution are necessarily inferred from extant 

organisms making it hard to observe the evolutionary dynamics in real-time and to 

distinguish neutral from adaptive alleles. Therefore, most studies of adaptive 

evolution rely on comparative studies with living organisms and/or theoretical 

prediction by necessity. 

The speed, causes, and dynamics of adaptive evolution are determined in part by 

the molecular basis of adaptive evolution. However, for much of the twentieth 

century evolutionary biology diverged from molecular biology in scientific culture. 

Recently, the reductionist approach of molecular biology has emerged as an 

essential complement to addressing various issues that remain unresolved in 

evolutionary biology [7]. The incorporation of the evolutionary theory into modern 

genetics and molecular biology shows a great success in isolating and 

characterizing many aspects of genetic architecture that underlies adaptive 

evolution in natural populations [8]. However, understanding the molecular basis of 

adaptive evolution at a systems level still remains a challenge. 

An additional challenge to studying adaptive evolution is understanding and 

controlling multiple factors that determine the evolutionary dynamics. The types 

and strength of selective pressure is dependent on environmental conditions a 
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population is experiencing. A major source of genetic variations at the molecular 

level are spontaneous mutations that randomly arise from intrinsic DNA replication 

errors, spontaneous lesions and transposable genetic elements [9]. Among 

additional complicating factors are epistatic interaction between adaptive alleles 

[10-12], genetic drift [13-15] and random meiotic recombination [16-18]. All these 

factors contribute to the rate or mode of adaptive paths, and ultimately hinder 

fixation by the fittest clone. However, the molecular details underlying these 

factors and experimental approaches to monitor them in real time during evolution 

are far from complete.  

Experimental evolution using microbes provide one means of overcoming these 

limitations in evolutionary biology [19-25]. Using microbes with short doubling 

times and archiving population samples allows maintenance of a ‘fossil record’ of 

the evolving population and observations of the evolutionary dynamics in the lab 

within a reasonable timeframe. In addition, well-controlled and replicated 

experimental set-ups enable us to rule out or minimize the effects of stochastic 

determinants such as drift and recombination and mainly focus on the interplay of 

selection and mutation. The effect of drift can be minimized using a constant 

culturing system with a large population size. Using asexually reproducing 

microbes rules out meiotic recombination that randomizes the order of fixed 

mutations in each lineage during the course of evolution. The types and strength of 

selection can be modulated by chemical treatment or nutrient limitation with a 

well-defined composition. Various genetic and molecular tools are readily available 
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to identify genomic variations and their phenotypic consequences in the relevant 

environmental condition. Finally, microbial populations themselves are of great 

importance in evolutionary biology not only as a pathogen to humans but also for 

their ecological roles in nature. 

Experimental evolution using microbes has a relatively long history. A classical 

example of experimental evolution is a work done by Novick and colleagues in 

1961 showing that Escherichia coli evolved to repetitively select amplification 

alleles of the lac operon under continuous lactose limiting media [26]. In later 

studies, other groups found examples of a ‘mutator phenotype’ while investigating 

the role of mutation rate in bacterial experimental evolutions [27,28]. The group of 

Richard Lenski is one of the founders of the ‘Long-Term Experimental Evolution 

(LTEE)’ [29-31]. They evolved twelve independent populations of bacteria for over 

60,000 generations (literally more than 26 years as of the year of 2014) using a 

daily serial dilution method in a nutrient rich media. They have reported many 

fundamental aspects of adaptive evolution in bacteria based on analysis of LTEEs 

at the phenotypic and genotypic levels. The most striking recent result was that one 

E. coli population evolved to use citric acid as a carbon source in an aerobic 

condition [32]. Saccharomyces cerevisiae (budding yeast) is a eukaryotic microbe 

that is ideally suited to experimental evolutions owing to the available molecular 

genetic tools and its well-characterized genome features. For instance, Brown et al. 

found that amplification of HXT6/7 genes which encodes high affinity glucose 

transporters led to an increased rate of glucose uptake resulting in increased fitness 
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under glucose-limited conditions [33]. Despite progress in understanding adaptive 

evolution, these early studies are mostly based on analysis of specific target loci of 

interest and were technically limited in the scale of genotyping. 

Recently, LTEEs combined with high-throughput analysis of genomic variations 

have provided a more comprehensive list of adaptive alleles and their dynamics 

[34-37]. Despite the variation in selective regimes and strength and models used, 

most results from different LTEEs are beginning to provide a consistent view of 

adaptive evolution. One emerging consensus from LTEEs studies is that 

evolutionary trajectories are constrained by clonal interference and epistasis under 

strong selective pressures [34,37-40]. The comparative ease of whole genome 

analysis means that LTEE is now able to answer more complex questions, i.e., the 

role of different types of genetic variation, the causes and consequences of 

antagonistic pleiotropy (the phenomenon where one variation has opposite effects 

on fitness depending on conditions), the distribution of fitness effects, how 

pathways and networks comprising multiple genes evolve, how interactions 

between genes influence the dynamics and outcome of adaptive evolution, whether 

evolution is historically contingent or convergent, and how adaptive strategies 

learned from microbial LTEEs be applied to other systems. My dissertation aims to 

address how functional modules or pathways such as gene regulatory networks 

(regulons) comprising multiple loci evolve under strong selective pressure.   

In my research, I used budding yeast as a model system, nitrogen limitation as a 

source of selective pressure and chemostats as an experimental means of 
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maintaining evolving populations in constant environments over long time periods. 

Budding yeast has a number of properties that make it ideally suited to the study of 

molecular basis of adaptive evolution in LTEEs. First, yeast genetics provides a 

powerful tool for isolating and combining different adaptive alleles and studying 

their functional effects. In addition, genomic features and cell growth regulating 

pathways and processes in yeast are well characterized (Figure 1.1A).  

For example, the molecular mechanisms underlying transcriptional control of 

nitrogen utilization in yeast via the so called nitrogen catabolite repression (NCR) 

regulon have been extensively studied [41-43] (Figure 1.1B). Limiting nitrogen 

concentrations in a culture medium imposes a very strong selective pressure since 

nitrogen is one of the essential nutrients. Under such a nitrogen limited or poor 

condition, transcriptional expression of a set of functionally related genes for 

nitrogen uptake and catabolism is regulated by four GATA factors: two activator 

(GAT1 and GLN3) and two repressors (DAL80 and GZF3). The well-characterized 

regulation of nitrogen utilization provides an ideal model system for studying the 

molecular basis of adaptive evolutions. 

A chemostat was used as the culturing device in this work in order to generate a 

stable and continuous selective pressure. Its technical details and relative usefulness 

in LTEEs compared to the serial dilution in batch cultures will be discussed in the 

following Section 1. Next, I adopted next-generation sequencing (NGS) for high-

throughput genome analysis in this study (see Section 2), which allowed me to 

identify the full spectrum of adaptive alleles and their dynamics.  
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A 

 

B 

 

Figure 1.1. A. Scheme of central nutrient utilization pathway. B. 
Nitrogen Catabolite Repression (NCR) in yeast  

 

 

My thesis project represents a successful application of LTEE to understanding the 

dynamics and molecular basis of adaptive evolution under constant nutrient-limited 

environments. One important long-term perspective from my studies is that LTEE 

is informative for understanding adaptive evolution of viruses, microbes and even 

cancer cells in the area of human health care [44-46]. Experimental studies of viral 

and bacterial infection suggest that adaptability of pathogens to their host is more 

complex than predictions made by classical theories and that their evolutionary 

outcomes are more stochastic (unpredictable). Theories of cancer evolution have 

been strongly influenced by evolutionary thought [47] but require more empirical 

evidence from experimental evolution approaches and high-throughput genomic 

screening methods. This dissertation serves as a starting point for applying 

concepts of the evolution of genetic networks to understanding the adaptive 
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strategies that tumor cells use to proliferate and metastasize as discussed in Chapter 

2. 

Before introducing the main results, two important technical backgrounds will be 

briefly reviewed here: (1) Chemostats and (2) Next-generation sequencing. 

Following three main chapters will cover an expanded version of research papers to 

which I contributed as a first author during the PhD training. 

 

1.1. CHEMOSTATS  

This section is based on the review paper “The functional basis of 
adaptive evolution in chemostats” by David Gresham and Jungeui 
Hong, copyright © 2014 by the FEMBS Microbiology Review, all 
rights reserved (Gresham and Hong, 2014). I performed 
computational simulation for inferring the dynamics of cell growth 
and nutrient concentration in a chemostat and generated all figures. 

 

Chemostats are devices for culturing microbes in a liquid medium of fixed volume 

at a constant growth rate by modulating constant in- and out-flows of the culture 

(see Figure 1.2). This method of culturing was first introduced by Jacques Monod 

[48], and Leo Szilard and Aaron Novick [49,50] independently in 1950. In 

chemostats, the growing population is in a steady-state where the growth rate is 

equal to the rate at which the culture is diluted.  

The key technical advantages of the chemostats for studying experimental 

evolution are followings: (1) a steady-state of the cell culture can be maintained for 

a long time period, (2) the growth rate of cells is determined by experimentally 

controlled dilution rate, (3) the types, strength and consistency of selective pressure 
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experienced by the organism and population size is under precise experimental 

control, and (4) as a chemostat environment is usually new for the organism, fitness 

increases in evolving lineages and populations are typically large providing better 

statistical power for dissecting multi-locus alleles and their epistatic interactions.  

 

 

          

Figure 1.2. Design of a chemostat. Typically, a chemostat comprises a 
culture vessel in which the population grows under continuous agitation and 
aeration. New media flows into the vessel at a defined rate. At the same rate, 
culture containing cells and medium is removed from the chemostat. The 
flow of media and culture is maintained using a pumping apparatus and 
holding the chemostat vessel under positive pressure by means of a constant 
air flow. 
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The dynamics of cell growth in a chemostat is described using a hyperbolic 

function of the growth rate and two coupled differential equations:   

µ=µmax·s/(Ks + s) 

 

 

 
 
 where  ‘x’ is the number of cells, 

‘μμ’ is the growth rate of the cells,  
‘μmax’ is the maximal growth rate of the cells, 

  ‘s’ is the residual concentration of the limiting nutrient, 
‘R’ is the concentration of the limiting nutrient in the feed medium 
‘Ks’ is the substrate concentration at half-maximal µ, 
‘D’ is the culture dilution rate, 
‘Y’ is the number of cells produced per mole of the limiting nutrient 
 

Eq 1 is the relationship between growth rate (μ) and limiting nutrient concentration 

(s) and inferred based on the empirical measurements of E. coli growth rates in 

different nutrient concentrations [49,51]. dx/dt (Eq 2) and ds/dt (Eq 3) represent the 

temporal dynamics of the number of cells and the nutrient concentration change, 

respectively. In a steady state in the chemostat (see Figure 1.3), Eq 2 and Eq 3 are 

equal to zero (i.e. dx/dt = 0 and ds/dt = 0), where growth rate (μ) is sub-maximal 

and exponential (i.e. constant per unit time) and equal to the culture dilution rate 

(D). Thus, the doubling time (i.e. the generation time) of the exponentially growing 

population is simply ln(2)/D. A variety of steady-state conditions can be 

established by simply varying the dilution rate (D) in a chemostat until the dilution 

(Eq 1) 
 
 
(Eq 2)
 
 
(Eq 3) 

dx

dt
= μmax

s

Ks + s
x −Dx

ds

dt
= DR −Ds −

x

Y
μmax

s

Ks + s
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rate is greater than the maximal growth rate (μmax) of the cells. If D > μmax, cells in a 

chemostat will be washed out by the fresh medium. The three growth parameters – 

µmax, Ks and Y – are intrinsic properties of the cell and therefore potentially 

modified by mutation and selection of experimental evolution in a chemostat.    

 

 

 

Figure 1.3. Establishment of a steady-state in the chemostat. Following 
inoculation and initiation of culture dilution the chemostat is characterized by 
a period during which the population increases and nutrient abundance 
declines. Eventually, a steady-state is established in which the cell population 
remains high and the concentration of the limiting nutrient remains low. The 
steady-state is predicted by the fundamental equations of the chemostat and 
depends on the parameter values used in the simulation. In this simulation, 
µmax = 0.4 hr-1, Ks = 0.05 mM, Y = 4.6 x 107 cells/mmole, R = 0.8 mM, and D 
= 0.12 hr-1. The simulation was initialized with x = 1 x 107 cells/mL and s = 
0.8 mM. 

 

 

The continuous microbial culturing in a chemostat differs in many ways from batch 

culture growth. In a batch culture, a small number of cells are inoculated into a 
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fresh medium and then undergo a physiological and metabolic adjustment (‘lag 

phase’) and, following exponential cell growth (‘log phase’) and the cessation of 

cell growth and initiation of a quiescent state (‘stationary phase’). Experimental 

evolutions using serial dilution of batch cultures result in repeated population 

bottlenecks, a cycle of dramatic changes in physiological parameters such as pO2 

(partial pressure of oxygen) and pH and nutrient concentration, and accumulation 

of cellular wastes. However, after a short period of initial batch-like growth, 

population growth in a chemostat is near constant and media composition is 

consistent over a long period of time owing to the continuous addition of fresh 

medium and removal of equal volume of the culture (see Figure 1.3). In a typical 

LTEE study using a chemostat, a single essential nutrient such as carbon, nitrogen, 

phosphorus or sulfur is limited while all other nutrients are present in excess. Thus, 

despite the increased experimental complexity of chemostats, their use greatly 

simplifies the selection for the purposes of experimental evolution.  

  

1.2. NEXT-GENERATION SEQUENCING (NGS) 

Isolation of causative (or driver) mutations in early LTEE studies was limited due 

to the difficulties of sequencing entire genomes. The advent of high-throughput 

sequencing methods enabled the use of chemostats for the study of evolution by 

mutation and selection [52]. For example, using unbiased whole genome tiling 

DNA microarray or next generation sequencings, recent LTEE studies have 

characterized the full spectrum of mutations and their functional relevance to the 
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evolutionary dynamics in E. coli or S. cerevisiae selected in nutrient-limited 

environments [34-39,53-56].  

Unlike the 1st generation sequencing technique such as Sanger sequencing or 

microarray-based genotyping methods, next-generation sequencing (NGS) 

techniques including Roche 454, Illumina/Solexa Genome analyzer and Applied 

Biosystems (ABI) SOLiD generate high-throughput sequencing data in a cost- and 

labor-effective way. For example, the HiSeq 2500 and MiSeq, the latest model 

from Illumina as of 2014, allows researchers to obtain up to few thousands fold 

coverage for the yeast genome in a single lane. Different samples can be 

multiplexed using unique sample index in a single lane leading to further cost 

reduction. 

The main goal of NGS in LTEEs is to comprehensively identify acquired genomic 

variants including single nucleotide polymorphisms (SNPs), small (< 1 Kb) 

insertions and deletions (INDELs), and copy number variations (CNVs) that 

include local amplification or deletion of long genomic regions and gain or loss of 

whole chromosomes. A general computational pipeline used in my thesis for 

identifying these different classes of variants is shown in Figure 1.4. 

One important consideration in NGS based analysis is whether we sequence a 

clonal DNA sample or DNA prepared from the entire population. In microbes, 

there is no need to amplify an entire genome obtained from one single cell because 

it is very easy and quick to propagate one single cell to get a large clonal 

population of cells. Alleles identified from clonal sequencing of haploids should 
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have either 1 or 0 for their frequencies in the read alignment map except ones that 

may occur in a CNV. Clonal sequencing of asexual haploid strains that are isolated 

from evolving populations provides the list of mutations acquired in one single 

lineage. Assuming that no random meiotic recombination occur in the asexually 

reproducing cells, all the mutations in that lineage must have fixed in a sequential 

order, which can be estimated from allele frequencies (AFs) at the population level: 

higher AF mutations occurred earlier and lower AF ones later or more recently.  

 

 

 

Figure 1.4. A typical bioinformatic workflow for analyzing NGS data in 
the fastq format. Three types of mutations are of major interest in this 
pipeline. Both data from HiSeq and MiSeq are processed using the same 
pipeline. Every analysis is run using the High-Performance Computing 
(HPC) in the Unix system (see all commands used in Appendix 1).  

 

However, population level whole genome sequencing is challenging since an 

evolving population is a mixture of multiple different genotypes (AFs ranges from 

0 to 1 as a continuous variable). Minor frequency mutations in a population (less 

CNVs  CNV

SNPs 

INDELs 

FASTQ SAM/BAM pileup 
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than 10 %) are hard to distinguish from random sequencing errors. Thus, read depth 

(coverage) is critical for the precise estimation of AFs in the population sequencing 

(Figure 1.5). One useful variation of population-level NGS is to target specific loci 

of interest and sequence them in order to get better resolution of AFs. The Illumina 

Miseq is well-suited for this as it generates enough read coverage for tens or 

hundreds of targeted loci in a cheap and rapid way. 

 

Figure 1.5. Allele frequency (AF) 
estimation from a population level 
sequencing data. AF is the proportion of the 
number of alternative (mutated) alleles 
among the number of all alleles from the 
alignment map. The detection limit of 
significant AFs is dependent on the read 
coverage. 
 

 

 

 

 

An additional technical consideration of NGS is how to handle PCR bias 

originating from loci with extreme base compositions. The most typical Illumina 

sequencing library preparation (TruSeq®) includes a PCR amplification step for 

enriching properly ligated molecules to sequencing adapters. It has been suggested 

that high GC % region can be a source of PCR amplification bias in the final read 

coverage [57]. PCR free, enzyme based library preparation protocols such as 
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Illumina Nextera® kit can be used as an alternative although it is more expensive 

and only applicable when the amount of starting materials is very large. It is not 

clear how such bias affects the final result for AFs estimation of SNPs in DNA-seq 

or differential gene expression analysis in RNA-seq data. Currently, standard 

bioinformatics pipelines identifying PCR duplicates on the basis of the sequence 

identity. However, depending on the complexity of the sequenced material, the 

identified molecule can be generated by chance. Distinguishing unique molecules 

from PCR duplicates is not standardized yet. 

During my thesis work, I established experimental and computational methods for 

clonal, whole genome population and targeted amplicon deep sequencing. In 

addition, I presented a new cost-effective sequencing adapter design that enables 

identification of true positive PCR duplicates and multiplexing multiple sequencing 

libraries for the Illumina sequencing platforms (see Chapter 3). This technical 

innovation identifies genomic variants that were acquired during LTEEs with 

increased precision and sensitivity. 
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CHAPTER2. Molecular Specificity, Convergence and Constraint 

Shape Adaptive Evolution in Nutrient-Poor Environments 

 

This chapter is based on the research paper “Molecular Specificity, 
Convergence and Constraint Shape Adaptive Evolution in 
Nutrient-Poor Environments” by Jungeui Hong and David 
Gresham, published in PLoS genetics 2014. 

 

2.1. ABSTRACT 

One of the central goals of evolutionary biology is to explain and predict the 

molecular basis of adaptive evolution. We studied the evolution of genetic 

networks in Saccharomyces cerevisiae (budding yeast) populations propagated for 

more than 200 generations in different nitrogen-limiting conditions. We find that 

rapid adaptive evolution in nitrogen-poor environments is dominated by the de 

novo generation and selection of copy number variants (CNVs), a large fraction of 

which contain genes encoding specific nitrogen transporters including PUT4, 

DUR3 and DAL4. The large fitness increases associated with these alleles limits the 

genetic heterogeneity of adapting populations even in environments with multiple 

nitrogen sources. Complete identification of acquired point mutations, in individual 

lineages and entire populations, identified heterogeneity at the level of genetic loci 

but common themes at the level of functional modules, including genes controlling 

phosphatidylinositol-3-phosphate metabolism and vacuole biogenesis. Adaptive 

strategies shared with other nutrient-limited environments point to selection of 

genetic variation in the TORC1 and Ras/PKA signaling pathways as a general 
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mechanism underlying improved growth in nutrient-limited environments. Within a 

single population we observed the repeated independent selection of a multi-locus 

genotype, comprised of the functionally related genes GAT1, MEP2 and LST4. By 

studying the fitness of individual alleles, and their combination, as well as the 

evolutionary history of the evolving population, we find that the order in which 

these mutations are acquired is constrained by epistasis. The identification of 

repeatedly selected variation at functionally related loci that interact epistatically 

suggests that gene network polymorphisms (GNPs) may be a frequent outcome of 

adaptive evolution. Our results provide insight into the mechanistic basis by which 

cells adapt to nutrient-limited environments and suggest that knowledge of the 

selective environment and the regulatory mechanisms important for growth and 

survival in that environment greatly increase the predictability of adaptive 

evolution. 

  

2.2. INTRODUCTION 

Increasingly, the fields of evolutionary and molecular biology are fusing in a 

research program that has been termed the "functional synthesis" [7]. The power of 

this approach is exemplified by the molecular reconstruction of ancestral proteins 

enabling the study of the functional properties [58] and evolutionary histories [59] 

of individual genes. By contrast, the evolution of pathways and networks 

comprising multiple genes has thus far been less amenable to functional studies. 

This is due in part to the difficulty of inferring and engineering ancestral states of 
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genetic networks. An alternative approach to the study of genetic network 

evolution is the study of long-term natural selection in laboratories. Experimental 

evolution using microbes has a number of useful features including the ability to 

monitor evolution in real time and to measure fitness in the relevant environmental 

condition [19] that makes it ideally suited to the study of gene network evolution.  

Uniquely among experimental methods of long-term selection, continuous 

culturing using chemostats [48,50] enables establishment of a precise and invariant 

selective pressure in which cell growth is continuously constrained by the rate of 

provision of a growth limiting nutrient. In contrast to evolution experiments using 

serial dilution [19,30,60], in which cells undergo repeated cycles of feast and 

famine, the unchanging nutrient-poor environment of a chemostat reduces fitness to 

a single component – continuous growth in a nutrient-poor environment – 

facilitating testing and interpretation of the functional basis of beneficial mutations. 

Moreover, in chemostats, large population sizes can be maintained (in excess of a 

billion cells) during the long-term selection thereby minimizing the effects of 

genetic drift and population bottlenecks.  

Despite recent progress in our understanding of the molecular basis of adaptive 

evolution in chemostats [34,61-65] many questions remain. Does selection target 

particular loci and preferentially utilize distinct types of alleles? What is the 

functional basis of adaptation and are there mechanistic relationships between 

beneficial mutations? Does increased environmental complexity result in increased 

heterogeneity within a population? To what extent does epistasis constrain adaptive 
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landscapes? Here, we describe the results of experimental evolution of the budding 

yeast, Saccharomyces cerevisiae, in different nitrogen-limited chemostat 

environments. Variation in nitrogen availability is frequently encountered in natural 

ecologies and use of this selection enables comparison with previous adaptive 

evolution studies in other nutrient-limited environments using chemostats 

[34,61,65].  

Importantly, for the goal of understanding genetic network evolution the molecular 

mechanisms underlying nitrogen utilization in budding yeast have been extensively 

studied  [41], which facilitates interpretation of the functional effects of adaptive 

mutations. In nitrogen-limited chemostats, the steady-state nitrogen concentration 

in the culture is extremely low and cells grow continuously in a nitrogen-poor 

environment. Under these conditions, expression of a set of coordinately regulated 

genes, the nitrogen catabolite repression (NCR) regulon, is activated by the GATA 

transcription factors, GLN3 and GAT1  [66]. NCR genes encode a number of 

transporter and catabolic enzymes for import and assimilation of diverse nitrogen 

sources, the expression of which is repressed during growth in a nitrogen-rich 

environment by the negative regulators GZF3 and DAL80  [66]. 

Despite the greatly simplified and invariant selective conditions of a chemostat, we 

find evidence for at least three distinct adaptive strategies in nitrogen-limited 

chemostats that operate with different levels of environmental specificity. 

Consistent with earlier studies in other nutrient limitations  [33,34,61], comparative 

analysis among the different nitrogen-limited conditions revealed selection for copy 
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number variant (CNV) alleles that result in increased abundance of transporters 

specific for the molecular form of nitrogen provided in each environment. We show 

that these alleles are also selected when multiple nitrogen sources are 

simultaneously present in the environment and that their inordinate fitness effects 

likely limit the accumulation of genetic diversity, even in environments with 

increased environmental complexity. Novel alleles at some loci are recurrently 

selected in different nitrogen-limited environments, including VAC14 and genes 

with related functions, pointing to a role for remodeling of phosphatidylinositol-3-

phosphate production and vacuole biogenesis in adaptation to nitrogen-limitation. 

By integrating our results with previous studies we find that variation in a subset of 

loci is selected in both nitrogen-limited chemostats and glucose-limited chemostats 

providing evidence for a general adaptive strategy in nutrient poor environments 

through remodeling of the TORC1 and Ras/PKA pathways.  

We also report a striking example of clonal interference in which independent 

lineages, defined by mutations in three functionally related loci, GAT1, MEP2 and 

LST4 co-evolve in a single population undergoing adaptive evolution in an 

ammonium-limited chemostat. By studying the individual and interactive effects of 

these alleles as well as reconstruction of lineage dynamics, we demonstrate that the 

order of mutations is constrained by epistatic interactions. We propose that this 

three-locus genotype comprising functionally related gene products represents a 

gene network polymorphism (GNP), which may be a more frequent outcome of 

adaptive evolution than previously appreciated.  
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2.3. RESULTS 

To study adaptation in nitrogen-limited environments we founded populations with 

a haploid Saccharomyces cerevisiae strain isogenic to the reference genome 

(S288c) in different nitrogen-limited chemostats. A normalized concentration of 

800µM nitrogen was used in all feed media making the molecular form of nitrogen 

the only variable in each environment. A single population in each different 

nitrogen-limited environment was maintained in continuous exponential growth (D 

= 0.12 culture volumes/hr; tdoubling = 5.8 hours) for 250 generations. 

 

 

Figure 2.1. Increased fitness in nutrient-limited environments is 
associated with amplification of specific permease genes. (A) Fitness 
increases for clones recovered from each selection are typically >10%. 
Haploid (1N) and diploid (2N) ancestral strains were also tested in 
ammonium-limited chemostats but did not show fitness differences. (Amm : 
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ammonium, Arg : arginine, Gln : glutamine, Pro : proline, Glu : glutamate, 
Urea : urea, Alla : allantoin, Anc : ancestor). (B) DNA copy number was 
estimated using aCGH. Each black point represents a measurement from a 
unique probe on the microarray from analysis of population DNA samples. 
We detected CNVs containing genes with clear connections to nitrogen 
import at high frequencies in populations (red lines) and clones (blue lines). 
Retrotransposon (Ty) sequences were frequently found at the boundary 
regions of CNVs. 

 
 
2.3.1 Adapted clones have dramatically increased fitness 

Initially, we studied populations evolving in seven different nitrogen-limited 

environments. To identify phenotypically distinct clones within each adapted 

population of ~1010 cells following 250 generations of selection we performed 

batch culture growth rate assays on an unbiased sample of 94 clones from each 

population and selected three individuals that exhibited growth characteristics 

distinct from each other and the ancestral strain for further characterization (see 

methods). We determined the relative fitness of each clone in the appropriate 

nitrogen-limited chemostat environment and typically observed large increases in 

fitness (>10%) (Figure 2.1A). This is consistent with mutation and selection 

rapidly moving strains towards a fitness optimum. It is clear that the ancestral 

genotype differs in its distance to the fitness optimum with respect to different 

nitrogen limited environments: fitness increases in clones selected from 

ammonium-, arginine- and glutamine-limited chemostats are around 25% whereas 

fitness increases in clones evolved in urea- and allantoin-limited chemostats exceed 

80%. In general, individuals from the same population had similar fitness. A 
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minority of clones did not show increased fitness using this assay for reasons that 

are not clear, but may be indicative of frequency-dependent selection. The majority 

of evolved clones were unaltered in their ability to grow in nitrogen-rich conditions 

or showed decreased fitness (typically less than 4%) (Figure2.2). Thus, mutations 

selected in the nitrogen-poor environments are uniquely beneficial in nitrogen-poor 

environments and exhibit antagonistic pleiotropy in nitrogen-rich environments.  

 

Figure 2.2. Evidence of antagonistic pleiotropy in evolved lineages. Each 
mutant recovered from evolved populations was competed against a common 
fluorescently-labeled ancestral strain in batch cultures supplied with 5 g/L 
ammonium sulfate. Evolved clones exhibited fitness decreases of up to 4% in 
nitrogen-rich environments. 

 

2.3.2. Selection for amplification of specific transporter genes  

To identify mutations associated with increased fitness we first analyzed the 

genomes of selected clones, and entire populations, using array comparative 

genomic hybridization (aCGH). We observed multiple copy number variants 

(CNVs), including duplicated and deleted genomic regions, typically greater than 
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~10kb, in individual clones and entire populations (Figure 2.3). Previously, we 

reported identification of amplification alleles that include the GAP1 locus in 

clones adapted to glutamine- or glutamate-limitation [62]. A subset of CNVs 

present in other nitrogen-limited environments include compelling candidates that 

are likely to underlie selection of the amplified allele. These include a CNV 

containing the allantoin permease (DAL4) in allantoin-limited conditions, a CNV 

including the urea permease (DUR3) in urea-limited conditions and a CNV 

including the proline permease (PUT4) in proline-limited conditions (Figure 2.1B). 

Our ability to detect these CNV alleles in population samples using aCGH (Figure 

2.1B) indicates that they are at high frequency following 250 generations of 

selection. Consistent with previous studies [61,67], CNVs are frequently proximal 

to retrotransposon sequences (Figure 2.1B), which may increase their spontaneous 

rate of generation. Previously, we, and others, have identified the repeated selection 

of copy number variants (CNVs) at the HXT6/7 [33,61] and SUL1 [61] locus in 

yeast strains selected from glucose- and sulfur-limited chemostats respectively. In 

E. coli evolved in lactulose-limiting conditions the lac operon, which includes the 

lactose permease (lacY), is frequently amplified [68]. Collectively, these findings 

make clear that in diverse nutrient-limiting conditions, increased production of 

specific nutrient transporters is a rapid route to increased fitness. The spontaneous 

rate at which amplification CNVs are generated appears to depend on context [69] ; 

however, estimates of gene amplification rates suggest that they are on the order of 

nucleotide substitution rates [70]. Selection for spontaneously generated 
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amplification alleles appears to be an expedient means of increasing production of 

specific nutrient transporters and these alleles are strongly selected in nutrient-poor 

conditions.  

 

 

Figure 2.3. Complete aCGH results of all analyzed clones and 
populations that have undergone adaptive evolution in individual 
nitrogen sources. Most populations have acquired CNVs that include 
transporters of the specific nitrogen source except in the case of ammonium 
and arginine-limitation. For visualization, amplified or deleted regions with a 
minimum length of 10 kb and a log2 ratio > |0.5| are indicated by red 
(amplification) or green (deletion). 
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It is notable that we did not detect amplification alleles containing the known high 

affinity ammonium transporter gene, MEP2, in the ammonium-limited population 

or the arginine transporter, CAN1, in the arginine-limited population (Figure 2.3). 

It remains to be determined if amplification of MEP2 or CAN1 is beneficial in 

ammonium- or arginine-limited conditions or if these amplification alleles are 

deleterious for functional or genetic reasons. Moreover, we cannot exclude the 

possibility that amplification alleles were present at an earlier stage in these 

populations but were subsequently out-competed. 

 

2.3.3. Aneuploidy and whole genome duplication may contribute to adaptive 

evolution 

We observed additional copy number variants and entire chromosomal 

aneuploidies that include genes without obvious connections to growth in nitrogen-

limited conditions (Figure 2.3). We identified 7 aneuploid clones among the 18 

analyzed clones (~ 40%). The recurrent observation of aneuploidy in adaptive 

evolution studies [61,67] and as a mechanism of genetic suppression [71] suggests 

that they are likely to be adaptive, although the mechanistic basis for the selective 

advantage of aneuploidies remains to be determined.  

We quantified the DNA content of all clones, using flow cytometry, and found that 

in populations adapted to allantoin- and urea-limitation a high frequency of cells 

had a 2N DNA content. These individuals are still of a haploid mating type 

(MATa) as demonstrated by successful mating with MATα cells. The resulting 
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triploid cells underwent sporulation, but typically yielded poor spore viability (< 

10%) consistent with massive unbalanced chromosome content in the meiotic 

products of triploids. The maintenance of a MATa mating type in diploid cells 

recovered from chemostat selections indicates that they are the result of failed 

cytokinesis and not due to spontaneous mating type switching and subsequent 

mating. We did not detect a fitness advantage in the chemostat that is attributable to 

the diploid state per se (Figure 2.1A) consistent with previous studies [72]. 

Although the high frequency of diploid cells is consistent with selection, the lack of 

a detectable fitness effect in a wild type diploid cell suggests that selection for 

diploidization may require the prior acquisition of at least one mutation that is 

advantageous when increased in copy number as a result of a whole genome 

duplication.  

 

2.3.4. mRNA expression levels are correlated with increased copy number at 

multiple scales 

To study the functional basis of adaptation we performed genome-wide 

transcriptional profiling of evolved clones in the same chemostat environment as 

they had been selected. Divergence in the transcriptome between clones adapted to 

different nitrogen environments was qualitatively similar to that seen between 

clones adapted to glucose- and phosphorous-limited environments [61] (Figure 

2.4). Some of the transcriptional variation in clones adapted to nitrogen-limited 

environments is a direct result of altered copy number due to CNVs as we detected 
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a small but significant positive correlation between DNA copy number and mRNA 

abundance (Figure 2.5A). In general, mRNAs corresponding to transporter genes 

found within CNVs were increased in abundance, consistent with increased DNA 

copy number resulting in increased transporter abundance (Figure 2.5A), providing 

further evidence that these genes drive selection of the CNV.  

 

 
Figure 2.4. Comparison of transcriptional divergence between clones 
using the distribution of pair-wise Pearson correlation coefficients as in  
[61]. Transcriptional divergence among clones adapted to nitrogen limitation 
is similar to that found for glucose- and phosphate-limited selections. Clones 
adapted to sulfur-limitation show far greater convergence of transcriptional 
states. 
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Figure 2.5. DNA copy number correlates with mRNA abundance. (A) 
CNVs result in increased gene expression. Nitrogen transporter genes located 
in CNVs tend to increase in expression with increased copy number. (B) All 
aneuploids identified showed increased mRNA expression of most genes in 
amplified chromosomes. 

 

As previously observed [73], DNA copy number in disomic or trisomic 

chromosomes of aneuploid cells is proportional to mRNA abundance level (Figure 

2.5B). In some cases this may explain the selection for a specific aneuploidy. For 

example, a clone recovered from the glutamine-limitation adaptation contains an 

additional entire copy of chromosome XI, which contains GAP1 [62]. However, 

other chromosomal aneuploidies do not have an obvious connection to nutrient 

transport making it unclear how, or why, the large-scale increase in expression of 

genes along duplicated chromosomes of adapted clones contributes to fitness. 

 

2.3.5. Defining the spectrum of point mutations associated with adaptation 

To identify all mutations acquired during the selection experiments we performed 

whole genome sequencing of 18 clones from the seven populations (see methods). 
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We found an average of 4 SNPs per clone that together represent a broad range of 

classes (Figure 2.6A). The average number of SNPs is higher than expected (~1.0) 

based on the measured spontaneous nucleotide substitution rate [74] but is 

consistent with the average number of acquired SNPs (~3.3) reported for equivalent 

selections in glucose- or phosphorous-limited environments [24,64,75]. Whether 

this reflects an increased mutation rate under conditions of stress, as reported for E. 

coli [76], or heterogeneity in the number of mitotic events a particular lineage 

undergoes in a chemostat, remains to be determined. We detected a marginal but 

statistically significant bias towards SNPs in coding regions: 60/72 SNPs (83%) 

were found in coding regions, while 72% of yeast genome is coding (exact 

binomial test, p-value=0.035). Although the majority of base changes in coding 

regions were non-synonymous (52/72; 72%) this is not significantly different than 

the expected frequency (79%) of non-synonymous mutations [65] (exact binomial 

test, p-value=0.1912). We also identified 8 indels (7 deletions and 1 insertion) of 

one or two base pairs. The average number of indels per clone (~0.44) is higher 

than that expected on the basis of the known spontaneous rate of indel events 

(~0.06) [74]. All CNVs detected using aCGH were also identified on the basis of 

sequence read depth. Furthermore, we detected additional deleted genomic 

segments of several hundred base pairs suggesting that whole genome sequencing 

has superior sensitivity to aCGH for CNV detection [75]. In lineages that had 

undergone diploidization we detected both homozygous and heterozygous point 

mutations, which allowed us to distinguish mutations that occurred prior to, and 
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after, diploidization, respectively. In sum, comprehensive genome characterization 

indicates that in individual clones evolving in nitrogen-limited environments, 

multiple mutations are acquired in a short period of time that range from single 

nucleotide substitutions to complete duplication of the genome (Figure 2.6B).  

 

Figure 2.6. Overview of the classes of mutations identified in lineages 
adapted to nitrogen-limited conditions. (A) In total, 117 mutational events 
were identified in 18 sequenced clones resulting in sequence (red) and 
structural (blue) variation. (B) The number and type of mutations acquired in 
each individual clones genotyped using aCGH and whole genome 
sequencing. Non-synonymous SNPs and CNVs are found in most clones. 

 

Whereas sequencing of clonal isolates provides information on individual lineages, 

deep sequencing of entire populations provides a means of assessing the genetic 

diversity in a population at a particular time point in the evolutionary history of the 

population [77]. We sought to identify all alleles that had risen to appreciable 

frequencies following 250 generations of selection using whole genome sequencing 

of entire populations. We identified fixed and non-fixed alleles and estimated their 
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frequencies on the basis of sequence read counts (Figure 2.7). Despite sequence 

read depths in excess of 300-fold, we detected few additional mutations in 

populations that were not identified in clones. Populations typically contained less 

than 10 SNPs at frequencies > 5% (Table 2.1). A single exception was identified; 

in the population adapted to allantoin-limitation we found 486 mutations, which is 

likely the result of mutator phenotype due to loss of function in the mismatch repair 

gene, MSH2, which we estimate to have a frequency of ~6% in the population.  

 

 

Figure 2.7. Allele frequencies distributions for each population based on 
whole genome sequencing. We estimated allele frequencies for all SNPs that 
were present at greater than ~ 5% using deep sequencing read counts in 11 
different nitrogen-limited populations. 
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Selective environment (800 µM nitrogen) 
Number of SNPs  
(> 5% frequency) 

Ammonium (400 µM) 10 
Arginine (200 µM) 3 

Glutamine (400 µM) 1 
Proline (800 µM) 11 

Glutamate (800 µM) 2 
Urea (800 µM) 7 

Allantoin (200 µM) 486 
Gln/Alla (200/100 µM) 2 

Gln/Pro/Alla/Urea (100/200/50/100 µM) 5 
Gln/Pro/Alla (133/166/67 µM) 6 

Gln/Pro (200/400 µM) 4 
 

Table 2.1. Genetic complexity of adapting populations. A small number of 
point mutations rose to appreciable frequencies in each population with the 
exception of the allantoin-limited population, which contains ~ 500 SNPs 
most of which have frequencies less than 10%. This population also contains 
a mutant MSH2 gene, suggesting the existence of a low frequency mutator 
phenotypes [78,79]. Nitrogen concentrations were normalized between 
environments by adjusting the concentration of each compound according to 
its molecular composition. 

 

2.3.6. Increased environmental complexity does not result in increased genetic 

diversity 

We were surprised by the low genetic diversity in populations adapted to individual 

nitrogen sources (see Table 2.1) especially since previous analyses of E. coli 

populations evolving in glucose-limited chemostats have suggested the presence of 

multiple ecotypes [54,80]. We hypothesized that the low genetic diversity within 

populations may be a related to the presence of a single nitrogen source in the 

environment. To study the effect of increasing the complexity of environments on 

genetic variation in adapting populations, we performed additional long-term 



35 

selection experiments using mixtures of 2-4 different nitrogen sources. Following 

the same period of selection we did not detect increased genetic complexity, as 

assessed by population deep sequencing, in these selections compared with 

populations adapted to a single nitrogen source (Table 2.1). We performed aCGH 

on clones and populations evolved in the presence of mixed nitrogen sources and 

detected CNVs that include transporter genes specific to individual nitrogen 

sources present in each environment (Figure 2.8). However, we did not detect any 

lineages containing multiple CNVs that would improve transport of more than one 

of the available nitrogen sources in an environment, suggesting that lineages 

underwent specialization in the mixed environments. The highest frequency CNVs 

in populations adapted to mixed nitrogen sources transport non-preferred nitrogen 

sources (proline, allantoin and urea) (Figure 2.8), which also tend to be associated 

with the greatest individual fitness increases (Figure 2.1A). Collectively, our 

observations in single and mixed nitrogen-limited environments are consistent with 

a highly skewed distribution of fitness effects in which CNV alleles that include 

transporter genes have large fitness effects and therefore a high probability of 

sweeping to fixation. The large effect sizes of these CNV alleles limits genetic 

diversity even in environments of increased complexity.  
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Figure 2.8. CNVs are frequently selected in the presence of mixed 
nitrogen sources. Complete aCGH results for all populations and clones 
evolved in mixed nitrogen source environments. CNVs that include 
transporters for non-preferred nitrogen sources (urea, allantoin and proline) 
are preferentially selected when multiple nitrogen sources are present. 
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2.3.7. Identification of specific and convergent targets of selection 

 High throughput sequencing of clones and populations revealed that genetic 

variation at a number of loci was repeatedly selected in different nitrogen-limited 

selections (Figure 2.9A). In addition to amplification of permease genes in 

conditions in which they increase import rates of nitrogen-containing compounds, 

we find that inactivating alleles are selected in conditions in which their function 

provides no benefit or may be deleterious. As we previously reported, this is the 

case for GAP1, which is amplified in glutamine- and glutamate-limited conditions 

and deleted when the nitrogen source is not an amino acid such as allantoin and 

urea  [62] (Figure 2.9A). Similarly, amplification alleles containing PUT4, which 

encodes a proline permease, are selected in environments in which proline is a 

nitrogen source, but an inactivating mutation in PUT4 was found in the arginine-

limited environment. We hypothesize that loss of function mutations in these genes 

are selected as the NCR-derepressing conditions of a nitrogen-limited chemostat 

result in their high expression, which is futile in the absence of the substrate(s) they 

transport. 

We identified six loci that acquired point mutations in multiple nitrogen-limitation 

selections. The most striking of these was VAC14, which is mutant in 8 of the 11 

different selective environments. Sequence variants in VAC14 are predominantly 

loss of function mutations and in two populations we found multiple independent 

VAC14 alleles (Figure 2.9A). VAC14 encodes a scaffold component of the protein 

complex regulating interconversion of phosphatidylinositide-3-phosphate (PI3P) 
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Figure 2.9. Adaptive mutations occur in functionally related loci (A) A 
small number of loci are mutated in multiple nitrogen-limited environments. 
Some loci found to be mutated in nitrogen-limiting conditions have also been 
reported as associated with adaptive evolution in glucose-limited 
environments (*Wenger, J. et al [65], **Kvitek, D.J. et al [64], ***Gresham, 
D. et al [61]). The color of edges represents the type of allele and the width of 
the edge represents the frequency of the allele in the population. (B) GO term 
enrichment analysis of mutated loci within clones and populations, analyzed 
at different allele frequency thresholds, identified in nitrogen-limited 
environments shows enrichment for specific cellular functions.  
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to phosphatidylinositide-3,5-bisphosphate (PI(3,5)P2) [81]. Interestingly, an 

additional repeatedly mutated locus, FAB1, encodes the 1-phosphatidylinositol-3-

phosphate 5-kinase that functionally interacts with VAC14. When all mutations 

identified in clones and populations are considered, there is a clear enrichment for 

molecular functions related to phosphatidylinositol biosynthetic processes and the 

related processes of autophagosome and vacuole biogenesis (Figure 2.9B) 

indicating that they are a convergent target of selection across nitrogen-poor 

environments. Functional enrichment analysis of mutations in populations and 

among clones also identified several additional molecular processes related to 

nitrogen metabolism (Figure 2.9B). Thus, the molecular basis of adaptive 

evolution in nitrogen-limited environments exhibits convergence at both the level 

of individual genes, and at the level of modules, defined by functionally related 

genes.  

It is possible that some adaptive alleles recovered in our experiments are not 

specifically related to nitrogen utilization, but underlie adaptation to the 

requirement of continuous growth in nutrient-limited conditions. To identify such 

loci we compared the loci associated with adaptive evolution in nitrogen-limited 

environments with those identified in previous studies of adaptation to glucose-, 

phosphate- and sulfur-limited environments [34,61,64,65] (Figure 2.9A). Several 

loci mutated in both glucose- and nitrogen-limited chemostats encode components 

of signaling pathways that regulate cell growth in response to the nutritional state 

of the environment. At least two of these genes (RIM15 and WHI2) regulate entry 
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into a quiescent (G0) state. Loss of the ability to enter G0 may be beneficial in the 

chemostat, as even transient entry into G0 will prolong the cell division cycle 

leading to cells being outcompeted. Selection for this class of mutations may be 

analogous to the recurrent loss of function mutations found in the stress response 

sigma factor, rpoS, in experimental evolution of E. coli in chemostats [82]. No 

mutated loci were shared with phosphate and sulfur-limited selections. 

 

2.3.8. Identification of a recurrently selected three-locus genotype comprising 

functionally related genes 

The population adapted to ammonium-limitation was the only population in which 

we did not detect evidence of CNVs in either clones or the entire population 

(Figure 2.6B). However, clones from this population displayed the greatest 

divergence in nitrogen catabolite repression (NCR) gene expression among all 

clones analyzed (Figure 2.10A and Figure 2.11) and had large fitness increases 

(Figure 2.1A) suggesting that they had undergone significant adaptive evolution.  

We found that these two clones, and a third that was not analyzed for gene 

expression, contain mutations in the DNA binding domain of the zinc finger 

transcription factor GAT1 (Figure 2.10B), which encodes a positive regulator of 

NCR expression [41]. A subset of NCR genes is increased in expression in these 

clones including those encoding the high affinity (MEP2) and low affinity (MEP1 

and MEP3) ammonium permease genes (Figure 2.10C). Interestingly, several 
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NCR transcripts are also decreased in expression suggesting that the GAT1 

mutations may have differential effects on its transcriptional targets.  

 
 

 
Figure 2.10. Functional effects of adaptive mutations in a gene network 
polymorphism. (A) NCR genes are altered in expression in clones recovered 
from ammonium-limited conditions. Only genes having at least one 
observation with log2 ratio > |1.5| were included (29 / 38 NCR genes [83]). 
Genes and samples are hierarchically clustered using centered correlation and 
complete linkage. (B) Three independently acquired GAT1 mutations found 
in a single ammonium-limitation adapted population are clustered in the zinc 
finger DNA binding domain of the encoded protein. The wild type GAT1 
protein sequence was queried using the Protein Model Portal database [84]. 
(C) Two different point mutations in MEP2 found in ammonium-limitation 
adapted clones change the identical codon within a putative trans-membrane 
domain. Domain information was obtained from SGD database 
(http://www.yeastgenome.org/). (D) GAT1 and LST4 likely regulate the 
production and delivery of MEP2 to the plasma membrane at the 
transcriptional and post-translational level, respectively.  
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Figure 2.11. Significance analysis of NCR expression divergence in 
adapted clones. In most adaptations, NCR genes were significantly altered in 
expression. The statistical significance of NCR expression divergence (p-
value) was calculated by 1) generating a null distribution by obtaining the 
mean absolute log2 gene expression ratio of 1,000 randomly chosen sets of 38 
genes (without replacement) among all yeast ORFs on the microarray and 
then 2) computing the probability of obtaining an average absolute log2 gene 
expression ratio (indicated by a dotted red line) for the 38 measured NCR 
genes in the corresponding clone equal to or greater than that value. The 
greatest divergence in NCR expression is found among clones adapted to 
ammonium-limitation. 

 

 

We found that these two clones, and a third that was not analyzed for gene 

expression, contain mutations in the DNA binding domain of the zinc finger 

transcription factor GAT1 (Figure 2.10B), which encodes a positive regulator of 

NCR expression [41]. A subset of NCR genes is increased in expression in these 

clones including those encoding the high affinity (MEP2) and low affinity (MEP1 

and MEP3) ammonium permease genes (Figure 2.10C). Interestingly, several 
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NCR transcripts are also decreased in expression suggesting that the GAT1 

mutations may have differential effects on its transcriptional targets.  

In addition to mutations in GAT1, we found that the three clones from the 

ammonium-limitation selection contained one of two different mutations in the 

identical codon of a predicted transmembrane domain of the high affinity 

ammonium transporter MEP2, a transcriptional target of GAT1 [85] (Figure 

2.10C). Furthermore, two of these clones contained mutations in LST4, which 

encodes a protein required for efficient sorting of permeases from the Golgi to 

plasma membrane [86]. The three genes, GAT1, MEP2 and LST4 that comprise this 

recurrently selected multi-locus genotype encode functionally related gene products 

(Figure 2.10D) consistent with adaptive evolution proceeding via the sequential 

accumulation of variation in genetic networks within lineages.  

 

2.3.9. Population dynamics of the three-locus genotype 

We aimed to determine the temporal dynamics with which the mutations in GAT1, 

MEP2 and LST4 occurred and were selected. Population sequencing of the 

ammonium-limitation adapted population after 250 generations of selection 

identified 10 SNPs with detectable allele frequencies (> 5%). Allele frequencies in 

the population are informative about the order in which mutations were acquired in 

each asexually reproducing lineage; however, the timing of mutational events 

cannot be deduced on the basis of allele frequencies. To reconstruct the 

evolutionary history of the lineages we determined allele frequencies throughout 
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the evolution experiments using Sanger sequencing [61] (see methods). The 

resulting trajectories (Figure 2.12A) show that within a single population the same 

two locus genotype (gat1, mep2) was independently generated and selected three 

times (lineages A1, B1, and B3) and the three locus genotype (gat1, mep2, lst4) 

was generated at least twice (lineages A1 and B3). Interestingly, in both lineages, 

mutations in GAT1 and LST4 occurred in rapid succession and subsequently 

increased in frequency (i.e. lineage A0 and lineage B3 in Figure 2.12A), which is 

suggestive of a synergistic interaction between LST4 and GAT1. Although we 

detect dramatic changes in allele frequencies during the selection no individual 

genotype swept to complete fixation (i.e. a “hard sweep”). Rather, competition (i.e. 

clonal interference) between lineages bearing different alleles in the identical multi-

locus genotype resulted in alternating "soft sweeps".  

 

2.3.10. Epistasis constrains the order of mutational events 

As functionally related genes are enriched for genetic interactions [87], we 

hypothesized that epistatic interactions might exist between GAT1, MEP2 and, 

LST4. To test this hypothesis we constructed strains containing the eight possible 

combinations of the gat1-2, lst4-2 and mep2-2 alleles identified in clone 3 

(methods). The mutations in MEP2 and GAT1 are individually beneficial; however, 

the mutation in LST4 does not confer a selective advantage on its own (Figure 

2.12B). The double mutation genotypes comprised of either mep2-2 and lst4-4 or 

gat1-2 and lst4-2 are more fit than expected by summation of their individual 
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fitness effect providing evidence for positive epistasis. However, we found that the 

combined effect of the gat1-2/lst4-2/mep2-2 alleles does not result in significantly 

increased fitness compared with the gat1-2/lst4-2 or mep2-2/lst4-2 double mutant 

genotypes consistent with negative epistasis.  

 

 

Figure 2.12. Recurrent selection and evolutionary dynamics of a GNP.
(A) Estimated genotype dynamics during adaptive evolution. The time of 
introduction of each new mutation (dotted circles) is estimated on the basis of 
detecting an allele frequency of at least 5% in the population. Some 
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mutations were clustered based on their similarity in the dynamics. The 
temporal order of mutations that occurred in rapid succession (white arrows) 
was determined on the basis of their allele frequencies in the final evolved 
population estimated using deep sequencing data (Figure 2.7). (B) Fitness 
estimates of 8 backcrossed strains, representing all possible combinations of 
alleles that comprise the GNP, from clone 3 isolated from the ammonium-
limitation selection were determined by direct competition with either the 
ancestral or the gat1-2/lst4-2/mep2-2 genotypes. Error bars are 95% CI of the 
regression coefficient. (C) Fitness landscape reconstruction based on the 
fitness estimates for the 8 genotypes. The selection coefficient values of each 
strain are represented as color intensity. The width of each edge is 
proportional to the difference in fitness between two genotypes that edges 
connect. A solid line indicates a favored path whereas a dashed line indicates 
a disfavored path. Selection favors thicker, solid lines in the evolutionary 
trajectory. 

 
 
 
To more accurately compare fitness effects of different genotypes we directly 

competed double mutant genotypes directly with the gat1-2/lst4-2/mep2-2 

genotype. Consistent with our initial observations we find that the gat1-2/lst4-

2/mep2-2 triple mutant genotype is not significantly fitter than the gat1-2/lst4-2 or 

lst4-2/mep2-2 double mutant genotypes and is in fact significantly less fit than the 

gat1-2/mep2-2 genotype. Thus, an LST4 mutation is beneficial only in the 

background of an individual mutation in GAT1 or MEP2 whereas it is detrimental 

in the background of the GAT1/MEP2 double mutant (Figure 2.12C). This sign 

epistatic interaction is consistent with the order of mutation acquisition in the three 

lineages in the population: an LST4 mutation is observed after the occurrence of a 

GAT1 mutation (lineage A0) or a MEP2 mutation (lineage B3), but not in the 

lineage that contains a mutation in both GAT1 and MEP2 (lineage B1). 
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2.4. DISCUSSION 

A major motivation for Novick and Szilard’s introduction of the chemostat was the 

study of spontaneous mutations and evolution [50]. Seminal studies by Paquin and 

Adams in the 1980s established the use of budding yeast in experimental evolution 

studies in chemostats [88,89]. The advent of genome-scale methods for 

comprehensive identification of changes in gene expression [90], structural 

genomic variation [67] and DNA sequence [55] provided insight into the molecular 

basis of adaptive evolution in chemostats. For many years, experimental evolution 

using chemostats and budding yeast have primarily been performed using glucose 

as the growth limiting substrate. More recently, we reported a survey of adaptive 

evolution of budding yeast in glucose-, phosphate- and sulfur-limited environments  

[61]. Comparison among these selections revealed that the number of adaptive 

strategies differs as a function of the selective pressure and thus the details of the 

selective regime dictate the "repeatability" of evolution. Here, we have built on our 

recent report of adaptation in nitrogen-limited chemostats [62] to yield a 

comprehensive survey of adaptive strategies in environments that are limited for 

different sources of nitrogen. Our new study allows us to draw several general 

conclusions about the mechanistic bases of adaptive evolution in nutrient-poor 

environments and provide new insight in the complexity and dynamics of adaptive 

evolution. 
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2.4.1. Alleles that specifically increase the transport kinetics of the compound 

containing the growth-limiting nutrient are recurrently selected 

In a chemostat, the rate of cell growth is constrained by the concentration of a 

single nutrient that is essential for growth [91]. Thus, there is intense selective 

pressure for adaptive strategies that improve the import or metabolism of the 

growth-limiting nutrient. In our study, we initially provided a single source of 

nitrogen at a growth-limiting concentration. We observed massively increased 

fitness of in selected lineages following 250 generations of selection when fitness 

was assessed in the same environment as that in which the selection was 

performed. In the majority of cases, analysis of individual lineages identified CNVs 

that include a transporter gene that specifically transports the molecular form of 

nitrogen provided in the environment. Thus, in addition to the amplification of the 

GAP1 locus in glutamine- and glutamate-limited conditions [62], we find DUR3 

amplification alleles in urea-limited environments, DAL4 amplification alleles in 

allantoin-limited environments and PUT4 amplification alleles in proline-limited 

environments. The fact that these CNVs are detected in DNA samples of entire 

populations indicates that they are at high frequency in these populations, most 

likely as a result of selection. Transcriptome analysis indicates that these alleles 

result in increased gene expression, which likely results in increased protein 

production. Our new results are consistent with previous studies in budding yeast 

that have identified amplification of the HXT6/7 locus in populations adapted to 

glucose-limitation [33,34,61] and amplification of the SUL1 locus, encoding the 
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high affinity sulfur-permease, in populations adapted to sulfur limitation [61]. The 

large fitness increases attributable to these specific CNV alleles means that they 

dominate the evolutionary dynamics of adapting populations thereby limiting the 

genetic diversity in nutrient-limited environments. CNV alleles have been reported 

to underlie increased fitness in a diversity of selective environments and organisms, 

including humans, suggesting that they are a class of genetic variation that are of 

general importance for adaptive evolution. 

Increased fitness associated with nutrient transporter amplification is specific to 

nutrient-poor environments. Using competitive growth rate assays in nitrogen-rich 

environment we find that evolved clones tend to have decreased fitness. Similar 

fitness trade-offs in carbon-rich environments have been reported for lineages 

adapted to glucose-limited chemostats [65]. Amplified transporter alleles may be an 

underlying source of this antagonistic pleiotropy. Previously, we have shown that 

inactivating mutations in GAP1 are selected in chemostats containing limiting 

concentrations of non-amino acid nitrogen sources [62]. In the current study we 

identified a PUT4 inactivating mutation in a lineage evolved under arginine 

limitation (Figure 2.9A). In environments in which the limiting nutrient is present 

in a predominant molecular form, loss of some transporter genes may be beneficial 

either through reduction in the energetic cost of their unnecessary production or as 

a result of a function that is deleterious in the particular environment. Future work 

will be required to rigorously test the hypothesis that CNV alleles are a molecular 

basis of antagonistic pleiotropy. 



50 

2.4.2. A hierarchy of generalist strategies underlies adaptive evolution in 

nutrient-poor environments  

In addition to selection of specific transporter amplification alleles in different 

nitrogen-limited environments, we find evidence for convergent routes to increased 

fitness across different nitrogen-limited environments. The most striking evidence 

comes from the multiple inactivating and non-synonymous mutations that we 

identified in VAC14. We found at least one, and as many as three, independent 

alleles within the 2.6kb coding region of VAC14 in eight of the eleven populations 

that we studied (Figure 2.9A). VAC14 encodes a scaffold component of the protein 

complex regulating inter-conversion of phosphatidylinositide-3-phosphate (PI3P) 

to phosphatidylinositide-3,5-bisphosphate (PI(3,5)P2) [81]. In addition, we found 

mutations in FAB1, which encodes a PI3P 5-kinase and VAC7, a regulator of 

FAB1, in different nitrogen-limited populations, albeit, much less frequently than 

VAC14 mutations. Control of PI(3,5)P2 levels by VAC14, VAC7 and FAB1 is 

important for several cellular processes including protein trafficking and 

maintenance of vacuole size and acidity [92,93]. Loss of function of VAC14 results 

in decreased PI(3,5)P2 levels leading to enlarged vacuoles due to defective vacuolar 

fission [94]. Enlarged vacuoles may be beneficial in nitrogen-limited conditions as 

vacuoles function as a reserve for nitrogen stores as well as being the compartment 

for recycling of cytosolic proteins through autophagy [95]. Non-synonymous 

mutations in the VAC7 and FAB1 may have similar consequences on PI(3,5)P2 

levels and vacuole biogenesis as VAC14 loss of function mutations. Although 
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identifying the precise mechanistic basis by which mutations in these functionally 

related genes contribute to increased fitness in nitrogen-limited environments 

requires additional study, their selection in different nitrogen-limited environments, 

and their absence in the mutational spectra identified in other nutrient-limited 

conditions reported to date, suggests that novel alleles at these loci underlie a 

generalist strategy specific to nitrogen-limited conditions.  

By integration of our results with previous studies in other nutrient-limited 

environments, we find evidence for adaptive strategies involving remodeling of the 

TORC1 and Ras/PKA signaling pathways that may be general to nutrient 

limitation. These signaling pathways control cellular growth rate in response to 

nutrient availability by regulating diverse cellular processes [96,97]. In particular, 

mutations in the regulator of cell cycle exit and entry into G0, RIM15 are found in 

different glucose- and nitrogen-limitation selections (Figure 2.12A). RIM15 is 

known to have an important role in integrating signals from multiple nutrient 

responsive signaling pathways including TORC1 and Ras/PKA [98,99]. A reduced 

capacity to enter a G0 state could be beneficial in a variety of nutrient-limitations in 

chemostats. Consistent with this hypothesis, additional genes that are mutant in 

both nitrogen- and glucose-limited chemostats include WHI2, a negative regulator 

of G1 cyclin expression, IRA1 and GPB2, both of which are negative regulators of 

the Ras/PKA pathway, and NGR1, an RNA-binding protein involved in regulation 

of cell growth control. Selection for this class of mutations in different nutrient 

limitations is consistent with the argument that recurrent selection for loss of rpoS 
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in E. coli populations evolved in glucose-, nitrogen- [100] and phosphorous-limited 

[53] chemostats underlies a tradeoff between the cellular response to nutrient 

starvation and maintenance of stress resistance.  

 

2.4.3. Selected variation accumulates in genetic networks under epistatic 

constraints  

Although transporter amplifications dominate the majority of our adaptive 

evolution experiments, we did not identify transporter amplification alleles in two 

of our populations (ammonium and arginine limitation); the population that 

underwent adaptive evolution in an ammonium-limited environment was the only 

population in which we did not identify any CNVs or large-scale chromosomal 

events. Nutrient transport is still a primary target of selection in this population as 

we found two independently acquired non-synonymous SNPs that result in amino 

acid substitutions at the same amino acid residue in MEP2 (G352A and G352S). 

The mutated site is in a predicted trans-membrane domain (Figure 2.10C) making 

it likely that these mutations alter the affinity of MEP2 for ammonium either 

directly or indirectly. Fitness tests of one of a strain containing one of these 

mutations (G352A) show that this variant confers a fitness increase exceeding 10% 

(see mep2-2 in Figure 2.12B). Interestingly, we find evidence that independently 

generated alleles containing this precise variant may have been selected in natural 

yeast populations. Although our ancestral strain, which is isogenic to S288c, 
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encodes a glycine at residue 352 in MEP2, this site is polymorphic among S. 

cerevisiae strains with 19/26 strains in the SGD database (http://www.yeastgenome 

.org) encoding an alanine at residue 352. Moreover, the reference genomes of 

Saccharomyces sensu stricto species, including S. uvarum, S. mikatae, and S. 

paradoxus, all contain an alanine at residue 352 in MEP2 homologues. It is 

interesting to note that a recent study reported recurrent selection of MEP2 fusion 

alleles when a hybrid S. cerevisiae/S. uvarum strain was evolved in ammonium-

limited chemostats [101]. S. cerevisiae and S. uvarum differ at 17 residues in the 

MEP2 protein, one of which is the 352nd amino acid. Consistent with the 

importance of the 352A allele under conditions of ammonium-limitation, all 

independently selected S. cerevisiae/S. uvarum MEP2 fusion alleles retained the 

carboxy terminus-encoding portion of the S. uvarum MEP2 allele, which codes for 

an alanine at codon 352. Collectively, these observations suggest that the selection 

that we imposed in the laboratory bears some resemblance to selection experienced 

by yeast cells in the natural world with a strikingly convergent response to selection 

at the molecular level.  

 The population adapted to ammonium-limitation provides evidence that 

accumulation of variation in functionally related genes underlies adaptive evolution 

in nutrient-limited environments. Two lineages within the population that contain 

mutations in MEP2 also contained mutations in GAT1, which encodes a 

transcriptional activator of MEP2 (in addition to other NCR genes) as well as 

mutations in LST4, which encodes a protein that functions in protein sorting to 
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plasma membranes [102]. Analysis of the dynamics with which these mutations 

were selected demonstrates that their sequential acquisition underlies clonal 

interference dynamics in this population. Clonal interference due to multiple 

independent mutations at the same locus has been documented in a variety of 

experimental evolution studies (e.g. [103]). Our current results show that 

competing lineages in the same population can accumulate mutations at multiple, 

common loci as has been observed in E. coli [77]. Interestingly, unlike the 

recurrently selected three locus genotype identified in [77] comprising variants in 

spoT, rbs and nadR, which encode functionally unrelated gene products the three 

loci that define the recurrently selected genotype identified in our study, GAT1, 

MEP2 and LST4, comprise a functionally related gene network (Figure 2.10D).  

The order in which mutations at these three loci are acquired appears to be 

constrained by epistatic interactions. By studying all possible allelic combinations 

at these three loci we determined that the lst4-2 allele exhibits positive epistasis 

with the mep2-2 and gat1-2 alleles individually. However, the two locus gat1-

2/mep2-2 genotype is more fit than the three locus gat1-2/mep2-2/lst4-2 genotype 

(Figure 2.12C). This negative epistatic interaction is consistent with the 

observation that an LST4 mutation occurs in the background of a GAT1 mutation 

(lineage A0) or a MEP2 mutation (lineage B3), but does not occur in the lineage in 

which both a GAT1 and MEP2 mutation has already occurred (lineages B1 and B2) 

(Figure 2.12A). It is also interesting to note that the double mutant genotypes 

(gat1-2/lst4-2 and lst4-2/mep2-2) and the triple mutant genotype (gat1-2/lst4-
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2/mep2-2) do not differ significantly in their fitness (Figure 2.12C), suggesting that 

they will coexist in an evolving population. Consistent with this expectation, the 

lineages A0 and A1, which differ only at LST4 and the lineages B1 and B3, which 

differ at LST4 and two additional loci, co-exist that for around 100 generations 

(Figure 2.12A). 

Increasingly, resolution of the multigenic basis of quantitative trait variation to 

nucleotide variants demonstrates that allelic variants in functionally related genes 

underlies adaptive evolution [104,105]. As the multi locus genotype that we have 

identified is 1) comprised of functionally related gene products that 2) interact 

epistatically with one another, we propose that it comprises a gene network 

polymorphism (GNP) similar to that reported for the galactose-utilization regulon 

segregating in diverged Saccharomyces kudriavzevii populations [106]. Given a 

sufficiently large population size, we show that nearly identical GNPs can be 

recurrently generated and selected within a population resulting in “soft sweeps” in 

which the GNPs are maintained at intermediate frequencies. The rapid generation 

of a GNP in a particular niche may lead to balanced unlinked GNPs (buGNPs) 

segregating in the larger population as observed in the Saccharomyces kudriavzevii 

population [106]. 
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2.5. CONCLUSION 

Our study provides new insight into the functional basis of adaptive evolution in 

nutrient-limited environments. Consistent with the low concentration of a single 

growth-limiting substrate representing the dominant selective pressure in a 

chemostat we find evidence for strong selection of alleles that enhance transport of 

the specific molecular form of the limiting nutrient. In addition, we have identified 

a mechanism underlying adaptive evolution that appears to be shared among 

different nitrogen-limited environments, involving phospholipid metabolism and 

vacuole biogenesis, and a mechanism shared between nitrogen- and carbon-limited 

environments, entailing nutrient-responsive growth regulating pathways. The 

identification of a finite number of adaptive strategies in nutrient-limited 

environments suggests that adaptive evolution of large populations in nutrient-

limited environments proceeds along a limited number of paths. Thus, the 

combination of precise knowledge of the selective environment experienced by a 

population of organisms and the molecular mechanisms that underlie growth and 

survival in that environment is likely to greatly enhance the predictability of 

adaptive evolution.  

 

2.6. MATERIALS AND METHODS 

2.6.1. Strains and media. For all adaptive evolution experiments we founded 

populations with a haploid derivative (FY4) of the S288c reference strain. For 

competition assays, we integrated constitutively expressed mCherry or mCitrine-
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labeled constructs, marked with the kanMX4 cassette, at the HO locus using the 

high efficiency yeast transformation protocol [107]. All nitrogen-limiting media 

contained 800µM nitrogen regardless of the molecular form of the nitrogen and 1 

g/L CaCl2-2H2O, 1 g/L of NaCl, 5 g/L of MgSO4-7H2O, 10 g/L KH2PO4, 2% 

glucose and trace metals and vitamins as previously described  [108].  

 

2.6.2. Long-term selection. We founded populations with FY4 in 200 mL of 

nitrogen-limited media. Chemostat cultures were maintained using Sixfors 

fermentors (Infors) at 30°C, constantly stirred at 400 rpm in aerobic conditions and 

diluted at a rate of 0.12 hr-1 (population doubling time 5.8 hr). Each steady-state 

population of ~1010 cells was maintained in continuous mode for 250 generations 

(~ 2 months). A 2 mL population sample was obtained every 20 generations and 

archived at -80°C in 15% glycerol. 

 

2.6.3. Isolation of clones. Following 250 generations of selection we randomly 

plated cells onto rich media (YPD), and selected an unbiased sample of 94 clones. 

We grew all clones from each population in 96 well plates containing the same 

nitrogen source as that used in the selection experiment and recorded optical 

densities at 600 nm every 0.5 hr over 24 hours using a 96-well Tecan plate reader. 

Each plate included the ancestral strain (FY4) and a blank well. We estimated the 

growth rate and the saturation density of all strains using the ‘grofit’ package [109] 

in R and selected three clones from each population for further analysis.  



58 

2.6.4. Determination of cell ploidy. We determined the DNA content of evolved 

clones by staining with Sytox green and analyzing at least 10,000 cells using flow 

cytometry. FY4 and an isogenic diploid (FY4/FY5) were used for calibration. In 

addition, each evolved clone was mated with an isogenic strain (FY5) of the 

opposite mating type (MATα). The resulting strain was sporulated and at least 20 

tetrads were dissected using a micromanipulator. Spore viability was determined 

after three days growth on YPD at 30°C.  

 

2.6.5. Fitness estimates. Each mutant was competed in a chemostat against the 

ancestral strain (FY4) or a mutant bearing gat1-2, mep2-2, and lst4-2 mutations, 

engineered to constitutively express either mCherry or mCitrine, in the same 

nitrogen-limited condition used in the selection experiment. We inoculated the 

unlabeled evolved clone and labeled reference strain in separate chemostat vessels 

and obtained steady-state cultures of 200 mL. We then mixed the evolved clone 

with the labeled reference strain to a final ratio of 1:5. We obtained 2 mL samples 

every 2-3 generations over a total of ~20 generations. Samples were stored at 4°C 

in phosphate buffered saline (PBS) containing 0.01% Tween 20. The relative ratio 

of the fluorescently labeled reference strain and the unlabeled evolved clone was 

measured by counting at least 100,000 cells from each sample using flow 

cytometry. We used linear regression of the log transformed (ln) ratio of 

evolved/reference strain abundance against time (in generations) to estimate the 

selection coefficient (s, the slope of the fit linear line) and associated standard error 
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(s.e) using the ‘lm’ function in R. We calculated the 95% confidence interval of the 

regression coefficient in R. The relative fitness, normalized to wild type, is 1+s. 

Competition assays in batch culture were performed using synthetic deficient (SD) 

media containing 5 g/L ammonium sulfate and were performed using analogous 

methods by first growing evolved and fluorescently-labeled ancestral strains in 

isolation to log phase and then mixing them at a 1:1 ratio. Cultures were maintained 

in log phase growth for 24 hours (less than 12 generations) and sampled 5-6 times. 

The relative abundance of the two strains and fitness coefficients were determined 

using the same flow cytometry and analytical methods used for chemostat 

competitions. 

 

2.6.6. DNA microarrays. RNA samples were obtained from evolved clones grown 

in chemostats limited for the same nitrogen source in which they had been selected. 

In addition, we obtained RNA samples of the ancestral strain (FY4) grown in each 

of the nitrogen-limited conditions. Gene expression profiling was performed using 

Agilent 60-mer DNA microarrays as previously described [61,73]. We used a 

common reference for all expression analysis, obtained from a sample of the 

ancestral strain grown in an ammonium sulfate-limited chemostat growing at a 

dilution rate of 0.12 hr-1. We identified gene expression variation specific to 

evolved clones by normalizing each mRNA abundance measurement with the 

expression level of that transcript in the ancestral strain grown in the same 

environment. Array Comparative Genomic Hybridization (aCGH) was performed 
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using Agilent 60mer DNA microarrays as previously described [61,73]. Genomic 

DNA (gDNA) from evolved clones and entire populations was prepared using the 

QIAGEN genomic DNA extraction kit, labeled with Cy3 and co-hybridized with 

Cy5-labeled DNA from the ancestral strain. The resulting log2 transformed ratio 

was segmented using the ‘DNAcopy’ package [110] in R.  

 

2.6.7. Library preparation for next-generation sequencing. We obtained gDNA 

from each evolved clone and the ancestral strain (FY4) from 10 mL overnight 

cultures using the QIAGEN genomic DNA extraction kit. For population samples, 

gDNA was extracted from 10 mL samples taken directly from the adapting 

population. 1 µg of gDNA sample was then sonicated in a Covaris AFA to obtain 

fragments of 300-500 bp. To blunt the ends of fragmented gDNA we incubated 

with PNK (10 Unit) and T4 DNA polymerase (12 unit) at 20°C for 30 min, and 

then purified using QIAGEN Min-Elute Columns. Adenosine overhangs were 

added to the blunted DNA using Exo(-) Klenow (15 Unit) incubated at 37°C for 20 

minutes, followed by purification using QIAGEN Min-Elute Column and elution in 

19 µL EB buffer. To multiplex genome sequencing we ligated one of six unique 

120 bp adapters (BIOO) using Quick ligase at 23°C for 20 minutes. The ligated 

samples were purified, and adaptor dimers removed, using AMPure XP beads 

(Agencourt). The purified samples were loaded on a 2% agarose gel with TAE 

buffer, run at 100 V for 60 min and then stained with SYBR gold. We excised a 

region of the gel corresponding to 300 to 500 bp and then recovered DNA using a 
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QIAquick Gel Extraction kit. The ligated DNA was PCR amplified using adapter-

specific primers and High-Fidelity DNA polymerase in 25 µL reaction volume for 

12 cycles to minimize amplification. The concentrations of libraries were 

determined by qPCR using the Kapa SYBR qPCR Master mix kit and the PhiX 

library sample as a control. The final samples were diluted in 10 mM Tris-HCl, pH 

8.0 and 0.05% Tween 20 and 2 nM of each DNA library was loaded onto a flow 

cell. 

 

2.6.8. Sequencing data generation and preprocessing. DNA libraries were 

sequenced using either single end (36 bp and 77 bp) or paired end (2x100 bp or 

2x50 bp) protocols on a Illumina HiSeq 2000. Standard metrics were used to assess 

data quality. We used the Saccharomyces cerevisiae S288C reference genome, 

obtained from the SGD database on Feb 03, 2011 to align reads using BWA 0.5.9 

[111]. We trimmed bases with base quality less than 20 from the 3’ end of each 

read. We removed reads with mapping quality less than 20. In addition, PCR 

duplicates were removed using Picard 1.57 (http://picard.sourceforge.net). We 

generated BAM files from all remaining reads using samtools 0.1.18 [112]. The 

average read depth of all sequenced strains is ~160 X. 

 

2.6.9. SNP and indel identification in clonal samples. To identify SNPs we used 

samtool 0.1.18 and bcftools 0.1.17 with the Bayesian inference option. We 

determined an empirical quality score cutoff of 160 using bcftools. For paired end 
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sequencing data we excluded all anomalous read pairs. As clonal individuals are 

haploid we required SNP alleles to have call frequencies close to 1.0. In duplicated 

genomic regions or diploidized clones, which may contain heterozygous SNPs, we 

lowered this requirement to a call frequency near 0.5. In addition, we excluded all 

SNP calls that were also identified in the ancestral strain. To identify small 

insertions and deletions (indels) we used the DINDEL package [113]. We first 

generated candidate variants from BAM files using DINDEL, and then realigned 

each of them to the reference sequence in order to minimize false positive calls that 

are frequent in repetitive regions. Indels detected by DINDEL package are 

therefore defined as those that are shorter than the sequence read length (50bp or 

100bp depending on sequencing mode). 

 

2.6.10. Identifying SNP alleles in heterogeneous population. We developed a 

heuristic threshold to identify low frequency SNPs in population sequencing data. 

First, we used two different BQ cutoffs, of 20 and 30, to identify SNPs using 

SNVer [114]. By comparing different population sequencing data to each other and 

to the ancestor, we identified SNPs in populations as ones that (1) are not found in 

the sequencing data from the ancestor and (2) exist uniquely in sequencing data 

from one population using both the high (30) and low (20) BQ cutoff options. We 

empirically found that optimal p-value cutoff of SNP calls generated using SNVer 

was 1x10-8, and the minimum total number of read counts covering the SNP 

location should be 50% of the average read counts in each population sequencing 



63 

data. Using these heuristics we were able to detect SNPs with frequencies of at 

least 5% in population sequencing data. The allele frequency of each SNP in a 

population was determined by dividing the number of reads containing the 

alternative base by the total number of bases mapping to that position.  

 

2.6.11. Functional enrichment analysis. We collected all GO terms from ‘GO.db’ 

and ‘org.Sc.sgd.db’ packages in R, resulting in 6,366 ORFs assigned to 4,583 GO 

terms. We excluded any GO terms for which the number of assigned genes is less 

than 2 or more than 100. For a tested set of mutated genes we excluded ones 

without any GO annotation, incremented the count for each additional mutation 

identified in loci with multiple independent alleles and included both genes 

neighboring an intergenic SNPs. We then counted how many mutated loci are 

assigned to each term. We computed the p-value for each GO term using a one-

tailed Fisher exact test. We used a Bonferroni correction to correct for multiple 

hypothesis testing. 

 

2.6.12. Estimation of allele and genotype dynamics. We prepared gDNA from 

population samples taken at 7 intermediate time point in addition to the final 

generation (i.e. 24, 61, 102, 137, 173, 213, and 250 generations) using a rapid 

gDNA extraction protocol [115]. We amplified 200-500 bp length amplicons that 

contain the SNP at a central position. All amplicons were sequenced using Sanger 

sequencing and the resulting electropherogram analyzed using PeakPicker to 
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estimate allele frequencies as described [61,116]. Vectors of allele frequencies were 

clustered and averaged if the Pearson correlation coefficient of two mutations was 

greater than 0.97 and the difference in allele frequencies in the final generation 

(based on deep sequencing) was less than 4%. As allele frequency estimates from 

Sanger sequencing are less accurate than those obtained from deep sequencing data 

we excluded a small number of allele frequency estimates derived from Sanger 

sequencing that were inconsistent with our deep sequencing results.  

 

2.6.13. Measurement of genetic interactions among alleles. We backcrossed 

clone 3, recovered from the ammonium-limited condition to the ancestral strain of 

opposite mating type (FY5; MATα), sporulated the hybrid diploid and dissected 

tetrads. All segregants were tested for mating type using halo assays [117]. We 

obtained more than one hundred backcrossed strains bearing different combinations 

of the 5 mutations acquired by clone 3. Genomic DNA for each strain was prepared 

using a rapid DNA extraction protocol [115]. Genotyping was performed using 

allele specific PCR. Eight strains identified by this process contained all possible 

combinations of the three mutations of interest – gat1-2, mep2-2 and lst4-2 – and 

the ancestral alleles of the two additional loci (RIM15 and FAB1) that were not 

studied. Each strain was individually competed against the mCitrine-labeled 

reference strains as described.  
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2.6.14. Accession numbers. All DNA sequencing data are available from the 

NCBI Sequence Read Archive with accession number SRP032757. DNA 

microarray data are available through the NCBI Gene expression Omnibus with 

accession number GSE52787.  
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CHAPTER 3. Experimental evolution of a gene regulatory network 

 This chapter is based on the research paper “Experimental 
evolution of a gene regulatory network” by Jungeui Hong and 
David Gresham (in preparation as of December, 2014) 

 

 

3.1. ABSTRACT 

Understanding the molecular basis and dynamics of gene expression evolution has 

been of great interest in evolutionary biology. However, consensus from this field 

still remains elusive due to the lack of molecular tools of investigating genetic 

architecture underlying it at a systems level. To study the evolution of gene 

expression under conditions of strong selection, we performed experimental 

evolution of yeast cells growing in ammonium-limited chemostats. Following 

several hundred generations we found significant divergence of nitrogen responsive 

gene expression in lineages with increased fitness. We found repeated selection for 

non-synonymous mutations in the zinc finger DNA binding domain of the GATA 

transcription factor, GAT1, an activator of the nitrogen catabolite repression (NCR) 

regulon. The functional effects of GAT1 mutations are exerted both directly, and 

indirectly by rewiring of incoherent feed-forward loops comprising multiple GATA 

transcription factors and their common targets in the NCR regulon. We also find 

that evolving populations contain multiple GAT1 mutations at low frequencies (10-

2-10-3) during the initial stages of the selection that fail to rise to appreciable 

frequencies due to clonal interference. Our study demonstrates that under strong 
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selection the evolution of gene expression is highly repeatable and that rewiring 

transcriptional networks can lead to both direct and indirect effects. 

 

3.2. INTRODUCTION 

The evolution of gene expression is a pervasive source of phenotypic diversity 

[118,119]. Most genetic variations causing such diversity result in either cis-

regulatory or trans-regulatory changes. The relative importance of these two 

mechanisms is the source of a long-standing debate [120-123]. This is mainly 

because evolutionary biology is a retrospective science; the forces and processes 

underlying adaptive evolution are necessarily inferred from extant organisms 

making it hard to observe the evolutionary dynamics in real-time and to distinguish 

neutral from adaptive alleles.  

Long-term experimental evolution (LTEE) provides a means of observing some of 

the inherent difficulties of evolutionary studies. In conjunction with recent advent 

of next-generation sequencing, many LTEE studies have successfully identified a 

comprehensive list of adaptive alleles and their dynamics. Copy number variants of 

nutrient specific transporter encoding genes are a highly convergent solution in 

various nutrient poor adaptive evolution [34,35,37,65]. Protein coding mutations 

are more frequent than cis-regulatory changes in LTEEs that have undergone near 

constant nutrient limitations in chemostats [34,37]. Such alterations are mostly 

missense, frame-shifting or stop codon mutations that are likely to confer severe 

pleiotropic effects compared to cis-regulatory changes [124-126]. However, studies 
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explaining the molecular basis of protein coding changes in adaptive evolution are 

still lacking. 

We previously reported repeated selection within a single population evolving in 

ammonium-limited chemostats of independent missense mutations in the DNA 

binding domain of the transcription factor GAT1, an activator of nitrogen catabolite 

repression (NCR) genes for uptake and utilization of multiple nitrogen sources in 

Saccharomyces cerevisiae [37] (Figure 3.1). The expression of NCR genes is 

regulated by four GATA factors – two activators (GAT1 and GLN3) and two 

suppressors (DAL80 and GZF3) – that compete for the same binding sites in 

promoter regions (Figure 1.1B). NCR is an ideal system for studying the evolution 

of gene expression owing to the well-characterized properties of four regulators and 

the small number of direct targets (~ 40). 

 

Figure 3.1. A model of 3D structure of predicted DNA binding domain of 
GAT1. 3D structure is based on all available GATA factor DNA binding 
domain structures in the ‘modebase’ database. Based on manual inspection, 
all amino acid changes from the GAT1 mutations appear to be deleterious to 
unknown degree to its protein functionality. 
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We aimed to determine whether selected mutations in GAT1 result in alterations in 

its regulatory activities and, if so, how rewiring of the regulatory network increases 

fitness in long-term nutrient limitations. Specifically, we sought to determine (1) 

Does rewiring confer pleiotropic effects? (2) How do trans-regulatory changes alter 

gene expression? (3) What is the dynamics of the evolution of gene expression? (4) 

Is regulatory rewiring convergent or contingent?  

Here, we describe the first example of transcriptional factor evolution in real time 

and dissection of it functional effects. Missense mutations in GAT1 are under 

strong positive selection under conditions of ammonium-limitation and also show 

antagonistic pleiotropy in closely related selective regimes. The functional effects 

of GAT1 mutations are exerted by rewiring feed-forward loops in the NCR 

transcriptional network. The evolutionary dynamics of the mutations suggest that 

rewiring of transcriptional regulator network is deterministic and predictable during 

the early stage of evolution but not in the later stage where stochastic outcomes 

dominate. Our findings may inform our understanding of gene expression evolution 

in pathogens and cancer cells [44-46].  

 

3.3. RESULTS 

3.3.1. GAT1 missense mutations exhibit antagonistic pleiotropy 

We isolated three single GAT1 mutations – gat1-1 (W321L), gat1-2 (C331Y), and 

gat1-3 (R345G) – using genetic backcrossing and allele specific PCR genotyping 

from three previously described lineages that evolved under ammonium-limitation 
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for 250 generations [37] (see Figure 3.1). Using competition assays (see methods), 

we determined fitness effects of the three GAT1 mutations and three original 

evolved mutants bearing additional 3 or 4 SNPs under various different nitrogen-

limiting conditions in chemostats – ammonium, glutamine, proline and urea – in 

addition to YPD batch condition. We also compared them to the fitness effect of 

engineered GAT1 knockout mutation (Figure 3.2). 

 

 

Figure 3.2. Antagonistic pleiotropy of GAT1 mutations. Relative fitness of 
the three original clones, the three gat1 single loci and GAT1 knockout 
mutants compared to the ancestral WT strain in three different nitrogen-
limited environments. GAT1 single mutations are not the fitness optimum 
and show severe antagonistic pleiotropy in fitness. They are only beneficial 
under constant limited concentration of ammonium nitrogen sources. Error 
bars represent 95% CI of linear regression analysis and (*) represents not 
statistically significant. (YPD : YPD batch culture, AS : Ammonium sulfate 
limited chemostat, Gln : Glutamine limited chemostat, Pro : Proline limited 
chemostat, Urea : Urea limited chemostat) 
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All strains bearing GAT1 missense mutations showed significantly increased 

fitness in ammonium-limited chemostats and dramatically decreased fitness in all 

other types of nitrogen limitations in chemostats. GAT1 mutations are nearly 

neutral or slightly detrimental in YPD batch media. Interestingly, the extent to 

which fitness decreases varies depending on the preference of yeast cell toward the 

nitrogen source being limited: marginal in preferred (glutamine or YPD) but 

dramatic in non-preferred sources (proline and urea) limitation in chemostats. By 

contrast, antagonistic pleiotropy was not observed in the GAT1 knockout strain 

under ammonium and proline limited chemostats. This suggests that missense 

mutations in the DNA binding domain of GAT1 recovered from LTEE have altered 

function and are not null mutations. 

  

3.3.2. Selective alteration in gene regulation by GAT1 mutations  

We aimed to determine how the transcriptional regulatory network activated by 

GAT1 is rewired due to adaptive missense mutations. To this end, we conducted 

RNA-seq for three individual GAT1 mutants. We compared expression profiles 

with those of lineages assayed using DNA microarrays in our previous report [37].  

We find significant divergence of NCR gene expression in all tested strains (Figure 

3.3A). Single GAT1 mutants showed up-regulation of genes encoding permeases 

for ammonium (MEP1, MEP2, and MEP3) as well as for other nitrogen sources 

such as urea, allantoin and GABA. The evolved lineages show more ‘fine-tuned’ 
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gene expression pattern in which only ammonium permeases encoding genes are up 

regulated while other NCR targets are repressed.  

A                                                   B  C 

 

 
 

 

Figure 3.3. Correlation between gene expression level and binding 
landscape of NCR target genes. A, Clustering of gene expression profile of 
NCR target genes that are significantly up or down-regulated in GAT1 
mutant background and binding motif analysis for target genes of Gat1p. 
‘Blue’ colored genes in right side are permease encoding genes for different 
nitrogen sources. This clustering includes only 41 experimentally confirmed 
NCR target genes. Microarray data for the finally evolved population and two 
clones are adapted from our previous report (see ref  [37]). B, GATA-factor 
binding landscapes for NCR target genes. Color intensity is proportional to 
the matching score against the consensus motif. C, Correlation between the 
maximum matching score of each motif to the consensus one and its 
corresponding absolute gene expression level in all measurements. R 
(Pearson correlation) is 0.27, weak but positive. X and Y-axes are absolute 
log2 transformed fold changes in gene expression compared to the ancestor 
strain and maximum matching score of each motif to the GAT1 binding 
consensus sequence. 

 

Interestingly, we see a weak but positive correlation between the gene expression 

level and the maximum matching score of binding motifs for each gene in all 
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conditions (Figure 3.3B and C). For example, DAL80 encoding a repressor for 

NCR targets is severely down regulated and has only one motif with very low 

matching score to the consensus motif, but MEP2 is up regulated in all GAT1 

single mutation backgrounds and has multiple high scoring motifs. 

 

3.3.3. GAT1 mutations are recessive and hypomorphic 

To measure changes in transcriptional activity of the GAT1 mutants, we engineered 

strains bearing GFP tagged promoter sequences of four transcriptional targets of 

GAT1 (GAP1, MEP2, GZF3 and DAL80) in the background of the ancestor, the 

knockout, and the three GAT1 mutations (Figure 3.4A). GFP expression levels 

measured using this assay were highly comparable to RNAseq data and thereby a 

good proxy of transcriptional activation by GAT1 at each promoter (Figure 3.4B). 

Using this reporter assay, we compared the degree of transcriptional activation by 

different forms of GAT1 in selected promoter sequences under a variety of 

conditions. 

We found significant differences of the transcriptional activities from MEP2 and 

DAL80 promoter constructs in nitrogen (both ammonium and proline)-limited 

conditions (Figure 3.5A). All adaptive GAT1 mutations resulted in suppression of 

DAL80 expression and increased MEP2 expression compared to the ancestor, while 

the GAT1 knockout mutation showed the opposite pattern. This result is consistent 

with the differential expression level of MEP2 and DAL80 genes in the RNAseq 

data and also supports the idea that the missense mutations in the DNA binding 
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domain of GAT1 are not null. We argue that this is the first example of 

hypomorphic mutations – partially impaired function in its regulation – in a 

transcriptional regulator from experimental evolutions that leads to rewiring of 

transcriptional regulatory network and confers antagonistic pleiotropy. 

A 

 

B 
 

 

C 

        

     D 

      

E 

 

 

Figure 3.4. GFP reporter assays for selected 
target promoters of GAT1. A, Construction of 
GFP fused promoter sequences for GAP1, MEP2, 
GZF3 and DAL80 in WT/GAT1 mutant strains. 
GFP expression intensity measured in FACs is 
used as a proxy of gene expression profile of each 
target gene. B, Validation of GFP reporter 
constructs. We RNAseqed mRNA samples for 
three GFP constructs (GAP1, MEP2 and DAL80) 
as biological replicates for WT and three GAT1 
mutant strains. Based on FPKM values, mRNA 
copy numbers of target genes and GFP bearing the 
same promoter region are highly correlated 
(R=0.67) in all sequenced samples (One outlier is 

due to low read coverage). C, GFP reporter assay is highly correlated with the 
RNAseq result conducted in ammonium-limited environment. Median GFP 
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intensity measured by FACs of each GAT1 mutant is divided by the one of WT, 
and then log2 transformed as a proxy of relative gene expression of each target. 
GFP expression intensity measured by FACs can be used as a proxy of mRNA 
expression level of four target genes. D, GFP-tagged promoter activity assays in 
batch cultures. Overnight cultures in YPD were transferred to SD batch media 
containing three different nitrogen sources (ammonium, proline, and glutamine), 
incubated for 1 hour at 30 °C and then measured for GFP expression using flow 
cytometry. X and Y-axes represent log10 transformed GFP intensity and 
frequency of cell counts, respectively. E, Comparison of pDAL80 GFP reporter 
assays in 4 different nitrogen limited conditions in chemostats. Patterns of 
transcriptional activation of pDAL80 by GAT1 are all identical regardless of 
types of nitrogen limitations. 
 

 
We also tested whether these mutations are dominant or recessive using 

heterozygous diploid reporter constructs (gat1/GAT1) (Figure 3.5B). The 

transcriptional activities of the DAL80 and MEP2 promoters in the heterozygote 

backgrounds were identical to the haploid wide type GAT1 strain implying that the 

missense mutations of GAT1 are recessive. This means that the partially impaired 

functionality of the GAT1 alleles is complemented by the wild type GAT1 and 

excludes the possibility of dominant negative effects.  

We found that the pattern of GAT1 activation of its targets, i.e. DAL80, is almost 

identical in all kinds of nitrogen ‘limited’ conditions in chemostats (ammonium, 

glutamine, proline and urea) and even non-preferred nitrogen source, i.e. proline, 

‘rich’ conditions in batch cultures (Figure 3.5D & E). This result suggests that 

nitrogen utilization pathway transmits the same signals to downstream regulatory 

networks in response to nitrogen ‘poor’ conditions that are either limited 
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concentration of all types of nitrogen or rich concentration of non-preferred 

nitrogen sources.   

 

A 

 
B 

 
 

Figure 3.5. Transcriptional activation by different GAT1 mutations. A, 
Promoter binding activities for MEP2 and DAL80 in WT and MT GAT1 
backgrounds under various nitrogen limited environments measured by GFP 
reporter constructs. X- and Y- axes are log10 transformed GFP intensity 
normalized by cell size (FSC-A) and cell counts measured by FACS, 
respectively. In either preferred (ammonium and glutamine) or non-preferred 
(proline and urea) nitrogen-limited chemostats, all strains showed up the 
exact same gene expression pattern for DAL80. Only in WT version of GAT1 
strain, DAL80 can be activated. B, Dominant / recessive test for GAT1 
mutations using heterozygote diploid strains and FACS GFP reporter assay.  
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We suggest that the missense mutations in the DNA binding domain of GAT1 may 

lead to selective inactivation of its binding activities. Therefore, only a subset of its 

targets with ‘strong’ binding motifs such as MEP2 is still highly activated while 

others with ‘weak’ motifs such as DAL80 are not activated enough (Figure 3.6A). 

The decreased activation of DAL80 by the adaptive GAT1 mutations results in more 

elevated activation of MEP2 indirectly since suppression of MEP2 expression via 

DAL80 is decreased. However, knocking out GAT1 did not induce such the same 

effect possibly because GLN3 still can activate DAL80 expression perhaps due to 

the absence of competition with GAT1 for the same binding site (Figure 3.6B). 

 
A 

 
B 

 
Figure 3.6. Models of rewiring of NCR regulon. A, Proposed model of 
rewired regulatory network in NCR regulon in the GAT1 mutants 
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background (red star). The WT model is based on experimentally verified 
published data. B, A simplified model of transcriptional regulation of GAT1 
and DAL80 on the expression of MEP2. Solid and dotted lines represent 
known strong regulations and weak or putatively inactivated regulations, 
respectively. Red bars represent the expected level of gene expression. 
 
 

3.3.4. Convergent evolution of GAT1 mutations  

To test whether the rewired GAT1 regulatory network is convergent or stochastic, 

we performed ‘replay’ experimental evolution in triplicates populations under the 

identical ammonium-limited chemostats as the original experiment. We found that 

evolution is highly convergent and parallel both at the phenotypic and genotypic 

levels. Following 250 generations we find significant increase in population level 

fitness along with deceleration in the rate of fitness improvement at the later stage 

of evolution as seen in the previous LTEE study [36] (Figure 3.7A). Using whole 

genome, whole population sequencing of the evolving populations, we also find 

recurrent selection for the same types of missense mutations in the DNA binding 

domain of GAT1 at the early stages of selection (100G). Unlike the original 

evolution, we found amplification alleles including MEP2 with high frequency only 

at the finally evolved stage, 250G (Figure 3.7B). This suggests that GAT1 

transcription factor evolution is a deterministic solution during the early stage of 

ammonium-limited adaptations. 

However, we did not find any high frequency mutations at 50G although the 

population fitness had already increased more than 15% (Figure 3.7A). We 

hypothesized that multiple minor frequency mutations in genes that were targeted 
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at later generations such as GAT1 might exist in the earliest generation. Therefore, 

we identified additional ‘hidden’ mutations that are less frequent (down to 1%) in 

the evolved populations using targeted amplicon sequencing (Figure 3.7C; see 

method). We find that evolving populations contain multiple GAT1 mutations 

mostly in the same DNA binding domain at very low frequencies (10-2-10-3) during 

the initial stages of the selection that fail to rise to appreciable frequencies likely 

due to clonal interference. The dynamics of adaptive mutations clearly shows that 

GAT1 alleles are the primary and initial target but are gradually outcompeted by 

other adaptive alleles such as MEP2 amplifications. Interestingly, DAL81, TPK3 

and WHI5 that are known as general targets also in other types of nutrient-limited 

adaptations acquired mutations in their coding regions only at the last step of 

replayed evolution in a more stochastic manner than GAT1.  

We questioned whether the mutational hotspot in the DNA binding domain of 

GAT1 is under positive selection in natural populations. From sequencing data of 

42 different wild isolates of yeast strains (19 of S. cerevisiae, 23 of S. paradoxus)  

[127], dN and dS values in each amino acid position of GAT1 were calculated 

(Figure 3.7D). We find that this domain is under strong purifying selection in 

natural environments. This result is highly consistent with the antagonistic 

pleiotropy of GAT1 mutations (Figure 3.2); missense mutations of a transcription 

factor governing nutrient utilization are hypomorphic and only beneficial in a 

specific type of constant selective pressures but not in other types of fluctuating 

environments like in the wild. 
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Figure 3.7. The DNA binding domain of GAT1 is target of positive 
selection. A, The dynamics of population level fitness. The rate of fitness 
improvement decelerates over time in all replicated evolutions in a very 
similar fashion. Error bar is 95% CI inferred using linear regression from 
competition assays. Six different generations were tested. B, Allele dynamics 
in parallel evolutions. 50, 100 and 250 generation samples were sequenced 
for identifying major frequency mutations (> ~10%) using whole genome 
population sequencings (Illumina HiSeq2500, 2x50 paired mode; average 
read depth was ~ 50X) during replayed adaptations. C, Detection of minor 
frequency mutations of targeted loci from ‘replayed’ ammonium-limited 
adapted populations using amplicon sequencing. 10 genes that are already 
found as adaptive targets with high allele frequency under multiple nitrogen 
limited environments were selectively amplified and sequenced using MiSeq 

 

A 

 

 

 

B 
 
 

C 

D 
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2x250 option. GAT1 (red lines) is the primary target from the early 
generation but is gradually replaced with other alleles such as amplified loci 
including MEP2 (blue lines) and protein truncating mutations in genes related 
with signaling pathway governing cell cycle and growth possibly due to 
clonal interference. D, The DNA binding domain of GAT1 is under 
positive selection under constant ammonium-limitation while under 
purifying selection in the wild. With the exception of two mutations 
(H432Q and S445T), all identified GAT1 mutations are enriched in the 
putative DNA binding domain in all experiments. dN and dS values for 
GAT1 of 42 different wild yeast strains at each amino acid position is also 
calculated by SNAP v1.1.1 (http://www.hiv.lanl.gov/content/sequence/SNAP 
/SNAP.html). Sequencing data for wild yeast strains was adapted from 
Bergström et al., 2014 Mol. Biol. Evol. There is no evidence of positive 
selection in wild but only purifying selection for the domain, implying that 
non-synonymous mutations are likely detrimental in dynamic environments. 

 

 

3.4. DISCUSSIONS 

3.4.1. Alterations in regulatory network are dominant under strong, constant 

selective pressure conditions 

The main finding of this study is the repeated selection of missense mutations in 

the zinc-finger DNA binding domain of GAT1 in ammonium-limited 

environments. The DNA binding domain of a TF is critical for the binding 

specificity to its target motifs and thereby makes the evolution of specificity very 

slow [128]. However, there is evidence that conformational changes in DNA-

binding domain of TFs during the evolution in the wild can provide flexibility and 

modularity in gene regulation [129,130]. Many, if not all, TFs in human can 

recognize multiple different binding sites [128]. We argue that multi-specificity of 

DNA-binding in wild-type GAT1 is disrupted or altered by missense mutations in 
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its DNA binding domain. Multiple binding modes of a TF may be unnecessary or 

even deleterious under very simple, strong selective pressure. The same claim can 

be applied to missense mutations in the TP53 gene frequently found in majority of 

human cancers, which are known to disrupt flexibility in DNA binding activity in 

vitro [131]. Another example is CTCF, a poly-zinc finger transcription factor 

regulating oncogenes and tumor suppressor genes, that has repetitive somatic 

missense mutations in the DNA binding domain altering binding specificity to its 

target genes in tumors [132]. Our study describes the first experimentally derived 

example of DNA-binding specificity alteration (or evolution) in a transcription 

factor. The alteration is not simply ‘loss of function’ or ‘inactivation’ but rather 

hypomorphic given that no null, frame-shifting or truncating mutations were found 

in the binding domain of GAT1. The mutated GAT1 maintains its functionality but 

with new properties. We suggest that trans-regulatory changes may predominate 

over cis-regulatory changes under very strong and constant selective regimes such 

as cancer evolution.  

 

3.4.2. How does gene expression evolution result in fitness increase? 

The evolution of gene expression is an adaptive solution in nutrient limitations. 

However, it is not clear how such alteration results in fitness increase of an evolved 

cell. Amplification of nutrient specific transporters is a dominant outcome of 

selection in chemostats [37]. However, the altered gene expression in GAT1 

mutants does not have the same functional effects. For example, GAT1 mutations 
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induce up-regulation of DUR3 and DAL4 encoding a urea and an allantoin 

transporter but do not confer fitness benefit in urea and allantoin-limited 

chemostats (Figure 3.2 and Figure 3.3A). On the contrary, the same antagonistic 

pleiotropy of the finally evolved clones is explained by the transporter 

amplification model given that they showed up-regulation of only ammonium 

specific transport encoding genes (MEP1, MEP2 and MEP3) but suppression of 

others for allantoin, urea, arginine, GABA, allantotate and amino acids (Figure 

3.3A). Here, we notice that two different non-synonymous mutations targeting the 

same 352nd amino acid residue in the transmembrane domain of MEP2 (mep2-1 

and mep2-2; see ref 10 and Figure 3.2) are common to original clones and 

contribute to additional fitness gain. Indeed, MEP2 can act as not only a high 

affinity ammonium transporter but also a post-transcriptional regulatory sensor that 

possibly controls PKA signaling transduction pathway [133] and thereby alters 

gene expression related with various down-stream cellular pathways [134]. We 

speculate that signaling pathways mediated by MEP2 may have additional effects 

on the fitness of GAT1 mutations under non-ammonium limited conditions.  

 

3.4.3. Temporal contribution of contingency and convergence in evolution 

We find that there seems to be a mutual exclusivity between missense mutations in 

GAT1 and MEP2 amplifications and/or loss of function mutations in other signaling 

pathway genes such as DAL81, TPK3 and WHI5 (Figure 3.6B & C). It is also 

interesting to see that GAT1 mutations are early adaptive alleles while others are 
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late ones. The similar dynamic pattern was also seen in a glucose-limited 

experimental evolution study where null mutations in MTH1, a negative regulator 

of glucose signaling pathway, and amplifications of HXT6/7, high affinity glucose 

transporters, are mutually exclusive due to reciprocal sign epistasis [34,56]. We 

hypothesize that signaling or regulatory alterations are immediate adaptive 

solutions but are outcompeted by transporter amplifications that harbor less 

metabolic costs and thereby are fitness optimum in nutrient limitations. It is less 

likely, but worth considering that mutations in those regulators revert once they 

acquire amplification alleles of transporters in the same lineage due to the 

reciprocal sign epistasis. This possibility has been raised in a protein evolution 

study [135] but never reported in the evolution of a functional module comprising 

multiple genes at a different level. We also cannot exclude the possibility that the 

transient dynamics of GAT1 mutations is due to subtle but substantial changes in 

nutrient concentration and/or physicochemical parameters such as pH and pO2 

within chemostats media as faster growing cells become dominant and consume 

more resources in the culture.  

Our results raise an alternative hypothesis for the following central question: are 

the evolutionary trajectories historically contingent or convergent. Lenski’s group 

has suggested that evolutionary outcomes were divergent in several independently 

replayed LTEEs that were conducted under an identical nutrient-limited condition 

in E. coli [32]. In contrast, there are countered reports that even if the evolutionary 

trajectories are many, the consequences are limited by selection: evolution is 
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convergent and parallel [37-39,136]. This discrepancy may result from the different 

culturing systems (batch or chemostat) or the different level at which each group 

defined convergence. Our study suggests that convergence and contingency may 

have temporally different contributions to evolution. 

 

3.5. CONCLUSION 

The DNA binding specificity change in the NCR transcriptional activator, GAT1 is 

an initial but transient ‘driver’ as an evolving population seeks the fitness optimum 

during the course of ammonium-limited adaptations. Since the binding domain is 

highly conserved in various distant yeast strains and under purifying selection in 

the wild, we suggest that the evolution of the NCR regulon is specific to the 

constant ammonium-limited environment. Our study demonstrates that the 

evolution of gene expression is highly repeatable under strong selection due to 

alteration in the binding specificity of a transcription factor resulting in rewiring 

transcriptional networks. We propose this result can be applied to understanding of 

the adaptive strategies that tumor cells use to proliferate. For example, the 

mutational “hotspot” in the DNA binding domain of the GAT1 is reminiscent of a 

hotspot in the TP53 gene found in a variety of tumors [137]: surprisingly, the 

molecular mechanism underlying the oncogenic activity of these missense 

mutations remains elusive.  

 

 



86 

3.6. MATERIALS AND METHODS 

3.6.1. Strains and media. The ancestral strain used is a haploid derivative (FY4; 

MATa) of the S288c reference strain. For isolations of single GAT1 mutations, we 

backcrossed each original evolved mutant (see Figure 3.1A) to a opposite mating 

type haploid (FY5; MATα) strain and recovered tens of random spores bearing 

different combinations of original adaptive alleles. For genotyping individual 

segregants, we used allele-specific PCRs where two WT and MT type forward 

primers and one common reverse primer were prepared. We also knocked out the 

entire GAT1 locus by replacing it with G418 marker using the high efficiency 

transformation protocol. We also engineered GAT1 single loci strains such that they 

harbor GFP fused promoter sequences of four GAT1 NCR targets (GAP1, MEP2, 

DAL80 and GZF3) into HO locus using homology based transformation methods. 

For this, we fused GFP with 1kb of 5’ and 3’ UTR regions of each target gene. We 

also tried to construct a strain bearing the GAT1 promoter sequence but even 2kb 

long 5’UTR region didn’t induce any GFP expression in WT and MT GAT1 

backgrounds (data not shown). Finally, we also constructed diploid strains that are 

heterozygous in the GAT1 locus by mating the GFP reporter constructs made in the 

WT and the three GAT1 mutants backgrounds to the opposite mating type FY5 

strain. All constructed strains were finally genotyped using Sanger sequencing. All 

medium conditions and recipes were identical with the ones in our previous study 

(see ref  [37]): all nitrogen limited media contains 800 μM of nitrogen regardless of 

the molecular forms.  
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3.6.2. Competition fitness assays. For all detailed protocols and analysis steps, see 

method section in the ref [37]. In short, we used a mCitrine-labeled FY4 strain for 

all competition assays as the ancestor strain. We tested fitness effects of three 

original evolved mutants, three GAT1 single loci segregants and one engineered 

GAT1 knockout strain under 4 different nitrogen limited-media – two preferred 

sources (ammonium and glutamine) and two non-preferred ones (proline and urea) 

– in chemostats and YPD rich medium in batch cultures. Sampling was done at 

least 5 and up to 10 times for the precise estimation of relative fitness using linear 

regression analysis. We noticed that less frequent sampling resulted in much 

broader range of 95 % confidence interval but mostly showed good significant 

differences in fitness comparing to the ancestor. For the competition assay in YPD 

rich condition, we sampled twice per day and back-diluted the competing culture 

(1/200) into a fresh medium every night for 3 or 4 days at an incubator. For 

population-level fitness assay, we seeded mCitirine-labeled FY4 strain into 

chemostats vessels beside the vessels already containing evolving populations and 

let them reach to the same steady state for few days in the same dilution rate and 

then mixed the evolving population samples with the fluorescence labeled ancestor 

strain in ratio of 1:9. The competing cultures were independently sampled at 

multiple time points (less than 20 generations) for FACs. All analysis steps were 

the same as the clonal fitness assay method. 

3.6.3. Directional RNA-seq. We seeded three GFP reporter constructs of GAP1, 

MEP2 and DAL80 for each of the WT ancestor and the three GAT1 single loci 
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mutants as three biological replicates. In sum, we cultured 12 chemostats vessels (3 

GFP reporters x 4 different backgrounds) and harvested a 10 mL of each culture at 

steady state using the vacuum filtration method, frozen them immediately using 

liquid nitrogen and kept at -80°C until use. RNA extraction was done using a 

phenol-chloroform method. For mRNA enrichment, we used poly-A selection and 

the final yield of selected RNA molecules was around 10 – 50 ng in total. For 

cDNA synthesis, we used Superscript III kit (Invitrogen) and dNTPs mixtures for 

the 1st strand synthesis and E. coli DNA ligase and polymerase I (Invitrogen) for 

2nd strand synthesis with a mixture of dATP, dCTP, dGTP and dUTP. Then, we 

followed end-repair, A-tailing and adapter ligation based on the general Illumina 

library preparation protocol. All cleanups in-between each steps were done using 

AMPure XP beads (Beckman Coulter, Inc). For directional sequencing of 1st strand 

sequences only, we treated UNG (Thermo) and amplified the ligated molecules 

using Phusion high fidelity DNA polymerase (NEB) in 12 or 15 of PCR cycles. 

Adapter dimers were further removed by conducting AMPure XP beads selections 

twice. We checked the proper amplification of ligated molecules in the 

BioAnalyzer and then finally quantified library concentration using qPCR method 

with KAPA Library Quantification kits (KAPA Biosystems). All sequencings were 

done in the Illumina HiSeq2500 2x50 paired end fast-run mode. We used Tophat 

v2.0.11 to align sequencing reads to the Saccharomyces cerevisiae S288C 

reference genome, obtained from the SGD database on Feb 03, 2011. From the 
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RNA-seq count data, we ran ‘edgeR’ v3.8.5 [138] to determine differential 

expression (DE) level of all genes compared to the ancestor.   

3.6.4. Binding motif analysis. We computationally verified all potential binding 

sites of GAT1 in the 37 NCR target genes. Position weight matrix (PWM) of the 

consensus motif (‘GATAAG’) of GAT1 was obtained from JASPAR DB using 

‘MotifDb’ package in R and only 1kb of 5’ UTR region of each target was scanned 

to find all potential binding sites with at least 80% of matching score to the 

consensus motif. The matching score was assigned to each motif as ‘red’ color 

intensity in the Figure 3.3B. 

 

3.6.5. GFP reporter assay. All constructed reporter strains were seeded in the 

same chemostats conditions. Samples were taken at a steady state from the 

chemostat cultures that are run in the same dilution rate (0.12/h), sonicated and 

FACSed in a PBS buffer. We additionally tested the GFP activity in nitrogen batch 

cultures in AS-ammonium, glutamine, and Proline media and YPD batch culture. 

All GFP intensity values are normalized by the size factor (FSC-A) and log 10 

transformed in the figures (Figure 3.4D & E). For diploid strains used for the 

dominance and recessive test (Figure 3.3E), additional size factor between haploid 

and diploid cells (the median size of diploid cells divided by the one of haploid 

cells) was also multiplied to the normalized GFP intensity values of diploid cells. 

This normalization removes all cell size effects to the GFP intensity. 
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3.6.6. Replayed LTEEs. All conditions for replaying LTEEs were identical as 

described in the previous study (see ref [37]). Dilution rate (0.12/h) was checked 

every one or two day over 250 generation (~ 2 months), and intermediate samples 

were archived at every 20 generations. We confirmed that cell density was 

consistent as ~ 3x107 cells/mL in 200 mL of cultures across the entire culturing 

period. 

 

3.6.7. 3D structure of GAT1 DNA binding domain. The ModBase model of 

yeast GAT1 (UniProt P43574) from an NMR structure (PDB 4GAT) complexed 

with Zn and DNA, with nearly identical fold to a high resolution crystal structure 

(PDB 2VUS), is the best model available. The 3D image was visualized by 

Polyview-3D (http://polyview.cchmc.org/polyview3d.html).  

 

3.6.8. Whole genome population sequencing. We sequenced the entire population 

genomes at 50, 100 and 250 generations for all three LTEE cultures. All library 

preparation steps were identical as our previous study (see ref [37]). We used 2x50 

paired end mode in HiSeq 2500 and all fastq files were processed using bwa, 

samtools, and SNVer to generate a list of mutations with significant allele 

frequencies at the population levels. The average read coverage in these sequencing 

data was less than 50 so the detection limit of SNPs was around 10%. We also 

identified CNVs normalized by the median read depth at the entire genome using 

the pileup data from alignment BAM files using samtools and R. We noticed a 



91 

significant CNV region that includes MEP2 locus in all three population 

sequencing data only at the 250 generation. We estimated the allele frequency of 

the CNV at the population level by randomly selecting 96 clones and conducting 

qPCR to measure the copy number of MEP2 loci for all clones. We found that most 

clones possess one or two copy of MEP2 but interestingly some possesses even up 

to 8 or 9 copies (data not shown). All clones bearing more than 2 copies of MEP2 

locus were counted as mutants for the allele frequency estimation of the CNV. 

 

3.6.9. Targeted amplicon sequencing. Due to the low read coverage of the 

population level sequencing, we repeated sequencings only for 12 selected target 

loci: GAT1, MEP2, LST4, VAC14, RIM15, YBR271W, RPL26B, YKL050C, WHI5, 

DAL81, TPK3 and YKL162C. They are either target genes that posses any high 

frequency SNPs from the population level sequencing at any time point or 

repetitively selected target genes in many LTEEs of nutrient limitations in yeast. 

We amplified 12 loci with +/- 1kb of up and down stream sequences using 30 

cycles of PCRs, randomly fragmented using sonication (~ 250 bp long) and then 

prepared DNA libraries for them using the same protocol we used for the 

population sequencing. We ran the Illumina MiSeq 2x250 option for these sheared 

amplicon libraries such that two paired reads are overlapped after alignment to the 

reference genome. Only the overlapped region was selected for the allele frequency 

estimation and thereby we were able to dramatically reduce the false positive SNP 

calls rate. For each SNP frequency estimation, the average read coverage was ~ 
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50,000. Using SNVer, we collected minor frequency mutations down to ~ 1% that 

is highly strict and so significant as shown in the Figure 3.4B. 

 

3.6.10. dN and dS test. We obtained 42 different GAT1 sequences from natural 

yeast isolates that were sequenced in a previous study (see ref [127]). dN and dS 

represent the proportion of observed Non-synonymous substitutions among all 

potential Non-synonymous substitutions and the proportion of observed 

Synonymous substitutions among all potential Synonymous substitutions, 

respectively. Actual values for each amino acid position were calculated from 

http://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html.  
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CHAPTER 4. Estimation of the effects of PCR duplicates in next-generation 

sequencing data analysis using a sequencing adapter design for unique 

molecule identification 

 
This chapter is based on the research paper “Estimation of the 
effects of PCR duplicates in next-generation sequencing data 
analysis using a sequencing adapter design for unique molecule 
identification” by Jungeui Hong and David Gresham (in 
preparation as of December, 2014) 

 

 

4.1. ABSTRACT 

One of the technical issues arising from preparing next-generation sequencing 

libraries is how PCR duplicates that are generated during the library amplification 

step should be handled and processed for downstream analysis of detecting rare 

variants. We present a new cost-effective sequencing adapter design that enables 

both removing true positive PCR duplicates and multiplexing multiple sequencing 

libraries for the Illumina HiSeq and MiSeq sequencing platforms. Conventional 

bioinformatics approaches remove PCR duplicates by choosing from multiple reads 

that align to precisely the same genomic coordinates. However, this approach 

cannot discriminate true positive PCR duplicates from false negative ones thereby 

resulting in decrease in read coverage and possible bias in the final copy number or 

frequency estimation. We introduce a simple custom sequencing adapter design 

where the sample multiplexing index is moved to the end of adapters directly 

ligated to the insert DNA and a random barcode is located at the site that usually 
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contains the multiplexing index. Using this new design, we performed multiple 

DNA-seq, Amplicon-seq and RNA-seq assays. We showed that removal of PCR 

duplicates by coordinate alignment alone results in dramatic data loss with impacts 

on estimation of allele frequency or gene expression profiling. We find that 

majority of duplicated molecules originate from random fragmentation especially 

for smaller size targeted sequencing methods such as Amplicon-seq or RNA-seq. 

We illustrate the cost-effectiveness and power of this new adapter design for 

minimizing false positive PCR duplicates calls while maintaining the possibility of 

library multiplexing without any additional cost for preparing Illumina sequencing 

libraries.  

 

4.2. INTRODUCTION 

The recent advent of next-generation sequencing technologies enables rapid and 

cost-effective identification of rare alleles from pooled population samples or a 

panel of multiple isogenic cell lines and expression profiling of entire 

transcriptomes. One technical issue in sequencing library preparation protocols that 

use PCR amplifications such as Illumina TruSeq is how to handle and minimize 

PCR duplicates [57,139,140]. PCR bias in library amplification occurs mainly due 

to unbalanced GC composition in the genome [57,139,141,142]. Actual PCR 

duplicate rates are typically orders of magnitude higher than expected and increase 

as much as 50% or higher depending on the number of PCR cycles used.  
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PCR-free library preparation protocols provide a straightforward alternative but are 

limited in their usage due to the high cost of reagents and kits and the requirement 

of greater amount of starting materials. Optimizing PCR setting and buffer systems 

can be a trivial solution to minimize PCR bias [57,140] but requires extensive 

manual calibrations depending on experimental settings and sample conditions. 

Due to these technical limitations, in general, PCR duplicates are removed after 

completing sequencing using bioinformatic tools such as samtools [112] and Picard 

(http://picard.sourceforge.net) that detect duplicates based on the coordinate 

information after aligning reads to a known reference genome and then simply 

discard them.  

In PCR based sequencing method, it is also critical to understand how PCR 

duplicates affect the final quality of sequencing data analysis. However, systematic 

studies on this issue are lacking. PCR duplicates represent redundant information 

for certain DNA sequences, inflate perceived read depth and therefore require 

careful handling for proper downstream data analysis. One recent study based on 

the targeted sequencing technology showed that PCR bias should be minimized 

when detecting minor frequency alleles in heterogeneous populations such as tumor 

tissues [143]. In that study, the presence of duplicates can introduce more 

variability in estimating population heterogeneity and thereby cause false 

interpretation in the final call of adaptive alleles in cancer evolution.  

The Illumina TruSeq sequencing adapter comprises of two unique single stranded 

oligonucleotides (P5 and P7) that generally possess one sample index for 
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multiplexing (Figure 4.1). Multiplexing samples is generally preferred in order to 

minimize the cost of sequencing multiple samples. This can be easily achieved by 

introducing a sample index or barcode into one of the sequencing adapter oligos 

(P7) used in the TruSeq library preparation protocol. The Illumina Genome 

Analyzer sequencing run typically includes an additional reading phase for the 

short sample index sequence as well as for the original target DNA.  

Some variations are possible in the adapter design depending on different 

applications [144]. Dual sample indexing can be adopted to minimize false positive 

multiplexing call [145]. In this design, an additional sample index is added to the 

opposite (P5) adapter oligo in order to increase accuracies for detecting rare 

variants from pooled samples where cross sample contamination should be 

critically avoided. One practical disadvantage of this design is that this requires an 

additional sequencing phase for the additional index. Also, this sequencing should 

be run only when all lanes contain dual-indexed libraries. Instead of the sample 

index that is a known sequence, one can introduce a random barcode into the 

adapter oligo for removal of PCR duplicates [146]. The random barcode can be 

combined with the coordinate information of each read aligned to the reference 

genome, and used for discriminating real PCR duplicates from false positive ones.  

We introduce a novel Illumina sequencing adapter design – “unique molecule 

identification (UMI)” – enabling both removal of PCR duplicates and library 

multiplexing. We combined both the sample index for de-multiplexing and the 

random barcode for removal of PCR duplicates in one sequencing adapter (Figure 
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4.1). Starting with the TruSeq adapter oligos, we moved the multiplexing index to 

the 3’ end position of adapters that are directly ligated to the target DNA and 

introduced a random barcode at the sample index site. These customized adapters 

are far cheaper than commercial ones and can be directly used for the same TruSeq 

library preparation protocol without any alteration in the general sequencing 

pipeline and the number of sequencing reads. 

 

 

Figure 4.1. Scheme of new adapter design: comparison between 
commercial TruSeq and our own adapter.  

 

 

Using this new adapter design, we tested the effect of PCR duplicates on the results 

of three different sequencing assays: whole genome DNA sequencing, targeted loci 

amplicon sequencing, and RNA-seq. We present evidence that PCR duplicates 

rates are highly proportional to the number of PCR cycles and overestimated when 
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using only the coordinate based methods such as samtools [112] and Picard. We 

show that PCR duplicates result in miscalculation of frequencies of minor alleles 

(less than 10%) in heterogeneous populations and differentially expressed mRNA 

levels. For accurate sensitive detection of polymorphisms or differential gene 

expression, removal of true PCR duplicates is necessary. 

 

4.3. RESULTS 

4.3.1. Estimating ‘true’ PCR duplicate rates   

We estimated the ‘true’ PCR duplicate rate in each sequencing library by cross-

checking both the coordinate information of aligned paired reads and their unique 

6mer random barcode (Figure 4.3). PCR duplicate rate based on only the 

coordinate information ranges from 20 to 40% when less than 10 PCR cycles were 

used, and were as high as 90% when 15 PCR cycles were used only for some RNA-

seq libraries with very low amount of starting materials (less than ~10ng in total). 

Using unique molecule identification by random barcodes altogether, the rate 

decreased to less than 10 % for when less than 10 PCR cycles were used. This 

result suggests that the number of PCR cycle should be less than 10 and majority of 

PCR duplicates determined only by the coordinate information are false positives. 

Interestingly, we found that the PCR duplicate rates in whole genome DNA 

sequencing data were very low - less than 5% - regardless of which detection 

methods were used (see the rectangular data points in the Figure 4.2). This is 

possibly because whole genome sequencing data generally has lower read coverage 
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(< 50X) and is thereby less likely to have redundant duplicates. However, the 

difference in the duplicate rates between two methods becomes more dramatic in 

the targeted amplicon sequencing or the RNA-seq data (see triangle or circle data 

points in the Figure 4.2). We suggest that sequencing libraries targeting narrower 

genomic regions tend to have more random fragmentation duplicates that do not 

originate from the PCR amplification step.  

 

            

Figure 4.2. Comparison of PCR duplicates rates generated by the new 
adapter design and the conventional bioinformatics approaches. 
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4.3.2. Effects of PCR duplicates on detecting SNPs from heterogeneous 

populations 

We conducted targeted amplicon sequencing and whole genome DNA sequencing 

to detect allele frequencies of SNPs from multiple different heterogeneous 

population samples. Using our new adapter design, we studied effects of PCR bias 

on detecting SNPs in population samples. We compared differences in the allele 

frequencies for SNPs identified by SNVer after removing PCR duplicates using 

UMI vs Picard tools (Figure 4.3). The AF difference in two methods increases as 

read depth decreases, implying that AF estimation using only Picard tools is 

misleading when analyzing low read depth sequencing data. The maximum AF 

difference is ~ 3%, which is significant difference in minor frequency allele 

estimation. Thus, our method enables more sensitive detection of minor alleles in 

heterogeneous populations. 

 

Figure 4.3. Differences in allele frequencies of SNPs using UMI or Picard 
tool vs Read depth.   
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4.3.3. Effects of PCR duplicates in RNA-seq data analysis 

We analyzed 12 RNA-seq libraries that include one control and three different 

tested samples with 3 biological replicates. We compared differences in read counts 

for each gene using UMI and Picard tool (Figure 4.4). Interestingly, there was a 

clear gene size effect on the differences in the reads count values. Smaller size 

genes tend to have bigger loss of read counts when using only Picard, implying that 

most of duplicates detected and removed by Picard are not true PCR duplicates but 

just randomly generated duplicates with the same coordinate that are nonetheless 

unique. 

 

Figure 4.4. Differences in count values of each gene for RNAseq data between 
UMI and Picard.  
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4.4. DISCUSSION 

We suggest that the majority of PCR duplicates identified based only on coordinate 

information are not real PCR duplicates but randomly generated unique duplicates; 

therefore, there will be massive loss of data when using the conventional coordinate 

based detection methods such as samtools or Picard. This should be considered 

when preparing amplicon sequencing or RNA-seq that targets much narrower 

genomic regions and therefore tend to have higher probability of generating unique 

molecules that appear to be duplicated fragments. There is an anti-correlation 

between the size of the sequencing region and the rate of PCR duplicates. 

We argue that PCR duplicates should be removed using a combination of 

coordinate information and a random barcode especially in highly sensitive 

applications such as detection of minor frequency alleles (< 10%) from whole 

genome sequencing of heterogeneous population samples or targeted amplicon 

sequencing and RNA-seq data that are targeting small genomic regions. 

This study illustrates that our new adapter design can easily distinguish PCR 

duplicates from random fragment duplicates. This design requires only one single 

index reading for the random barcode; therefore, there is no need for additional 

sequencing reagents and primers unlike dual indexing adapter design [145]. This is 

also highly cost effective since it is possible to make a ~ 500 ul of 20 μM adapter 

stock only for ~ $150 that can be used for constructing hundreds or thousands of 

libraries.  
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One technical disadvantage is that the first seven nucleotides in each read should be 

trimmed, lowering the final sequencing yield. This, however, can be easily 

compensated by the fact that massive amount of non-PCR duplicates can be saved 

using this design. Another concern is the low diversity issue for the first 7 

nucleotides, which may impact sequencing cluster identification in the Illumina 

sequencers. We suggest an adapter design such that diversity of sample indices can 

be maximized when multiplexed as shown in the Table 4.1. In order to further 

increase sequence diversity at the 7th ‘T’ nucleotide, one can vary the length of 

sample indices for multiplexing. Adding 5% PhiX control in the pooled library 

sample is also recommended.  

 

4.5. MATERIALS AND METHODS 

4.5.1. New sequencing adapter preparation Two modified adapter oligos (P5 and 

P7) were prepared (www.idtdna.com) so that the P5 oligo possesses a 

phosphorothioate bond between the 3’ end T and its neighbor base and the 6-mer 

sample index plus one additional ‘T’, and P7 oligo possesses a 5’ phosphate group, 

the 6-mer random barcode for tagging PCR duplicates and the complementary 

nucleotides against the sample index plus ‘T’ sequence in the P5 oligo (Table 4.1). 

The additional ‘T’ next to the sample index is required for proper priming site of 

the sequencing read primers (Figure 4.1). Two partially complementary oligos 

were annealed to form the final Y-shaped adapter as following: (1) Each individual 

oligonucleotide was re-suspended at the same molar concentration (20 μM) in the 
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annealing buffer (10 mM Tris, pH 7.5–8.0, 50 mM NaCl, 1 mM EDTA). (2) Equal 

volumes of both complementary oligos were mixed, placed in a standard heatblock 

at 95°C for 5 minutes, and then cooled to room temperature on the workbench for 

around 1 hour. (3) The annealed adapters were checked on a non-denaturing 5-6% 

PAGE gel. Around 90 % of bands should be found at around 300-400 bp due to the 

intrinsic property of the Y-shaped partial dsDNA. (4) The annealed adapters were 

kept at -20°C for long-term storage. 

 

Adapter ID Sample index Adapter ID Sample index 

DGseq_1 CGATGT DGseq_13 GACTTA 

DGseq_2 TGACCA DGseq_14 AGTCTA 

DGseq_3 ACAGTG DGseq_15 TATCGA 

DGseq_4 GATCAG DGseq_16 TCTGAT 

DGseq_5 CTCAGA DGseq_17 GAACGT 

DGseq_6 TAGCTT DGseq_18 TGTACT 

DGseq_7 GTGGCC DGseq_19 TCGAAA 

DGseq_8 ACTTGA DGseq_20 ACAAGT 

DGseq_9 GCCAAT DGseq_21 TGAAAC 

DGseq_10 CAGATC DGseq_22 TCACAG 

DGseq_11 AGTTCC DGseq_23 TTACGC 

DGseq_12 TTCGAG DGseq_24 AAATGC 

 
Table 4.1. Sample indices used in new adapter design. Every pair of 
indices has a minimum of 3 hamming distance and guarantee based balance 
for the first 6 cycles if combined as the order in the table. 

 

4.5.2. Library sequencing protocol 

We tested the new sequencing adapters in whole genome population DNA-seq (3 

libraries), targeted amplicon sequencing (12 libraries), and RNA-seq (12 libraries) 

for multiple different applications with Saccharomyces cerevisiae. While most 

library preparation steps were identical as the typical TruSeq protocol, some 
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variations were introduced: (1) all cleanups and DNA insert size selections were 

done using AMPure beads. (2) For, targeted loci amplicon sequencing, each 

amplicon was fragmentized before adapter ligation to further randomize DNA 

inserts. (3) For RNA-seq where the amount of starting materials was very little and 

limited, only 0.5 μM of the adapter was used for ligation. Otherwise, 20 μM was 

used and confirmed as a good standard concentration to make enough ligated 

molecules and minimize the unnecessary adapter dimer formation. (4) The number 

of PCR cycles varied from 8 to 15 depending on the amount of starting materials. 

(5) The necessary final concentration of libraries loaded onto a flow-cell was 

empirically determined to be higher than the standard requirement of 2nM. (6) 5 – 

25 % of PhiX control was added in each library in order to minimize any possible 

negative effect of the low diversity issue in the first 7 sequencing cycles detecting 

6-mer sample index plus one ‘T’ overhang in the 7th position. Since multiple 

different sample indices were multiplexed in each lane, only the 7th position was 

identical in all sequence reads. We empirically determined 5% of PhiX is sufficient 

to avoid the low diversity issue at the 7th position. Multiplexed libraries were 

sequenced using either 2x50 bp paired end mode for DNA-seq and RNA-seq in the 

Illumina HiSeq 2500 or MiSeq 2x250 bp paired end for targeted amplicon-seq.  

 

4.5.3. Data processing and analysis 

De-multiplexing was done using a custom perl and Unix scripts. Only one 

mismatch in the sample index was allowed. The first 7 nucleotides including the 
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sample index and ‘T’ overhang in every read were trimmed for downstream 

analysis. For reads alignment, BWA -mem [111] option was used to the 

Saccharomyces cerevisiae S288C reference genome, obtained from the SGD 

database on Feb 03, 2011. PCR duplicate rates were calculated based on the SAM 

format alignment file using a custom perl script: first, all alignments possessing the 

same coordinate information were selected, and then only alignments with the 

unique 6mer barcode (perfect match) were determined as non-PCR duplicates 

(Figure 4.5). All poorly (mapping quality less than 10) and mis-aligned paired 

reads were removed in this analysis. Picard tools (http://picard.sourceforge.net) 

were also used for removal of PCR duplicates without considering the random 

barcode information. For SNP detection in population samples based on the DNA-

seq or the targeted loci amplicon sequencing, SNVer [114] was used a minimum 

detection limit was set as ~ 1%). EdgeR [138] was used to determine differently 

expressed genes between control and treated samples from the RNA-seq data. All 

additional downstream data analysis was conducted using R. 

 

 

 

 

  

Figure 4.5. Illustration about how to remove PCR duplicates using our 
new adapter. Different colored stars represent unique barcode tags 
implemented in the new adapter design. 
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CHAPTER 5. CONCLUSION 

 

5.1. SUMMAARY AND CONCLUSION 

This dissertation aims to understand the molecular basis of adaptive alleles and 

their dynamics during the course of nutrient limited adaptations in S. cerevisiae. 

Experimental evolution using chemostats and asexual haploid yeast were used to 

achieve this goal because of the precise control of genetic and non-genetic factors 

that determine evolutionary outcomes and dynamics. Chemostat culturing 

maintains a large population and a constant nutrient – nitrogen in this study – 

‘poor’ conditions over the entire experimental evolution. Thus, selection is strong 

and the mutation supply rate is very high, resulting in a very rapid adaptive 

evolution that is visible within a reasonable timeframe in the laboratory. Next-

generation sequencing is a great addition to this type of study since it allows 

genome wide discovery of the full spectrum of adaptive alleles acquired during the 

course of experimental evolutions. In this thesis, I introduced several technical 

improvements to the area of experimental evolutions and successfully applied them 

to achieve my research goals as followings.  

 

In Chapter 2, I examined the specific and convergent adaptive solutions at multiple 

molecular levels among different nitrogen limited selections in chemostats. The 

main questions I addressed were (1) what are the major selection targets that are 

common or specific to different nitrogen-limited adaptations? (2) At which level(s) 
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does selection act? (3) How are evolutionary dynamics and fitness landscapes 

constrained and shaped? It is clear that selection for improved nutrient transport 

capabilities underlies adaptive evolution in constant nutrient limitations. The most 

dominant selective alleles in chemostats are CNVs containing nutrient transporter 

genes specifically corresponding to the conditions in which they are selected. 

Amplification of such transporter genes results in increased production of mRNA 

molecules and consequently the proteins that they encode. Despite the possible 

increased metabolic burden, additional copies of nutrient transporters in a cell are 

beneficial in terms of nutrient transport capabilities under extreme nutrient poor 

environments. Interestingly, I found no adaptive alterations in enzymatic functions 

in metabolic genes although they are central to optimized growth in nutrient poor 

conditions. In addition, there is little evidence that translational regulation of 

nutrient transporters is targeted by selection. More general (common) solutions in 

chemostats regardless of types of nutrient limitations are loss of function mutations 

in regulatory genes responsible for initiation of a quiescent G0 phase entry in 

response to nutrient starvations. Loss of such regulatory function may be 

advantageous specifically in chemostat selections since the environment requires 

continuous cell division. In addition, loss of function mutations in regulation of 

phosphatidylinositol-3,5-bisphosphate production with roles in protein trafficking 

and vacuole biogenesis were a highly repeatable solution across different nitrogen-

limited chemostat conditions. The molecular mechanisms or relevance of these 

mutations to nitrogen utilization remain to be investigated. I also found one 
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interesting example of repeated selection of SNPs in functionally related loci 

comprising a transcriptional activator (GAT1), its direct target, an ammonium 

transporter (MEP2) and a post-translational regulator (LST4) from an ammonium-

limited adaptation. Using yeast genetics, fitness assays and sequencing techniques, 

I verified that complex epistasis underlies such adaptive loci and also constrains the 

evolutionary dynamics. From these analyses in Chapter 1, I concluded that targets 

of selection converge at multiple levels from one single nucleotide to genes and 

functional modules and that the evolutionary dynamics are constrained by epistatic 

interactions and clonal interference.   

  

In Chapter 3, I continued to examine the molecular details of the evolution of 

GAT1 found in the ammonium-limited environment from the study of Chapter 1 

and understood the first completely characterized example of a transcription factor 

evolution. My main questions for this section were: (1) How do protein coding 

changes in a transcription factor affect its function under strong selective pressure? 

(2) What is the molecular mechanism underlying the evolution of gene expression? 

(3) Is the evolution of gene expression convergent, stochastic or historically 

contingent? My major finding was the repetitive selection of missense mutations in 

the zinc finger DNA binding domain of GAT1, a GATA transcriptional activator 

for multiple NCR genes including MEP2, a high affinity ammonium transporter-

encoding gene, from ammonium-limited adaptations. Interestingly, all such 

mutations in the DNA binding domain appear to be ‘partial’ loss of function in 
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transcriptional regulation. I confirmed that missense mutations in GAT1, result in 

partial impairment in its DNA binding activity and thereby selective activation of 

its target genes in the NCR regulon consisting of a complex feed forward loop with 

multiple GATA transcription factors. Using next-generation sequencing, fitness 

assay and other molecular analyses, I determined these mutations are under strong 

positive selection under conditions of ammonium-limitation and also show 

antagonistic pleiotropy. Their functional effects are exerted by rewiring feed-

forward loops in the transcriptional network. From replayed experimental 

evolutions in ammonium-limited environments, I also found that the outcomes of 

adaptive evolutions are highly convergent at the level of nucleotides, genes and 

functional loci at the early stage of evolution but seem to be more stochastic as 

additional mutations accumulate.  

 

In Chapter 4, I offered one way of improving sensitivity in estimating allele 

frequencies and gene expression levels from the Illumina platform-based 

sequencing techniques. The main question was how PCR duplicates that are 

generated during the Illumina sequencing library preparation step affect the final 

quality of allele frequency estimation in DNA-seq or expression profiling in RNA-

seq. This is a very important, but not yet resolved, question in the area of next-

generation sequencings. I estimated how much portion of sequencing reads is really 

‘true positive’ and ‘unique’ and whether available computational tools in the 

scientific community are reliable for the proper removal of PCR duplicates. My 
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new sequencing adapter design is very straightforward and cost-effective but highly 

sensitive for filtering out the true PCR duplicates. I concluded that the new adapter 

design enables increased sensitivity of detection of minor frequency alleles in a 

population sequencing data or subtle changes of gene expression in RNA-seq data.  

  

5.2. Future directions and application 

5.2.1. Many adaptive alleles are still missing 

It will be important to continue to identify the pathways that are targets of selection 

in other types of nutrient limitations, their dynamics in real time and the functional 

basis of other types of adaptive alleles that remained unexamined in this 

dissertation. I mainly analyzed evolved population samples from the ammonium 

limitation where SNPs were the major source of adaptive alleles. However, massive 

structural variations such as large indels, aneuploidy and diploidization are 

pervasive in other types of nitrogen limitations such as allantoin and urea. Their 

molecular basis and roles in adaptive evolution should be further investigated in 

future studies. Additional population and clonal sequencing for early time point 

samples from those LTEE studies would provide a more general and complete view 

of evolutionary dynamics in nutrient limitations. 

 

5.2.2. New insight about the evolutionary convergence and contingency 

This dissertation serves as a great starting point to answer the long-standing 

evolutionary biology question about whether adaptive evolution is historically 
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contingent or convergent. There is controversy in the results of different LTEEs 

between Lenski’s group suggesting that evolution is historically contingent [32] 

and others claiming that evolution is convergent and parallel [38,39,136]. Such 

discrepancy may originate from different experimental settings or different 

definitions about molecular ‘convergence’ or ‘contingency’. I determined that the 

dynamics and outcomes of adaptive evolutions in chemostats are highly 

reproducible at the level of nucleotides or genes in early stage of adaptations by 

replaying experimental evolutions in parallel. However, there is a tendency for the 

outcomes at later generations to be more stochastic at the same level of nucleotides 

or genes. From these results, I suggest that convergence and contingency might 

have temporally different contributions to adaptive evolution, as shown in the 

evolutionary dynamics of GAT1. It will be interesting to investigate whether such 

temporally differential effects really exist even in other types of nutrient 

limitations. Longer culturing of yeast as the Lenski group’s did with E. coli will be 

also useful to get a clearer picture regarding this question. 

 

5.2.3. The role of epistasis requires further investigation  

A possible mutual exclusivity seen in the dynamics between alterations in a 

transcriptional regulator, GAT1, and its target gene encoding a nutrient transporter, 

MEP2, is another interesting point to be further explored. Another similar example 

of this is shown in a glucose-limited adaptation study [34,56], where loss of 

function in MTH1 and amplification of HXT6/7 were shown to be mutually 
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exclusive due to reciprocal sign epistasis. In both of these studies, alterations in the 

regulators (GAT1 and MTH1) always precede the amplification of the nutrient 

transporters (MEP2 and HXT6/7) during the course of adaptive evolution. The 

early onset and rapid disappearance of adaptive alleles of such regulators suggest 

that they are a highly recurrent but transient solution in nutrient limited adaptation. 

One mechanism explaining such dynamics might be reciprocal sign epistasis 

between two different groups of alleles, followed by a reversion mutation on the 

alleles of the regulators. Selection of reversion mutations is less likely in general 

but has been shown to be a potentially important mechanism from a case study of 

antibiotic resistance evolution [135]. Moreover, it will be very interesting to 

investigate why alterations in regulators are identified early but amplifications of 

transporters are not detected until later in the evolution experiments. 

 

5.2.4. Medical applications of experimental evolution  

From a broader perspective, experimental approaches used in this study are 

applicable to understanding pathogenic strategies adopted by viruses, microbes and 

even cancer cells in the area of human health [44-46]. For example, cancer is also 

an evolutionary process of clonal somatic populations in human. Clonal evolution 

of tumor cells has been investigated for several decades in theory [47,147] mainly 

due to the lack of fundamental understanding of adaptive evolution and 

experimental means of high-throughput genotyping and/or genetic techniques. 

LTEE studies with microbes can provide novel insights for studying cancer by 
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circumventing such limitations. My dissertation showed that evolving yeast 

populations share many of the properties of tumor evolution including mutational 

heterogeneity and the presence of multiple competing lineages. Notably, repeated 

selection of missense mutations in the DNA binding domain of GAT1 in this study 

is a reminiscent of mutational hotspots in the DNA binding domain of TP53 

frequently found in human cancer evolutions. The comprehensive description of the 

dynamics and molecular basis of adaptive evolution in this study may hold benefits 

for understanding tumorigenesis or evolution of drug resistance in cancer cells. The 

recent advent of single cell sequencing and genetic alteration tools such as 

CRISPR/CAS9 [148] will also be applicable to identify major adaptive alleles in 

cancer cell lines and their functional studies. The combination of population level 

and clonal sequencings for identifying the order of mutations in evolved mutants in 

this study would provide a means of distinguishing ‘driver’ mutations from 

‘passenger’ mutations between primary and metastatic tumor tissues. Moreover, 

LTEE studies with microbes in chemostats can be a basis for designing 

experimental evolution of cancer cells in the lab in order to study their real time 

dynamics, which has not yet been tried in cancer research.  

 

5.2.5. QTL studies 

Finally, this study provides empirical evidence of the impact of epistasis on 

phenotypic variations mediated by quantitative trait loci (QTLs). It is known that 

QTLs are a major determinant for most heritable variations in natural populations  
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[149] but epistasis among such traits is rarely studied mainly due to the lack of 

systematic tools to gain sufficient statistical power. With the advent of recent high-

throughput genomic tools used in this study, it is now possible to relate epistasis 

with phenotypic variations mediated by QTLs in lab evolved and natural 

populations. My study tested the role of epistasis in fitness from laboratory 

evolution under carefully defined growth limiting conditions using chemostats. The 

study of GAT1 evolution and its possible epistatic interaction with amplification 

allele of MEP2 might also be a good example of genetic basis underlying variation 

in gene expression, i.e., expression QTLs. Many phenotyping and genotyping 

assays available are still low-throughput or requires technical improvement for 

better resolution. However, the use of high-throughput fitness assays such as 

synthetic genetic array (SGA) technology [150] or microscopy based fitness assay  

[151,152] are likely to speed the study of these problems using experimental 

evolution studies in microbes.  

 

5.3. CONCLUDING REMARK 

This dissertation provided many fundamental insights about the functional effects 

and dynamics of adaptive variations that are selected under constant selective 

pressures. Experimental evolution in chemostats are powerful models for isolating 

the full spectrum of adaptive alleles and monitoring their mode of action in real-

time in the lab. The recent advent of high-throughput next-generation sequencing 

and genome editing tools now enables more comprehensive molecular level studies 
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of adaptive alleles. High-throughput phenotyping tools are becoming more 

available for their functional studies. One future approach will be to characterize 

natural selection under fluctuating environmental conditions to find a connection to 

the evolution of natural populations in the wild. My study serves as a basis for 

understanding pathogenic strategies of virus or bacteria in animal hosts or the 

evolution of drug resistance in cancer cells. 
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