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ABSTRACT

For a quantitative understanding of adaptive evolution, it is critical to define the rate new genetic
variants are introduced to an evolving population, how selection acts on these variants, and how
they are maintained. Copy number variants (CNVs) are an important class of genetic variation
that contributes to rapid adaptive evolution in scenarios ranging from local adaptation to tumor
evolution. CNVs comprise duplications and deletions of genomic sequence that can result in
large-scale changes in mRNA expression and protein abundance driving their selective
advantage. Although CNVs contribute to inter- and intra-species phenotypic variability and have
been directly linked with human disease, fundamental questions concerning their dynamics and
mechanisms of generation remain unresolved. An impediment to addressing these questions
has been the lack of accurate and sensitive methods to detect and analyze CNVs in complex
evolving populations. Current technology requires that they exist at high population frequency
before they can be identified. To address this challenge, | developed a novel fluorescent
reporter assay to detect, track, and isolate single cells that undergo gene duplication or deletion.
During nutrient limitation in chemostats, CNVs occur in genes encoding high-affinity nutrient
transporters, including the general amino acid permease GAP1. Preliminary data suggest that
GAP1 duplications arise via multiple mechanisms, which makes GAP1 an ideal candidate for
studying both the temporal dynamics of CNVs and how different molecular processes contribute
to their generation, selection, and ultimate fate. In chapter 1, | review the role of CNVs in driving
rapid adaptive evolution across diverse systems and discuss the specific challenges inherent in
studying CNVs. In chapter 2, | quantified the temporal dynamics with which CNVs are generated
and selected at the GAP1 locus, determined the molecular mechanisms underlying CNV
diversity, and defined the role of clonal interference among competing CNV lineages. In chapter

3, | performed a comparative analysis of CNV dynamics by extending the use a CNV reporter to
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other loci: the high affinity glucose transporters HXT6/7 and the high-affinity ammonia
transporter, MEP2. In chapter 4, | explored the use of a reporter for quantifying the rate of a
specific molecular event underlying GAP1 deletion. Together, these studies underscore the
range of processes underlying CNV formation that undoubtedly contribute to the diverse array of
CNV alleles segregating in evolving populations. The broad implications of these findings are

presented in Chapter 5.
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Chapter 1. Copy number variants (CNVs): drivers of
rapid evolutionary change

This chapter is based on the review paper “Copy number variants (CNVs): drivers of rapid
evolutionary change” by Stephanie Lauer, Grace Avecilla, Zoe Lye, Michael Purugganan and
David Gresham. | generated all of the figures and wrote the majority of the manuscript text with
contributions from GA and ZL (excluding the sections “CNVs underlie domestication of plants
and animals” and “Natural populations as emerging models for studying CNVs” which were
written by ZL and GA but edited by me).

1.1: Abstract

Comparative genomics has revealed the pervasiveness of changes in gene copy number
across the evolutionary history of genomes in different organisms. But increasingly, population
surveys of intraspecific variation have illuminated the prevalence of copy number variants
(CNVs) within species. As alleles of large effect, CNVs can drive rapid adaptive evolution over
short evolutionary timescales in diverse scenarios including microbial and pathogen evolution,
domestication, and human adaptation. In multicellular organisms, somatic CNVs can drive
tumorigenesis, exhibiting parallels with evolutionary scenarios. We review recent findings that
have revealed the role of CNVs in adaptive evolution. CNVs represent a unique class of genetic
variation that differ from nucleotide variation in function and population genetics in several
respects. We discuss the unique aspects of CNVs with respect to their dynamics and fate in
populations, the role of antagonistic pleiotropy and the potential effects on cellular homeostasis.
We define open questions, and proposed approaches, to studying the role of CNVs in short term

evolutionary scenarios.



1.2: Introduction

Genomes can vary in both nucleotide sequence and in the configuration and structure of
segments of DNA. Copy number variants (CNVs) are genomic variants consisting of DNA
segments that are increased or decreased in copy number. When inherited through the
germline, this variation can result in variable copy number, or polymorphisms, within
populations. In somatic tissue, mitotic errors can result in somatic variation where cells
containing CNVs are found within an individual. CNVs are ubiquitous in nature and comprise a
significant portion of the human genome: de novo CNVs introduced each generation affect
substantially more DNA than point mutations (ltsara et al. 2010). Among individuals, between
4.8-9.5% of the genome contains CNVs, which are typically less than 3,000 base pairs in length
(Zarrei et al. 2015). However, CNVs can range in size from tens to hundreds of kilobases (Zarrei
et al. 2015; Itsara et al. 2009). Individual CNVs on the order of megabases have also been
identified (Itsara et al. 2009). One single-cell sequencing study demonstrated that at least one
megabase-scale CNV is present in ~10% of human somatic cells (Knouse, Wu, and Amon
2016). Aneuploidy, the duplication or deletion of an entire chromosome, is an extreme case of
copy number variation and has been previously discussed in relationship to cancer (C. J. Ye et
al. 2018; Gordon, Resio, and Pellman 2012), disease (Oromendia and Amon 2014), adaptation
in microbial populations (Pavelka et al. 2010; Mulla, Zhu, and Li 2014), and its effect on
transcription in a diverse range of organisms (Sheltzer et al. 2012).

For the purpose of this review we will consider CNVs as any change in copy number that
comprises less than a whole chromosome. CNVs have previously been defined based on the

length of the sequence that is duplicated or deleted, including >50 (Zarrei et al. 2015), >100
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(Zhang et al. 2009), and >1000 base pairs (Feuk, Carson, and Scherer 2006; ltsara et al. 2009).
Historically, these definitions have been influenced by the resolution of available technologies
used to detect CNVs, such as array-based comparative genomic hybridization (array CGH) and
comparative genome sequencing (lafrate et al. 2004; Sebat et al. 2004; Feuk, Carson, and
Scherer 2006; Korbel et al. 2007). Because CNV detection continues to improve and definitions
based on sequence length are arbitrary, a functional definition for CNVs is required (Xi et al.
2011; MacDonald et al. 2014; F. Zhang et al. 2009). For example, at what size should a deletion
be considered a CNV as opposed to an insertion deletion polymorphism (indel)? Since CNVs
and indels are generated by distinct mechanisms, determining the origin of deletion event could
be used to distinguish between the two types of variants (Carvalho and Lupski 2016;
Garcia-Diaz and Kunkel 2006). However, our understanding of the underlying mechanisms of
CNV and indel formation is insufficiently detailed to enable accurate prediction of mechanisms
solely on the basis of sequence. Therefore, we propose the following definition for CNVs:
polymorphisms resulting in a change in copy number for a functional unit of DNA. Our definition
includes duplication or deletion of a section of DNA containing at least one entire gene, intron,
exon, promoter, enhancer or other regulatory region. As an upper bound we define CNVs as
those events that include less than a chromosome arm. Large-scale duplications or deletions
that encompass more than a chromosome arm are typically considered partial (i.e. segmental)
aneuploidies (Natesuntorn et al. 2015).

CNVs have been identified as the causative agent of several diseases and disorders (F.
Zhang et al. 2009). Because increases or decreases in gene copy number result in altered
mRNA and protein abundance, CNVs can have dramatic effects on cell physiology. Germ-line

CNVs underlie a range of human diseases including Crohn’s disease, autism and several
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developmental disorders (reviewed in (Girirajan et al. 2011; Marshall and Scherer 2012; Polley
et al. 2016). Somatic CNVs contribute to neuronal diversity in both healthy and diseased
individuals (McConnell et al. 2013; Cai et al. 2014; Bruder et al. 2008). Somatic CNVs also have
a role in promoting tumorigenesis; nearly 40% of cancer-related genes are found in CNVs
(Stratton, Campbell, and Futreal 2009; Shlien and Malkin 2009). While CNVs can have negative
phenotypic consequences, they play important roles in evolution, including human adaptation.
CNVs drive adaptation in diverse scenarios ranging from niche adaptation to speciation
(Zuellig and Sweigart 2018; Dhami, Hartwig, and Fukami 2016; K. M. Turner et al. 2017; Geiger,
Cox, and Mann 2010; Stratton, Campbell, and Futreal 2009). CNVs are common in human
populations (Barreiro et al. 2008; Iskow et al. 2012; Zarrei et al. 2015), but are also pervasive
among domesticated and wild populations of animals and plants, (Ramirez et al. 2014; Clop,
Vidal, and Amills 2012; Zmienko et al. 2014), pathogenic and non-pathogenic microbes
(Greenblum, Carr, and Borenstein 2015; Nair et al. 2008; lantorno et al. 2017; Dulmage et al.
2018), and viruses (Gao et al. 2017; Rezelj, Levi, and Vignuzzi 2018; Elde et al. 2012). While
CNVs play an important role across long evolutionary timescales by providing the substrate for
innovation and gene family expansion, they also drive rapid adaptation in response to stress
and changes in the environment. As alleles of large effect, CNVs can have dramatic effects on
phenotype and organismal fithess. The goal of this review is to discuss our emerging view of
CNVs and their role in evolutionary processes, while simultaneously highlighting the unique

aspects of CNVs as a source of genetic variation and the challenges of studying them.
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1.3: Functional effects of CNVs

Susumo Ohno and others (Ohno 1970; Austin L. Hughes 1994; R. P. Anderson and Roth
1977) highlighted the role of gene duplication in generating evolutionary novelty and diversity
over long time scales (Conant and Wolfe 2008; J. B. Walsh 1995; B. Walsh 2003; M. Lynch and
Force 2000; Michael Lynch and Conery 2000). Importantly, CNV formation can also have
immediate consequences for organismal fithess (Figure 1.1). CNVs are alleles of large effect
with a single CNV affecting 10?>-10° base pairs of DNA, compared with 1 base pair for single
nucleotide variants (SNVs). Since CNVs typically encompass large regions of the genome, they
can affect multiple protein-coding genes and regulatory regions simultaneously. Large
duplications and deletions leading to increases or decreases in gene dosage can subsequently
result in widespread protein abundance changes (reviewed in (A. M. Rice and McLysaght 2017;
Tang and Amon 2013). CNVs can affect neighboring loci, leading to concomitant increases or
decreases in expression for genes outside the CNV boundary (Molina et al. 2008; Merla et al.
2006). CNVs can also have effects in trans, by changing the expression of distal transcripts
(Gamazon, Nicolae, and Cox 2011), by affecting global levels of transcription (Henrichsen et al.
2009), and by changing the topology of chromatin organization (Lupianez, Spielmann, and

Mundlos 2016; Lupiafez et al. 2015; Franke et al. 2016).
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Figure 1.1. Functional consequences of copy number variation. Four different genes are represented
by the letters A, B, C, and D and an active promoter is represented by arrows. CNVs can cause
phenotypic consequences through several different mechanisms, a few of which are depicted here. CNVs
can affect gene dosage by directly altering transcript and protein abundance. During formation of CNVs,
juxtaposition of two sequences can result in the formation of a chimeric transcript (for example, a
combination of gene A and B). Position effects can result in promoter capture events, where the
duplicated copy acquires altered regulation by a non-native promoter (here, the promoter from gene A
regulates expression of gene B).

In addition to the gene expression changes described above, CNVs can affect the fitness
of an organism through other mechanisms (Figure 1.1). A recent study proposed that gene
duplications can increase fitness by buffering fluctuations in gene expression (Rodrigo and
Fares 2018). Similarly, gene duplications can mask deleterious mutations (Gu et al. 2003) or
promote heterozygote advantage (Sellis et al. 2016). It has also been proposed that gene
duplication can resolve genetic conflicts arising due to sexual antagonism, where sex-biased
fitness effects are constrained by genes shared between both sexes (Connallon and Clark
2011). While CNVs are often thought of as a substrate for future innovation through duplication
and subsequent divergence, de novo CNVs can immediately provide new functionality. For
example, gene duplications, deletions, and unbalanced translocations can lead to the formation
of chimeric genes (Rippey et al. 2013; Mayo et al. 2017; Arguello et al. 2006; Aigner et al. 2013;
Schrider et al. 2013). Therefore, CNVs can drive important adaptive innovations during
short-term evolutionary scenarios.

We typically think of CNVs as protein-coding gene deletions or duplications, however,
adaptive copy number changes in intergenic sequences have also been identified. CNV
formation can result in position effects that disrupt or modify regulatory elements (Koszul et al.
2004; Chan et al. 2010). Promoter capture, where spatial re-arrangement of an amplified DNA
segment leads to its regulation by a different promoter (Figure 1.1), has been observed
repeatedly in diverse systems (Usakin et al. 2005; Adam, Dimitrijevic, and Schartl 1993;
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Whoriskey et al. 1987). During Richard Lenski’'s long term evolution experiment, promoter
capture enabled E. coli cells to grow aerobically on citrate (present as a chelating agent, not a
nutrient source), which greatly increased the effective population size (Blount, Borland, and
Lenski 2008). This adaptive innovation involved tandem duplication and subsequent co-option
of the rnk promoter, allowing expression of a citrate transporter gene under aerobic conditions
where it is normally repressed (Blount et al. 2012). Similarly, a 500 base pair deletion in a key
regulatory region leads to adaptive morphological phenotypes in freshwater populations of
stickleback fish (Bell 1987; Chan et al. 2010). Intron 1 amplifications for the gene encoding
SOX5, an important developmental transcription factor, lead to the cold-adapted Pea-comb
phenotype in chickens (Wright et al. 2009). In humans, intronic CNVs have been associated
with decreases in lifespan (lakoubov et al. 2013) and disease (H.-S. Lee et al. 2014; Tsai et al.
2016). In a recent comparative study between exons and introns, intronic deletions were the
most common CNV, with 20% of ancient human genes (pre-tetrapod lineages) showing variation
in intron length, and with many of these intronic deletions associated with expression-QTLs
(Rigau et al. 2018). Collectively, these findings demonstrate that a single class of mutation can
provide a range of functional effects and adaptive phenotypes.

Determining the functional consequences of a CNV remains challenging. Empirical tests
such as competition assays can be used to directly measure the fithess effect of CNVs (Payen
et al. 2014; Gresham et al. 2010). However, determining which individual gene duplications or
deletions within a large CNV allele contribute directly to phenotypic effects requires testing of
individual candidate loci (Payen et al. 2014; A. Selmecki et al. 2008). As a result, functional
studies typically rely on well-characterized CNVs that have been directly implicated in

adaptation through multiple lines of experimental evidence. As alleles of large effect, CNVs are
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also more likely to result in pleiotropy, where one mutation simultaneously influences multiple
phenotypic characteristics (Gamazon and Stranger 2015). Thus, resolving the genetic basis of
complex traits becomes increasingly difficult, especially in natural populations. For example,
causal associations can be obscured by SNPs that are in linkage disequilibrium with CNVs
(Parkes et al. 2007; McCarroll et al. 2008). CNVs can affect gene expression in cis and in trans,
as described above, which further complicates direct associations to genes within copy number
variable regions. Dosage compensation mechanisms can prevent correlated increases in gene
expression across the entire CNV allele, further altering the expression landscape (Stenberg
and Larsson 2011; Torres et al. 2010; Stingele et al. 2012). Profiling gene expression may
therefore be integral to determining all the functional effects of a CNV. In addition, CNVs
themselves can be polymorphic within populations (i.e., the same gene is routinely duplicated,
but different variants include variable lengths of the chromosome and adjacent genes (Figure
1.2). Because of this, CNVs segregating within populations can have different fitness benefits

and trade-offs in alternative environments (Valdivia-Anistro et al. 2015; Lauer et al. 2018).
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Figure 1.2. Copy number variant alleles segregating within populations can be polymorphic. This
schematic demonstrates several different ways that gene B can be duplicated, leading to the formation of
distinct CNV alleles. Four different genes are represented by the letters A, B, C, and D. Red dashed lines
represent left and right breakpoints for each CNV event. (A) A simple CNV event where only gene B is
duplicated to produce a second copy B’. (B) A CNV event where genes A and B are both duplicated. (C)
A more complex event that includes genes B, C, and D, leading to duplicate copies B’, C’, and D'. (D) A
CNV event with breakpoints inside genes A and B, interrupting the function of both duplicate copies. Only
B’ is functional. (E) A non-reciprocal translocation event in which gene B is copied to chromosome II.

1.4: A variety of mechanisms generate CNVs

CNVs are formed through complex and diverse processes, but the molecular basis of
these events is not well understood (see (Hastings, Lupski, et al. 2009; Reams and Roth 2015)
for excellent reviews). CNVs can be generated through replication errors (Koszul et al. 2004;
Cardoso-Moreira, Arguello, and Clark 2012; Chen et al. 2015) that involve template switching
(Slack et al. 2006), sequence microhomology (Hastings, Ira, et al. 2009), and/or the generation
of extrachromosomal circles or circular intermediates (Gresham et al. 2010; Brewer et al. 2011,
2015; Mgller et al. 2015; Cohen and Segal 2009; K. M. Turner et al. 2017). Replication stress
has been directly linked to increased generation of CNVs in human cells, including variants
associated with disease and tumorigenesis (S. G. Durkin et al. 2008; Arlt et al. 2009). The
extent of replication-mediated CNV formation may have been previously underestimated, since
many early studies focused on recurrent disease-related variants formed by non-allelic
homologous recombination, which can be easier to detect and characterize.

Non-allelic (or “illegitimate”) homologous recombination between repetitive sequences is
a major driver of CNV formation. In prokaryotes, small insertion sequence (IS) elements are
flanked by long terminal repeats (LTRs) (Siguier, Gourbeyre, and Chandler 2014; Briigger et al.
2002), which are also frequently found in the yeast genome (Carr, Bensasson, and Bergman

2012). Many eukaryotes have longer repetitive elements including segmental duplications,
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which are >1 kilobase in size and are dispersed throughout the genome (Eichler 2001).
Extensive homology between repetitive sequences enables recombination and can lead to
increases or decreases in copy number (Peng et al. 2015). Recurrent CNVs, which repeatedly
occur in specific regions of the genome, typically underlie re-occurring germline mutations and
human disease (Itsara et al. 2009; Girirajan, Campbell, and Eichler 2011). Current evidence
suggests that CNVs are enriched in pericentromeric and subtelomeric chromatin (Zarrei et al.
2015), and that recurrent CNVs arise due to specific features of the neighboring genomic
sequence including: repetitive elements (Farslow et al. 2015), tRNA genes (Bermudez-Santana
et al. 2010), origins of replication (Di Rienzi et al. 2009), and replication fork barriers (Labib et al.
2007). Stress can lead to increases in genome-wide mutation rates in both bacteria and yeast
(Foster 2007; Galhardo, Hastings, and Rosenberg 2007; Shor, Fox, and Broach 2013), and
active transcription units may play a role in elevating mutation rates and generating these
hotspots (Thomas and Rothstein 1989; Skourti-Stathaki and Proudfoot 2014; Wilson et al.
2015). Increases in the rate of transcription lead directly to amplification of the rDNA and other
loci (Jack et al. 2015; Hull et al. 2017). Together, these findings demonstrate that certain regions
of the genome are more susceptible to mutation. Understanding the full repertoire of
mechanisms that underlie CNV formation and whether these processes can be directly

stimulated by the environment are important open questions in the field.

1.5: The role of CNVs in driving rapid adaptive evolution

CNVs were first characterized early in the 1900s, with much of the research focusing on
Drosophila (Sturtevant 1925) and the theoretical, long-term consequences of gene duplication

(reviewed in (Taylor and Raes 2004). Later work in the 1970s and 1980s revealed the extent of
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gene family expansions, whole genome duplications, and polyploidy in natural populations
(Stuber and Goodman 1983; Ferris and Whitt 1979; Avise and Kitto 1973; Hopkinson, Edwards,
and Harris 1976; Schughart, Kappen, and Ruddle 1989). Here, we discuss adaptive CNVs,
which explicitly provide fitness benefits to competing individuals. Below we review the
identification of adaptive CNVs and cases in which these variants drive short-term, or rapid,

adaptation.

1.5.1: Experimental evolution reveals CNVs as a major source of
adaptation

The highly controlled and replicated selective conditions of laboratory evolution provides
an efficient means of gaining insight into evolutionary processes (Lenski et al. 1991; Good et al.
2017). CNVs are an important mechanism of adaptation in these regimes where organisms are
subjected to a strong, well-defined selective pressure. A subset of these experiments have
focused on the adaptive response to nutrient limitation using chemostats. Depending on the
specific limiting nutrient, CNVs including the gene encoding for that nutrient transporter were
routinely identified and directly linked to increases in fitness. This includes Saccharomyces
cerevisiae limited for carbon, phosphorus, nitrogen, and sulfur (Brown, Todd, and Rosenzweig
1998; Hansche 1975; Gresham et al. 2008; Hong and Gresham 2014), as well as Salmonella
typhimurium under different carbon limitations (Sonti and Roth 1989), and Escherichia coli
limited for lactose (Horiuchi, Horiuchi, and Novick 1963). CNVs in genes encoding nutrient
transporters have also been identified in natural populations (Dhami, Hartwig, and Fukami 2016;
Kettler et al. 2007), including species of the human gut microbiome (Greenblum, Carr, and

Borenstein 2015). These CNVs are adaptive through direct increases in gene dosage that
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increase the effective number of transporters on the cell membrane. Importantly, CNVs are not
typically reported during experimental evolution in batch culture. Batch culture requires daily
dilution, which leads to cycles of boom and bust. These fluctuations in population size and
nutrient content result in a complex and dynamic environment where the selective pressure is
inconsistent and poorly defined (Gresham and Hong 2014).

Evolution experiments have been performed with other model organisms including the
worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. In contrast to microbial
evolution experiments where asexual propagation is routinely used, these organisms can
reproduce sexually, leading to important insights for evolutionary processes. A study using C.
elegans imposed 200 generations of selection for recovered fecundity after reduced productivity
due to mutation accumulation and inbreeding. Duplications and deletions increased in frequency
over time, and CNVs were enriched for genes related to reproduction and development
(Farslow et al. 2015). CNVs spanning the same region were observed in many replicate
populations, suggesting that CNVs containing specific genes were under strong positive
selection. One duplication and one deletion with the exact same breakpoints were found in
several experimental populations and a control population. This high rate of recurrent CNV
formation suggests that mutation at this locus can have as large of an impact as selection
(Farslow et al. 2015; Lipinski et al. 2011). Researchers also noted that the median size of
duplications was larger (191.5 kb) than duplications found in a prior mutation accumulation
experiment (2 kb), a trend that was recapitulated for deletions (Lipinski et al. 2011). Genomic
analysis of a fly line reared in darkness for 1400 generations found about 150 putative CNVs.
One verified CNV contained a 500 base pair deletion within CG459, a gene of unknown function

whose mammalian homologues are involved in fatty acid metabolism in the mitochondria (Izutsu

12


https://paperpile.com/c/wlhFlH/Pabzi
https://paperpile.com/c/wlhFlH/Pabzi+fStPE
https://paperpile.com/c/wlhFlH/fStPE
https://paperpile.com/c/wlhFlH/svUIz

et al. 2012). Despite their importance and prevalence in Drosophila populations (Zichner et al.
2013), CNVs are not as frequently addressed as SNVs in many evolution experiments (Burke et
al. 2010; T. L. Turner et al. 2011; Zhou et al. 2011; Remolina et al. 2012; Jalvingh et al. 2014;

Kang et al. 2016), and should be considered an active area of research for further study.

1.5.2: CNVs drive adaptation in response to extreme environments

CNVs have played an important role in adaptation to stressful environments across the
domains of life. In microbial systems, CNVs promote heat tolerance in E. coli (Riehle, Bennett,
and Long 2001; Christ and Chin 2008) and metal tolerance in various wild species: the heavy
metal resistant bacterium Cupriavidus metallidurans (von Rozycki and Nies 2009), Ralstonia
pickettii in copper-contaminated lakes (Yang et al. 2010), and strain-specific arsenite resistance
in the fungal pathogen, Cryptococcus neoformans (Chow et al. 2012). Tandem duplications of
the CUP1 locus in yeast are important for copper tolerance in both laboratory-evolved and
natural populations of S. cerevisiae (Fogel et al. 1983; Y. Zhao et al. 2014; Adamo et al. 2012),
and may be directly stimulated by copper exposure (Hull et al. 2017). CNVs are responsible for
frost tolerance in certain varieties of wheat (Zhu et al. 2014) and duplication of the Bot1 gene, a
boron efflux transporter, confers tolerance of high boron soils in barley (Sutton et al. 2007).

Cultured human cells generate de novo copy number variants after exposure to toxic chemicals
and ionizing radiation (Arlt et al. 2011, 2014). Archaea have specifically adapted to extreme

environments (for example, high salt tolerance), and one potential mechanism underlying this
adaptation is through large-scale genome amplifications that lead to coordinated up-regulation

of gene expression (Dulmage et al. 2018). While we do not discuss it here, increases in ploidy in
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archaea, bacteria, and S. cerevisiae may be generally adaptive during stress (A. M. Selmecki et

al. 2015; Scott et al. 2017; Zerulla and Soppa 2014; Pecoraro et al. 2011).

1.5.3: CNVs underlie domestication of plants and animals

CNVs have been recognized as the underlying causal variants for many domestication
traits. Domestication is a well-studied example of recent adaptive evolution, as humans
controlling plant and animal reproduction (as a means of improving their own fitness) create a
strong selective pressure (Meyer and Purugganan 2013). Domestication traits include loss of
seed shattering in many grain crops, and development of docile behaviors in animals. These
traits can improve local adaptation or arise as a result of cultural preference. Selection for
culturally preferred traits, such as coat color, are characterized by higher selection coefficients in
the later stages of domestication (Meyer and Purugganan 2013). For example, in both cows and
pigs, the KIT gene is duplicated causing white coat color (K. Durkin et al. 2012; Giuffra et al.
2002). Similarly, variation in coat color is caused by duplication of Agouti signaling protein gene
in both goats and sheep (Norris and Whan 2008; Fontanesi et al. 2009). Domestication variants
caused by CNVs in this category represent a clear example of how CNVs can contribute to
rapid adaptation.

In addition to directed selection based on human preference, there are climatic and
dietary changes associated with domesticated species. Control of flowering time across different
climates is important for the reproductive success of plants. The geographical distribution of
CNV genes in winter wheat populations demonstrate the role of CNVs in this process. Increased
copy number of the Photoperiod-B1 (Pbd-B1) gene causes early flowering, allowing plants in

warmer climates to escape summer drought (Wirschum et al. 2015). Conversely, increased
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copy number of Vernalization-1 (Vrn-1) lengthens the required period of cold exposure before
flowering and is more common in temperate environments (Wurschum et al. 2015). Similarly,
the copy number of amylase genes among different dog populations has been associated with
the dietary starch content of regional human diets (Reiter, Jagoda, and Capellini 2016).
Duplication of the salivary amylase gene (AMY1) improves starch digestion, and in humans,
provided one of the first examples of CNVs under positive selection (Perry et al. 2007). AMY1
duplications are beneficial for human populations living in agricultural societies and facilitated an
adaptation to this change in human dietary history. During domestication, amplification of the
amylase gene similarly underwent positive selection when dogs began to share in a starch rich

diet with humans (Axelsson et al. 2013).

1.5.4: CNVs arm pests and parasites in the coevolutionary arms race

Pathogenic microbes often have CNVs containing genes that increase virulence or
promote antibiotic resistance. The first discoveries of CNVs conferring antibiotic resistance were
identified as tandem amplifications on plasmids in the bacteria Proteus mirabilis (Rownd and
Mickel 1971; Periman and Rownd 1975) and Enterococcus faecalis (Clewell, Yagi, and Bauer
1975; Yagi and Clewell 1976), and as chromosomal amplifications of B-lactamase in E. coli
(Normark et al. 1977). Other examples of CNVs conferring antibiotic resistance in bacteria are
discussed in (Sandegren and Andersson 2009). CNVs also provide resistance to antifungals in
Candida glabrata (Marichal et al. 1997) and Candida albicans (A. Selmecki et al. 2008). In the
latter study, increases in drug resistance were associated with the formation of an
isochromosome comprised of two copies of the left arm of chromosome 5 (A. Selmecki, Forche,

and Berman 2006), indicating that CNVs involved in large, structural genomic alterations can
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have important adaptive effects. The bacteria Renibacterium salmoninarum is a pathogen found
in salmonid fish that has detrimental effects on both salmon farming and conservation. CNVs
encoding multiple virulence factors have been identified (Rhodes, Coady, and Deinhard 2004;
O’Farrell and Strom 1999), and the authors of one study hypothesized that strong selective
pressures have led to multiple, independent events that generated these CNVs in R.
salmoninarum (Brynildsrud et al. 2016). Similarly, adaptive CNVs that promote virulence have
been identified in double-stranded DNA viruses including the poxvirus, vaccinia (Elde et al.
2012; Cone et al. 2017) and may represent a generally applicable and frequent mechanism of
dsDNA viral evolution (Gao et al. 2017; Bayer, Brennan, and Geballe 2018).

CNVs promote virulence and antibiotic resistance through diverse mechanisms. CNVs in
membrane-bound transporters important for drug resistance have been identified in the
unicellular eukaryotic parasites Leishmania (lantorno et al. 2017; Mary et al. 2010; Monte-Neto
et al. 2015), Trypanosoma (Vincent et al. 2010) and Plasmodium (Nair et al. 2007; Sidhu et al.
2006; Barnes et al. 1992; Suwanarusk et al. 2008). One study looking at clinical isolates of
Leishmania found that copy number at the DNA level accounted for more than 85% of gene
expression variation among differentially expressed genes, of which membrane-bound
transporters were among the most highly differentially expressed (lantorno et al. 2017). While
CNVs are important for up-regulation of membrane bound transporters such as efflux pumps,
CNVs can confer drug resistance through additional mechanisms including the over-production
of metabolic enzymes in targeted pathways (Nair et al. 2008; Marichal et al. 1997; Brochet et al.
2008) and the degradation or sequestration of antibiotic (Dumetz et al. 2018; Leprohon et al.
2009). One proposed mechanism of antibiotic resistance for Streptococcus pneumoniae and

other bacteria involves replication fork stalling such that early-replicating, origin-proximal genes
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are transiently up-regulated. Up-regulation of origin-proximal genes increases competence,
which allows uptake of exogenous beneficial DNA such as drug-resistant plasmids (Slager et al.
2014). Secondary, compensatory CNVs that reduce the fithess burden of a primary antibiotic
resistance mutation have also been identified in Salmonella enterica (Nilsson et al. 2006).

CNVs have been shown to aid in endowing insects with pesticide resistance. Mosquitos
are a major pest and act as a vector of numerous diseases that affect millions of people each
year (Benelli 2015). Insecticides are important for controlling these pests and the spread of
vector-borne disease, but many mosquito populations have developed insecticide resistance. In
at least two mosquito species that are disease vectors, amplification of detoxification genes
including cytochrome P450s and esterases has been associated with resistance (Riveron et al.
2013, 2014; Itokawa et al. 2010; Mouches et al. 1986). Arthropod pests such as Lucilia cuprina,
a blowfly, pose additional problems for agriculture. L. cuprina is a major pest of sheep
populations in Australia and New Zealand, and there have been extensive attempts to eradicate
using different organophosphates since the early 20th century (Mackerras 1936), with
resistance developing rapidly thereafter. A study investigating multiple resistance in 41 strains of
blowflies found that a duplication in the gene LcaE7, which encodes an esterase, had arisen in
7 strains. Within these, six shared at least one haplotype, and one strain had two unique
haplotypes, suggesting that the duplication arose at least twice independently (Newcomb et al.
2005).

Conversely, polymorphic CNVs segregating within human populations can protect from
parasites and infectious disease. Deletion alleles of the alpha-globin genes HBA1 and HBA2
protect against malaria and can be found at 20% population frequency in areas where malaria is

endemic (Williams et al. 2005; Mockenhaupt et al. 2004; May et al. 2007). Additional CNVs are
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likely to be involved in susceptibility to malaria infection (Faik, de Carvalho, and Kun 2009).
Erythrocyte receptor genes CR1 and the glycophorins GYPA, GYPB, and GYPE are copy
number variable among individuals and might affect the ability of Plasmodium falciparum to
invade host cells (reviewed in (Hollox and Hoh 2014). CNVs have been implicated in
susceptibility to a variety of other diseases including hepatitis C, tuberculosis, and HIV (Hollox

and Hoh 2014).

1.5.5: Natural populations as emerging models for studying CNVs

While empirical studies performed in laboratory settings are important for determining
the role of CNVs in adaptive evolution, there are a few caveats. Natural environments are
complex, and can fluctuate (for example, in temperature, predation rates, or nutrient content).
Even subtle variations in the environment can cause selective pressures to vary, or can increase
the consequences of antagonistic pleiotropy. This is in direct contrast to adaptive laboratory
evolution and even domestication, where a single, strong selective pressure is applied. In a
recent study using Leishmania, the authors detected whole-chromosomal aneuploidies as major
drivers of adaptation during in vitro culture, but identified smaller CNVs from clinical isolates
adapting in the field (Bussotti et al. 2018). Field studies that examine the role of CNVs in situ are
integral to a comprehensive understanding of the role of CNVs in adaptation.

The three-spined stickleback fish, Gasterosteus aculeatus, is a model for molecular
divergence and adaptive evolution in natural environments. This fish occupies both marine and
freshwater habitats throughout the northern hemisphere. Since the last Ice Age (~11,700 years
ago), marine sticklebacks have repeatedly colonized freshwater lakes and streams in the

northern hemisphere in formerly glaciated regions, resulting in many independent parallel
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evolutions of adaptive phenotypes (Bell and Foster 1994). Hybridization between marine and
freshwater populations allows genetic mapping of phenotypes (Chan et al. 2010; Peichel and
Kingsley 2006; Colosimo et al. 2005; C. T. Miller et al. 2007), and the generation of a reference
genome allows for comparative genomic analyses (Jones et al. 2012; Chain et al. 2014; Hirase,
Ozaki, and Iwasaki 2014).

The first adaptive CNV in sticklebacks to be described was the deletion of a tissue
specific regulatory enhancer of the Pituitary homeobox transcription factor 1 (Pitx1) gene (Chan
et al. 2010). In marine species (the ancestral phenotype), the pelvic girdle is articulated with
prominent serrated spines. Over two dozen freshwater populations have lost this structure (Bell
1987) because of a deletion in a 500 base pair regulatory region that drove expression of Pitx1
in the pelvis (Bell 1987; Chan et al. 2010). Multiple independent freshwater populations have
Pitx1 enhancer deletions ranging in size from 488-1868 base pairs, and a reduction in
heterozygosity around this locus which is a signature of selection (Bell 1987; Chan et al. 2010).
Subsequent studies discovered significant standing CNVs in the marine (ancestral) populations
(Feulner et al. 2012), and that these CNVs were adaptive and underwent positive selection
during the transition to freshwater environments (Hirase, Ozaki, and Iwasaki 2014; Chain et al.
2014). In one comparative study between 20 stickleback genomes from marine environments
across the northern hemisphere and 20 from freshwater environments, the authors identified 24
genes with significant differences in copy number (Hirase, Ozaki, and Iwasaki 2014). Among
these were genes with roles in pathogen immunity and migration/brooding behavior, which could
represent adaptations to novel life histories in freshwater lakes (Hirase, Ozaki, and lwasaki

2014). Further studies will illuminate the role of CNVs in freshwater adaptation.
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Arabidopsis lyrata is a small flowering plant closely related to the model organism A.
thaliana which can be found in varied habitats throughout temperate and subarctic regions of
the northern hemisphere (Hu et al. 2011). A study that compared two A. lyrata populations in
serpentine soil, which has high heavy metal content and low mineral nutrients, to two
populations from non-serpentine soils found that there were many CNVs in the serpentine
populations: 94 duplications and 373 deletions. These CNVs included several genes involved in
toxic compound extrusion and genes shown to protect roots from inhibitory compounds in A.
thaliana (T. L. Turner et al. 2010). However, because the researchers only looked at four
populations, they could not draw broad conclusions about the population genetics of CNVs in
adaptation to serpentine soils. A. lyrata populations have independently colonized serpentine
soils many times, and are often found near non-serpentine populations that can be used for
comparison. Because A. lyrata is an outcrossing species, populations will show stronger local
adaptation and these signals will be easier to detect than in the selfing model A. thaliana (Yant
and Bomblies 2017). However, the abundance of resources and knowledge about A. thaliana
will allow comparative and experimental elucidation of the mechanisms of adaptation in A.
lyrata. Comparisons of CNVs segregating in both A. thaliana and A. lyrata may also allow
inferences of which CNVs were segregating in ancestral populations and which CNVs arose de
novo.

The species discussed above are particularly tractable for further studying the adaptive
role of CNVs in natural populations. They have high quality reference genomes available, are
comprised of recently diverged populations that can still interbreed, and natural selection has
produced distinct phenotypes for well-defined ecological niches. These features enable genetic

mapping of traits under selection and provides an opportunity to dissect fithess contributions by
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measuring the variance explained by QTL. Parallel divergences between many different
population pairs allows for the study of parallel adaptations at phenotypic and genetic levels, as
well as the population dynamics underlying generation and selection of CNV alleles. By studying
CNVs in these species and others like them, we may begin to understand generalizable

characteristics of CNVs in natural evolving populations.

1.6: Population genetics of CNVs

1.6.1: Challenges for identifying CNVs under selection in evolving
populations

Successful and accurate identification of CNVs is a serious challenge in the field. CNVs
can be difficult to detect, especially if they are present at low population frequency or if they
have been segregating in wild populations for many generations. Mutations can accumulate on
copies of the duplicated gene and have various effects. A dominant negative mutation can
promote selection for reduction back to a single copy (Cooke et al. 1997). SNVs and indels can
change the function of copies, leading to processes such as pseudogenization,
subfunctionalization or neofunctionalization (Ohno 1970; R. A. Jensen 1976; A. L. Hughes 1994;
Force et al. 1999). These processes can promote the maintenance of amplification by requiring
all copies for full gene function (subfunctionalization) or by acquiring new functions that have a
selective benefit (neofunctionalization). However, mutations in divergent gene copies can be
homogenized by interlocus gene conversion (J. B. Walsh 1987), which drives concerted
evolution of gene duplicates (Dumont 2015; Hartasanchez et al. 2014) and affects our ability to

accurately date the origin of a duplication (Pan and Zhang 2007). The interplay between
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different types of mutations and their effects on divergent gene copies requires further study,
especially with respect to the ultimate fate of a CNV in evolving populations.

Issues of CNV detection are compounded when determining whether or not a CNV is
under selection. While there are many established metrics to identify signatures of selection for
SNVs (Helyar et al. 2011; Leinonen et al. 2013; Stapley et al. 2010), there is less consensus on
how to determine if selection is acting on CNVs. The relative roles of selection vs. neutral
evolution (often referred to as “drift”) remain a hot topic of debate (Kern and Hahn 2018; Yoder
et al. 2018; de Koning and De Sanctis 2018). Understanding the relative roles of these
processes, as well as conducting further studies on the dynamics of selection (e.g. determining
whether mutations are undergoing hard vs. soft sweeps), are often dependent on identifying
when selection has acted on the genome. Studies of natural populations have employed a
variety of techniques to infer selection on CNVs including: comparing the level of nucleotide
change in CNVs compared to non-CNV genes (Chain et al. 2014), comparing maps of regions
under selection as determined by SNVs (Roudnitzky et al. 2016), and identifying loss of
heterozygosity or linkage disequilibrium around a CNV (Lowe et al. 2018; Conrad et al. 2010;
Cardoso-Moreira et al. 2016). Other studies have identified CNVs under selection through
associations with traits known to be under selection (Perry et al. 2007) or ecological variables
(Lowe et al. 2018). Another method incorporates distribution of allele frequencies in order to
determine the role of selection (Emerson et al. 2008). We know that at least some of these
methods are problematic, as was illustrated by a study in which researchers found that fewer
than 20% of their CNV associations had a corresponding SNV association (Stranger et al.
2007). We believe that a major area of research now and in the future will be determining the

proper metrics for identifying CNVs under selection and their phenotypic associations,
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especially in a high-throughput manner and in a way that does not just consider protein coding

regions.

1.6.2: The population dynamics of CNVs

Gene duplications and deletions occur at a higher rate than single nucleotide variants
(SNVs). Early on, researchers studying gene duplications, including the bar mutation, noticed
this phenomenon (Sturtevant 1925). A clever genetic screen in E. coli revealed that mutation
rates were high and that cells with amplifications quickly rose to a high frequency (Cairns and
Foster 1991; Hastings et al. 2000). Reported frequencies of duplications per locus per
generation range from 102 to 10° in E. coli and Salmonella (R. P. Anderson and Roth 1977;
Horiuchi, Horiuchi, and Novick 1963; Reams et al. 2010; P. Anderson and Roth 1981; Starlinger
1977; Langridge 1969), 10° in yeast (Michael Lynch et al. 2008), 10* to 10° in Drosophila
(Gelbart and Chovnick 1979; Shapira and Finnerty 1986), and 10° to 107 in human sperm (Lam
and Jeffreys 2006; D. J. Turner et al. 2008). Further discussion of CNV formation rates are in
(Katju and Bergthorsson 2013).

While these early estimates indicated that CNVs occurred at high rates, the dynamics
with which CNVs undergo selection in evolving populations remain relatively unknown. Recent
studies in S. cerevisiae demonstrate that CNVs arise early and predictably, then rise to high
population frequency during many independently replicated evolution experiments (Gresham et
al. 2008; Payen et al. 2014; Lauer et al. 2018). This striking degree of parallelism has also been
seen in other systems: the algae Chloralla variablis co-evolving with a virus (Frickel et al. 2018)
and Caenorhabditis elegans undergoing experimental evolution for increased fecundity (Farslow

et al. 2015). CNVs have been identified early at high frequency during other evolution
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experiments: after just 5 generations of heat stress at 28°C, researchers observed CNVs
affecting hundreds of genes in A. thaliana, 52% of which were genes duplicated in tandem
(DeBolt 2010). In one study with Salmonella, the steady-state population frequency of cells with
duplications reached 20% by generation 48 of chemostat culture (Sun et al. 2012).

Segregating CNVs can undergo positive selection and become fixed in a population
(Cardoso-Moreira et al. 2016; Kondrashov et al. 2002; Kondrashov 2012). However, the relative
importance of “hard” vs. “soft” selective sweeps during rapid evolution is a major question in the
field of population genetics (Messer and Petrov 2013; J. D. Jensen 2014; Harris, Sackman, and
Jensen 2018). Hard sweeps occur when a single de novo variant arises and increases to
fixation in a population (Smith and Haigh 1974), while soft sweeps occur when multiple adaptive
alleles increase in frequency in a population at the same time (soft sweeps could refer to
selection on existing variation and/or recurrent de novo mutation, but usually refers to the
former) (Hermisson and Pennings 2005; Nair et al. 2007). Population genetics models have
historically assumed mutation limited scenarios and therefore a prevalence of hard sweeps, but
it is becoming apparent that rapid adaptation is actually more often facilitated by soft sweeps
(Messer and Petrov 2013). SNVs have been the focus of the majority of population genetic
studies investigating selective sweeps while the role of CNVs in selective sweeps is rarely
considered.

Since CNVs tend to have both a higher mutation rate and larger effect size than SNVs,
the relative frequency of hard vs. soft sweeps in CNVs may not be the same. Evidence from
sticklebacks (Chain et al. 2014), humans (Conrad et al. 2010), and microbial populations (Nair
et al. 2007; Payen et al. 2014; Lauer et al. 2018) suggests that soft sweeps are also a dominant

mode of adaptation for CNVs, but not at the exclusion of hard sweeps. Further studies in both
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laboratory and natural populations are needed to address this question. Additionally, it is of
interest to discover how much of rapid adaptation is facilitated by selection on standing variation
versus de novo variation, that is, the relative impact of “survival of the fittest” and “arrival of the
fittest” (Gruber et al. 2012). Studies in bacteria (R. P. Anderson and Roth 1977; Sonti and Roth
1989) and yeast (Lauer et al. 2018) demonstrate that both forms of variation are likely to
contribute. Additional studies show that there is a significant amount of apparently neutral CNVs
in populations (Zarrei et al. 2015), and that when environments change, selection acts on this
variation (Chain et al. 2014d). This may be because more CNVs tend to be neutral or nearly
neutral more often than previously believed, or it may be that the high mutation rate of CNVs
leads to a large supply.

Non-additive, or epistatic, interactions can constrain the outcome and order of mutational
events during adaptive evolution (D.-H. Lee and Palsson 2010; Chou et al. 2011; Khan et al.
2011). However, interactions between beneficial SNVs and CNVs remain largely
uncharacterized and it is unclear whether the principles governing epistasis among SNVs are
maintained for these interactions. In one laboratory evolution experiment where S. cerevisiae
was grown in glucose-limited conditions, two independent adaptive mutations were identified: a
loss-of-function mutation in MTH1, which negatively regulates glucose-sensing signaling
pathways, and duplication of the high-affinity hexose transporters HXT6/7 (Kvitek and Sherlock
2011). When combined, these two mutations produced a strain less fit than the ancestor,
resulting in negative epistasis (Kvitek and Sherlock 2011). The authors hypothesized that both
mutations lead to an over-production of glucose transporters on the cell membrane. A neutral
large-scale duplication potentiated an adaptive deletion in E. coli (Maharjan et al. 2013),

demonstrating that there can also be epistatic relationships among two CNV alleles.
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Co-occurence of two CNV alleles has been observed in other systems, including CNVs in two
virulence factors for the fish pathogen, R. salmoninarum (Brynildsrud et al. 2016). Further
studies are required to disentangle the potential effects of positive and negative epistasis among

CNVs and between CNVs and SNVs.

1.7: Consequences and costs of CNVs

CNVs can have dramatic consequences for organismal fithess because they are very
rarely duplications or deletions encompassing a single gene. While tandem duplications or gene
amplifications may be targets of selection due to a single adaptive locus, additional
protein-coding genes and intergenic sequences across the entire CNV can affect fitness. In
some systems, the co-duplication of adjacent genes specifically provides a fithess benefit
(Reams and Neidle 2004). In one study where the authors imposed a selection for increasing
copies of one particular gene, they instead found extremely large spontaneous duplications
(Koszul et al. 2004). This phenomenon has been repeatedly seen in yeast adapting to nutrient
limitation, where neighboring genes are amplified in addition to the gene encoding a specific
nutrient transporter (Lauer et al. 2018). In these studies, CNVs are over 100 kilobases long and
can encompass an entire chromosome arm (Lauer et al. 2018). Such large CNVs are likely to
be associated with fitness costs, which can be attributed to disruption of cellular homeostasis at
multiple levels: inherent costs due to increases in genome size (Elde et al. 2012), changes to
local and global gene expression (Sheltzer et al. 2012), increased translational capacity and
changes to protein stoichiometry (Torres et al. 2007), or increased burden on protein

degradation machinery (Torres et al. 2010; Stingele et al. 2012).
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In one study, there was a 0.15% reduction in fitness for every kilobase pair amplified in
E. coli (Adler et al. 2014). Selection of large-scale deletions that remove unnecessary
“accessory genes” (i.e. genes that are beneficial only in specific environments) has been
observed in other systems (M.-C. Lee and Marx 2012). In another study, there was no
correlation between the size of the duplicated region and fitness reduction for the organism
(Pettersson et al. 2009). In order to determine the precise fithess consequences of any given
CNV, exhaustive experiments must be performed in a variety of environments and conditions,
as trade-offs between these and the original selective condition are likely to exist.

Since CNVs can confer substantial fithess costs, it has been proposed that they occur
transiently and are not effective long-term solutions for organisms adapting to stressful
conditions. Early experiments in bacteria demonstrated that CNVs were lost spontaneously at

very high rates after removing the selective pressure (R. P. Anderson and Roth 1977; Kugelberg
et al. 2006; Winfield and Falkinham 1981). Gene duplications can be rapidly eliminated by

recombination (Adler et al. 2014) or purged by the cell if they are on extrachromosomal circles
(Gresham et al. 2010). One proposed mechanism of alleviating fitness costs is the use of
“‘genomic accordions,” which involve expansions and contractions of genic arrays (Roth and
Andersson 2012). Gene duplications occur at a high rate, and incremental increases in gene
dosage improve cell growth such that cells with the duplication rise to high population frequency.
Multiple gene copies, as well as many individuals with multiple copies, increase the likelihood of
generating beneficial SNVs in the gene under selection (Sun et al. 2009). If these SNVs provide
significant fitness benefits, selection on maintenance of multiple gene copies is relaxed, and the
alternative copies can be subsequently lost. This phenomenon has been observed in a variety

of systems: viruses adapting to host defenses (Elde et al. 2012), bacteria growing in
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lactose-limiting environments (Slechta et al. 2003), the evolution of antibiotic resistance
(Pranting and Andersson 2011; Paulander, Andersson, and Maisnier-Patin 2010), and the
evolution of metabolic enzymes (reviewed in (Copley 2012)).

While CNVs have been identified as drivers of rapid adaptation across the domains of
life, determining their ultimate fate in complex, evolving populations remains difficult. While
empirical evidence is rare, the authors of one laboratory evolution experiment with S. enterica
found that duplicate genes can undergo specialization (Nasvall et al. 2012). To perform this
study, the authors generated mutations in the histidine biosynthesis enzyme, HisA, that enabled
the promiscuous catalyzation of a step in tryptophan biosynthesis. After 3,000 generations of
selection for histidine and tryptophan synthesis, the modified HisA gene was amplified and
subsequently diverged to generate two copies with distinct enzyme specificities. Evolution
experiments such as these provide us with an opportunity to witness long-term evolutionary
processes in short-term laboratory scenarios, and additional experiments should help elucidate

the ultimate fate of CNVs.

1.8: Open Questions

In this review, we discussed the emerging understanding of CNVs as drivers of rapid
adaptation. Across the domains of life, adaptive CNVs are important for sensing and responding
to changes in the environment under a broad range of conditions including: the presence of new
ecological niches, the availability of nutrient content, extreme temperatures, host defenses, and
the presence of heavy metals, toxins or antibiotics. CNVs are distinct from SNVs in several
respects, making them more difficult to characterize. As large-effect alleles, they are more likely

to result in pleiotropic effects, dramatic loss-of-function phenotypes, and trade-offs in alternative
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environments. There are many aspects of CNVs that are not well understood, and we identify
several open questions that are outstanding in the field.

CNVs provide fitness benefits through diverse processes: increasing gene dosage,
masking deleterious mutations, promoting heterozygote advantage, resolving genetic conflicts,
generating positional effects or chimeric genes, and globally altering expression landscapes.
Determining the functional effects of any given CNV remains challenging and usually requires
multiple, independent empirical tests. As a result, identifying causal variants in natural
populations or performing genome-wide analysis is difficult. Researchers have begun to solve
this problem by combining genome sequence analysis with RNA sequencing to determine if
there are any direct effects of CNV formation on transcription levels. Recent evidence indicates
that CNVs may even alter the chromatin landscape, indicating that further integration of
sequencing analysis (including chromosome conformation capture and identification of open
chromatin by ATAC-seq and other methods) may be required to fully address the functional
effects of CNVs.

CNVs are a complex class of structural variant that can be generated by a diverse range
of processes and mechanisms. Repetitive sequences including segmental duplications are
known to generate CNVs through non-allelic homologous recombination. Recent advances in
the field have highlighted the role of replication-based errors in CNV formation. However, the
extent to which replication, transcription or environmental condition affect the generation,
selection, or maintenance of CNVs in evolving populations remains unresolved. While the
environment has been shown to stimulate CNV formation at two specific loci (the rDNA and the

CUP1 locus in yeast), further studies are needed to address these questions. To determine the
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precise effect of transcription on CNV mutation rate, empirical experiments that decouple this
process from any potential environmental stimulation are also required.

The population dynamics of CNVs have been difficult to resolve, especially due to
limitations in accurately detecting CNVs in complex, heterogeneous evolving populations if they
are present at low frequency. This is compounded when determining whether a given CNV is
under selection. While some CNVs may be generated at a high rate and quickly rise to high
frequency within populations, we have yet to resolve the respective contributions of standing
genetic variation and de novo variation, hard and soft selective sweeps, and epistatic
interactions. Recent advances, including the use of barcode lineage tracking (Levy et al. 2015;
Lauer et al. 2018), are poised to further our understanding of these population genetics
questions and controversies. While adaptive laboratory evolution experiments have begun to
dissect the roles of CNV in driving these processes, we propose that the use of non-model
natural populations will provide additional insights.

While CNVs can provide fitness benefits, they can also underlie maladaptive phenotypes
and disease. Importantly, the adaptive potential of any given CNV is context- and
environment-dependent, meaning that any beneficial effects observed are likely to be specific.
Changes to the environment and/or the selective pressure (using fluctuating temperatures
rather than a static high temperature for example) may therefore decrease or eliminate any
fitness benefit conferred by the CNV. Moreover, the larger the CNV allele, the more likely it is to
have negative consequences in alternative environments. In addition, the adaptive potential and
fitness benefits of CNVs are complex, which makes it difficult to predict the long-term fate of
CNVs segregating within populations. To address these concerns, future studies should focus

on the fitness effects of a CNV in multiple environmental conditions, under fluctuating selective
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pressures, in different subpopulations or strain backgrounds, and across longer evolutionary

timescales.

1.9: Conclusions

We have proposed several open questions concerning the functional -effects,
mechanisms, population genetics, and trade-offs associated with CNV alleles. Bridging these
gaps in knowledge will require further empirical and observational studies. A synthesis among
the fields of population genetics, genomics, and evolutionary biology and the combined use of
laboratory evolution experiments and studies of natural populations will be useful for answering
these questions. For example, an in vitro evolution experiment in the malarial parasite P.
falciparum revealed previously known and unknown candidate CNVs involved in drug resistance
(Cowell et al. 2018), which can be used to inform future clinical field studies. We have also
discussed the utility of integrating multiple genomics approaches and using understudied,
natural populations as models for future CNV studies. As drivers of rapid adaptation in diverse
scenarios, CNVs are an important source of genetic diversity and evolutionary potential, and
new technical advancements in the field are key to understanding this understudied class of

mutations.

Chapter 2: Single-cell copy number variant detection
reveals the dynamics and diversity of adaptation

This chapter is based on the research paper “Single-cell copy number variant detection
reveals the dynamics and diversity of adaptation” by Stephanie Lauer, Grace Avecilla, Pieter
Spealman, Gunjan Sethia, Nathan Brandt, Sasha F. Levy and David Gresham, with an
anticipated publication in PLoS Biology December 2018. | generated all of the data for Figures
2.1-3 and Table 2.1, contributed to generating the data for Figures 2.4-5 and Tables 2.2-4, wrote
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the manuscript text, and generated most of the supplementary figures presented here (2.511
and 2.S12 being the exceptions).

2.1: Abstract

Copy number variants (CNVs) are a pervasive source of genetic variation and evolutionary
potential, but the dynamics and diversity of CNVs within evolving populations remains unclear.
Long-term evolution experiments in chemostats provide an ideal system for studying the
molecular processes underlying CNV formation and the temporal dynamics with which they are
generated, selected, and maintained. Here, we developed a fluorescent CNV reporter to detect
de novo gene amplifications and deletions in individual cells. We used the CNV reporter in
Saccharomyces cerevisiae to study CNV formation at the GAP1 locus, which encodes the
general amino acid permease, in different nutrient-limited chemostat conditions. We find that
under strong selection, GAP1 CNVs are repeatedly generated and selected during the early
stages of adaptive evolution resulting in predictable dynamics. Molecular characterization of
CNV-containing lineages shows that the CNV reporter detects different classes of CNVs
including aneuploidies, non-reciprocal translocations, tandem duplications, and complex copy
number variants. Despite GAP1’s proximity to repeat sequences that facilitate intrachromosomal
recombination, breakpoint analysis revealed that short inverted repeat sequences mediate
formation of at least 50% of GAP1 CNVs. Inverted repeat sequences are also found at
breakpoints at the DURS locus, where CNVs are selected in urea-limited chemostats. Analysis
of 28 CNV breakpoints indicates that inverted repeats are typically 8 nucleotides in length and
separated by 40 bases. The features of these CNVs are consistent with origin dependent
inverted repeat amplification (ODIRA) suggesting that replication-based mechanisms of CNV

formation may be a common source of gene amplification. We combined the CNV reporter with
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barcode lineage tracking and found that 10%-10* independent CNV-containing lineages initially
compete within populations resulting in extreme clonal interference. However, only a small
number (18-21) of CNV lineages ever comprise more than 1% of the CNV subpopulation, and
as selection progresses, the diversity of CNV lineages declines. Our study introduces a novel
means of studying CNVs in heterogeneous cell populations and provides insight into their

dynamics, diversity, and formation mechanisms in the context of adaptive evolution.

2.2: Introduction

Copy number variants (CNVs) drive rapid adaptive evolution in diverse scenarios
ranging from niche specialization to speciation and tumor evolution (Conant and Wolfe 2008;
Zuellig and Sweigart 2018; Shlien and Malkin 2009; Stratton, Campbell, and Futreal 2009).
CNVs, which include duplications and deletions of genomic segments, underlie phenotypic
diversity in natural populations (Barreiro et al. 2008; Iskow et al. 2012; Clop, Vidal, and Amills
2012; Zmienko et al. 2014; Greenblum, Carr, and Borenstein 2015; Zarrei et al. 2015), and
provide a substrate for evolutionary novelty through modification of existing heritable material
(Ohno 1970; Michael Lynch and Conery 2000; Austin L. Hughes 1994; R. P. Anderson and Roth
1977). Beneficial CNVs are associated with defense against disease in plants, increased
nutrient transport in microbes, and drug resistant phenotypes in parasites and viruses (lantorno
et al. 2017; Cowell et al. 2018; Dolatabadian et al. 2017; Elde et al. 2012; Greenblum, Carr, and
Borenstein 2015). Despite the importance of CNVs for phenotypic variation, evolution and
disease, the dynamics with which these alleles are generated and selected in evolving
populations are not well understood.

Long term experimental evolution provides an efficient means of gaining insights into
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evolutionary processes using controlled and replicated selective conditions (Lenski et al. 1991;
Good et al. 2017). Chemostats are devices that maintain cells in a constant nutrient-poor growth
state using continuous culturing (Gresham and Dunham 2014). Nutrient limitation in chemostats
provides a defined and strong selective pressure in which CNVs have been repeatedly identified
as major drivers of adaptation. CNVs containing the gene responsible for transporting the
limiting nutrient are repeatedly selected in a variety of organisms and conditions including
Escherichia coli limited for lactose (Horiuchi, Horiuchi, and Novick 1963), Salmonella
typhimurium in different carbon source limitations (Sonti and Roth 1989), and Saccharomyces
cerevisiae in glucose-, phosphate-, sulfur- and nitrogen-limited chemostats (Hong and Gresham
2014; Gresham et al. 2010; Payen et al. 2014; Gresham et al. 2008; Brown, Todd, and
Rosenzweig 1998; Kao and Sherlock 2008; Hansche 1975). CNVs confer large selective
advantages and multiple, independent CNV alleles have been identified within experimental
evolution populations (Payen et al. 2014; Gresham et al. 2008; Kvitek and Sherlock 2011;
Gresham et al. 2010). These findings suggest that CNVs are generated at a high rate, but
estimates differ greatly, ranging from 1 x 10"°to 3.4 x 10° duplications per cell per division, with
variation in CNV formation rates potentially differing between loci and/or condition (Dorsey et al.
1992; Michael Lynch et al. 2008). A high rate of CNV formation suggests that multiple,
independent CNV-containing lineages may compete during adaptive evolution resulting in clonal
interference, which is characteristic of large, evolving populations (Lang et al. 2013; J. M.
Hughes et al. 2012; Maddamsetti, Lenski, and Barrick 2015; Kao and Sherlock 2008). However,
the extent to which clonal interference among CNV-containing lineages influences the dynamics
of adaptation is unknown.

The general amino acid permease gene, GAP1, is well suited to studying the role of
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CNVs in adaptive evolution. GAP1 encodes a high-affinity transporter for all naturally occurring
amino acids, and it is highly expressed in nitrogen-poor conditions (Grenson, Hou, and Crabeel
1970; Stanbrough and Magasanik 1995). We have previously shown that two classes of CNVs
are selected at the GAP1 locus in S. cerevisiae when a sole nitrogen source is provided: GAP1
amplification alleles are selected in glutamine and glutamate-limited chemostats and GAP1
deletion alleles are selected in urea- and allantoin-limited chemostats (Gresham et al. 2010;
Hong and Gresham 2014). GAP1 CNVs are also found in natural populations. In the nectar
yeast, Metschnikowia reukaufii, multiple tandem copies of GAP1 result in a competitive
advantage over other microbes when amino acids are scarce (Dhami, Hartwig, and Fukami
2016). As a target of selection in adverse environments in both experimental and natural
populations, GAP1 is a model locus for studying the dynamics and mechanisms underlying both
gene amplification and deletion in evolving populations.

CNVs are generated by two primary classes of mechanisms: homologous recombination
and DNA replication (Hastings, Lupski, et al. 2009; Reams and Roth 2015; Carvalho and Lupski
2016). DNA double strand breaks (DSBs) are typically repaired by homologous recombination
and do not result in CNV formation. However, non-allelic homologous recombination (NAHR)
can generate CNVs when the incorrect repair template is used, which occurs more often with
repetitive DNA sequences such as transposable elements and long terminal repeats (LTRs)
(Stankiewicz and Lupski 2002). During DNA replication, stalled and broken replication forks can
re-initiate  DNA replication through processes including break-induced replication (BIR),
microhomology-mediated break-induced replication (MMBIR), and fork stalling and template
switching (FoSTes) (J. A. Lee, Carvalho, and Lupski 2007; Hastings, Ira, et al. 2009; Payen et

al. 2008). BIR is driven by homologous sequences, whereas MMBIR relies on shorter stretches
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of sequence homology. Recently, origin-dependent inverted-repeat amplification (ODIRA) has
been identified as a novel mechanism underlying amplification of the SUL1 locus in yeast
(Brewer et al. 2011, 2015). ODIRA is mediated by short inverted repeat sequences that facilitate
ligation of the the leading and lagging strands following regression of the replication fork during
DNA synthesis. ODIRA is hypothesized to involve the formation of an extrachromosomal
circular intermediate that replicates independently and therefore requires an origin of replication
within the amplified region. Subsequent integration of the circle into the original locus via
homologous recombination results in an inverted triplication. Extrachromosomal circular DNA is
common in yeast (Mgller et al. 2015), can drive tumorigenesis (K. M. Turner et al. 2017), and
may represent a rapid and reversible mechanism of generating adaptive CNVs (Mgller,
Andersen, and Regenberg 2013; Cohen and Segal 2009). Previously, we found that some
GAP1 amplifications are extrachromosomal circular elements. We hypothesized that GAP1¢"®
alleles are generated as a result of NAHR between flanking LTRs resulting in their excision from
the chromosome (Gresham et al. 2010). Identifying the mechanisms underlying CNV formation
is required for understanding the roles of CNVs in evolutionary processes and human disease.
A key limitation to the study of CNVs in evolving populations is the challenge of
identifying them at low frequencies in heterogeneous populations. CNVs are typically detected
using molecular methods including qPCR, Southern blotting, DNA microarrays and sequencing
(Gresham et al. 2010; Payen et al. 2014; Hong and Gresham 2014). However, using any of
these methods, de novo CNVs are undetectable in a heterogeneous population until present at
high frequency (e.g. >50%). This precludes analysis of the early dynamics with which CNVs
emerge and compete in evolving populations. As CNVs usually comprise genomic regions that

include multiple neighboring genes (Hong and Gresham 2014), we hypothesized that CNVs
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could be identified on the basis of increased expression of a constitutively expressed
fluorescent reporter gene inserted adjacent to a target gene of interest. A major benefit of this
approach is that it detects CNVs independently of whole genome sequencing, enabling a
high-resolution and efficient assay of CNV dynamics with single-cell resolution in evolving
populations.

In this study, we constructed strains containing a fluorescent CNV reporter adjacent to
GAP1 in S. cerevisiae and performed evolution experiments in different selective environments
using chemostats. The CNV reporter allowed us to visualize selection of CNVs at the GAP1
locus in real time with unprecedented temporal resolution. We find that CNV dynamics occur in
two distinct phases: CNVs are selected early during adaptive evolution and quickly rise to high
frequencies, but the subsequent dynamics are complex. We find that GAP1 CNVs are diverse in
size and copy number, and can be generated by a range of processes including aneuploidy,
non-reciprocal translocations and tandem duplication by NAHR. Nucleotide resolution analysis
of GAP1 CNV breakpoints revealed that CNV formation is mediated by short, interrupted
inverted repeats for half of the resolvable cases, suggesting that replication-based mechanisms
also underlie gene amplification at the GAP1 locus. The presence of inverted repeats, in
combination with a replication origin and inverted ftriplication, is consistent with GAP1 CNV
formation through ODIRA. ODIRA may be a major source of de novo CNVs in yeast, as these
breakpoint features also characterize CNVs at an additional locus identified in our study, DURS3.
To determine the underlying structure of the CNV subpopulation, we generated a
lineage-tracking library using random DNA barcodes. FACS-based fractionation of CNV
lineages and barcode sequencing identified hundreds to thousands of individual CNV lineages

within populations, consistent with a high CNV supply rate and extreme clonal interference.
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Together, our results show that CNVs are generated repeatedly by diverse processes, resulting
in predictable dynamics, but that the long term fate of CNV-containing lineages in evolving

populations is shaped by clonal interference and additional variation.

2.3: Results
2.3.1: Protein fluorescence increases proportionally with gene copy number

We sought to construct a reporter for CNVs that occur at a given locus of interest. Based
on previous studies (Suzuki et al. 2011; Gruber et al. 2012; Kafri et al. 2016; Steinrueck and
Guet 2017), we hypothesized that CNVs that alter the number of copies of a constitutively
expressed fluorescent protein gene would facilitate single cell detection of de novo copy number
variation. To test the feasibility of this approach, we constructed haploid S. cerevisiae strains
isogenic to the reference strain (S288c) with one or two copies of a constitutively expressed
GFP variant mCitrine (Griesbeck et al. 2001), and diploid strains with 1-4 copies of mCitrine,
integrated into the genome.

Flow cytometry analysis confirmed that additional copies of mCitrine produce
quantitatively distinct distributions of protein fluorescence (Figure 2.1A). Haploid cells with two
copies of mCitrine have higher fluorescence than those with a single copy and there is minimal
overlap between the distributions of fluorescent signal in the two strains. Normalization of the
fluorescent signal by forward scatter, which is correlated with cell size, shows that the
concentration of fluorescent protein is proportional to the ploidy normalized copy number of the
mCitrine gene (i.e. one copy in a haploid results in a signal equivalent to two copies in a diploid
and two copies in a haploid results in a signal similar to four copies in a diploid). Thus, the cell

size-normalized fluorescent signal, or concentration, accurately reports on the number of copies
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of the fluorescent gene in single cells. Therefore, integrating a constitutively expressed
fluorescent protein gene proximate to an anticipated target of selection functions as a CNV

reporter for tracking gene amplifications and deletions in evolving populations (Figure 2.1B).
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Figure 2.1. Fluorescent protein signal is proportional to gene copy number. (A) Protein fluorescence
increases with increasing copies of the mCitrine gene. We determined the fluorescence of haploid and
diploid cells containing variable numbers of a constitutively expressed mCitrine gene integrated at either
the HO locus and/or the dubious ORF, YLR123C. The two copy diploid is heterozygous at both loci. Each
distribution was estimated using 100,000 single cell measurements normalized by forward scatter. (B)
Schematic representation of how the fluorescent reporter enables CNV detection in heterogeneous
evolving populations through quantitative changes in protein fluorescence.
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2.3.2: A CNV reporter tracks the dynamics of GAP1 CNVs in real time

Previous work has shown that spontaneous GAP1 amplifications are positively selected
when glutamine is the sole limiting nitrogen source during evolution experiments in chemostats
(Gresham et al. 2010). GAP1 copy number amplifications result in increased amino-acid
transporters on the plasma membrane, providing cells with a selective advantage when nitrogen
is scarce (Gresham et al. 2010; Hong and Gresham 2014). Conversely, GAP1 deletions provide
a fitness benefit and are selected in urea-limited conditions (Gresham et al. 2010), which may
be due to two non-exclusive reasons: either 1) because GAP1 is highly expressed regardless of
the type of limiting nitrogen source (Airoldi et al. 2016) but unable to transport urea, it confers a
gene expression burden, or 2) when the extracellular concentration of amino acids is low
compared to the intracellular concentration, the electrochemical gradient drives their export
through the GAP1 permease. Thus, the use of different nitrogen sources in nitrogen-limited
chemostats enables the study of both GAP1 amplification and deletion, making it an ideal
system for studying the dynamics of CNV selection in evolving populations.

We constructed a haploid strain containing a mCitrine CNV reporter located 1,118 bases
upstream of the GAP1 start codon to ensure that the native regulation of GAP1 was unaffected
(Stanbrough and Magasanik 1996). We inoculated the GAP1 CNV reporter strain into 9
glutamine-, 9 urea- and 8 glucose-limited chemostats, for a total of 26 populations. For each of
the three selection conditions, we included two control populations: one containing a single copy
of the mCitrine CNV reporter at a neutral locus (one copy control) and one containing two
copies of the mCitrine CNV reporter at two neutral loci (two copy control). All populations were

maintained in continuous mode (dilution rate = 0.12 culture volumes/hr; population doubling time
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= 5.8 hours) for 267 generations over 65 days. We sampled each of the 32 populations every 8
generations and used flow cytometry to measure fluorescence of 100,000 cells per sample.

Experimental evolution in a glutamine-limited chemostat resulted in clear increases in
fluorescence in individual cells containing the GAP1 CNV reporter by generation 79 (Figure
2.2A). By contrast, populations containing one or two copies of mCitrine at neutral loci exhibited
stable fluorescence for the duration of the experiment (Figure 2.2A). Maintenance of protein
fluorescence in one and two copy control populations is consistent with the absence of a
detectable fitness cost associated with one or two copies of the CNV reporter in
glutamine-limited chemostats, which we confirmed using competition assays (Figure 2.S1).
Analysis of eight additional independent populations evolving in glutamine-limited chemostats
showed qualitatively similar dynamics of single-cell fluorescence over time (Figure 2.S2). To
summarize the dynamics of CNVs in evolving populations, we determined the median
normalized fluorescence in each population at each time point. The fluorescent signal of the
GAP1 CNV reporter increases during selection in all populations evolving in glutamine-limited
chemostats (Figure 2.2B), consistent with the de novo generation and selection of CNVs at the
GAP1 locus in all 9 populations.

Populations evolving in urea-limited and glucose-limited chemostats do not show
substantial changes in fluorescence with one exception (Figure 2.2B). In a single urea-limited
population (ure_05), we detected a complete loss of fluorescent signal by generation 125,
indicating the occurrence of a GAP1 deletion that subsequently swept to fixation. Thus, the
GAP1 CNV reporter detects both amplification and deletion alleles at the GAP1 locus in

evolving populations. The absence of increases or decreases in fluorescence in all
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glucose-limited populations is consistent with the absence of selection for GAP1 CNVs in

conditions that are irrelevant for GAP1 function.
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Figure 2.2. Dynamics of GAP1 CNVs in evolving populations. (A) Normalized distributions of
single-cell fluorescence over time for a representative GAP1 CNV reporter strain and one and two copy
control strains evolving in glutamine-limited chemostats. Single cell fluorescence is normalized by the
forward scatter measurement of the cell. (B) Normalized median fluorescence for each population
evolving in glutamine- (n = 9), urea- (n= 9) and glucose- (n = 8) limited chemostats. The fluorescence of
the one and two copy control strains is plotted for reference (grey dotted lines). (C) Estimates of the
proportion of cells with GAP1 amplifications over time for nine glutamine-limited populations containing
the GAP1 CNV reporter.
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To quantify the proportion of cells containing a GAP1 duplication, we used one and two
copy control strains to define flow cytometry gates. We found that the fluorescence of control
strains varied slightly (Figure 2.83A), which may be indicative of either instrument variation or
changes in cell physiology and morphology during the experiment as suggested by systematic
changes in forward scatter with time (Figure 2.S3B). Using a conservative method to classify
individual cells containing GAP1 amplifications (methods), we find that GAP1 amplification
alleles are selected with remarkably reproducible dynamics in the nine glutamine-limited
populations (Figure 2.2C). CNVs are predominantly duplications (two copies), but quantification
of fluorescence suggests that many cells contain three or more copies of the GAP1 locus
(Figure 2.S4).

We quantified the dynamics of CNVs in each population evolved in glutamine-limited
chemostats using metrics defined by Lang et al. (Lang, Botstein, and Desai 2011). CNVs are
detected by generation 70-75 (average = 72.8) in all 9 populations (T,,) (Table 2.1). To estimate
the fitness of all CNV lineages relative to the mean population fitness, we calculated S, the
rate of increase in the abundance of the CNV subpopulation (see methods). The average
relative fitness of the CNV subpopulation is 1.077 (S,) and CNV alleles are at frequencies
greater than 75% in all populations by 250 generations (Table 2.1). Thus, in all replicated
glutamine-limited selection experiments, GAP1 amplifications emerge early, increase in
frequency rapidly, and are maintained in each population throughout the selection.

GAP1 CNVs undergo two distinct phases of population dynamics. The initial dynamics
with which CNV subpopulations emerge and increase in frequency are highly reproducible in
independent evolving populations. However, after 125 generations, the trajectories of the CNV

subpopulation in the different replicate populations diverge. Many populations maintain a high
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frequency of GAP1 amplification alleles, but in some populations they decrease in frequency. In
one population, GAP1 CNV alleles are nearly lost from the population before subsequently

increasing to an appreciable frequency (gin_07).

Table 2.1. Summary statistics of GAP1 CNV dynamics in glutamine-limited chemostats. T, is the
number of elapsed generations before CNVs are reliably detected (>7% frequency, see
methods). S is the rate of increase in CNV abundance during the initial expansion of the CNV
subpopulation. The frequency of CNVs in the population at generation 150 and generation 250,
when genome sequencing was performed, is also reported.

Population To 1+S,£SE | g150% |g250%
gln_01 70 1.066 + 0.0038 62 77
gln_02 75 1.071 £ 0.0034 57 87
gln_03 70 1.071 £ 0.0037 88 94
gln_04 70 1.079 + 0.0036 80 95
gln_05 75 1.077 £ 0.0041 74 89
gln_06 70 1.082 £ 0.0043 91 75
gln_07 75 1.094 £ 0.0048 18 78
gln_08 75 1.090 + 0.0052 90 82
gln_09 75 1.066 + 0.0050 | 48 93

AVG+STD | 72.8+26 1.077+£0.01 (68+24 | 86+8

2.3.3: GAP1 CNV alleles are diverse within and between replicate
populations

Based on prior studies (Payen et al. 2014; Hong and Gresham 2014), we hypothesized
that multiple CNV alleles exist within each population. To characterize the diversity of GAP1
CNVs, we isolated a total of 29 clones containing increased fluorescence from glutamine-limited
chemostats at 150 and 250 generations for whole genome sequencing. We used read depth to
calculate GAP1 copy number and to estimate CNV boundaries (Figure 2.3A and methods). We

44


https://paperpile.com/c/wlhFlH/GfeWc+ReAB

find that GAP1 copy number estimated by sequencing read depth correlates with the fluorescent
signal for individual clones (Figure 2.3B), indicating that fluorescent signal is predictive of copy
number. In 3 clones, we find increased read depth across the entirety of chromosome Xl
consistent with aneuploidy. Thus, the CNV reporter is able to detect aneuploid chromosomes as
well as subchromosomal CNVs.

We identified diverse GAP1 CNVs between and within populations (Figure 2.3C). In the
majority of populations (6/9) different clones had different CNVs. For example, in population
gln_01 at generation 150, we identified a large GAP1 CNV that includes the entire right arm of
chromosome Xl and another clone that was aneuploid for chromosome Xl. At generation 250,
clones isolated from population gin_01 have CNV alleles that are distinct from each other and
from those observed at generation 150. Clones from the 8 additional glutamine-limited
populations show evidence for CNV diversity within and between the two time points analyzed
(Figure 2.3C) suggesting the presence of multiple CNV lineages within evolving populations.
Furthermore, the diversity of GAP1 CNVs indicates that they are not predominantly formed
through a recurrent mechanism as might be anticipated by the presence of proximate repetitive

elements.
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Figure 2.3. Diversity and fitness effects of GAP1 CNVs. (A) Representative sequence read depth plot
from a glutamine-limited clone (gin_01_c4). The nucleotide coordinates of GAP1 in our CNV reporter
strain are chromosome Xl: 518438-520246 (blue line). Estimated breakpoint boundaries are shown in red.
Read depth was normalized to the average read depth on chromosome Xl. Reads at each nucleotide
position were randomly downsampled for presentation purposes. (B) Read depth based estimates of
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GAP1 copy number are positively correlated with median fluorescence of glutamine-limited clones,
indicating that fluorescence is informative about the copy number of de novo CNVs. (C) Schematic
representation of CNVs identified in clones isolated from glutamine-limited populations. The relative
fitness of each clone is also indicated. Copy number and CNV boundaries were estimated using read
depth. This schematic is simplified for presentation purposes: the reported copy number refers specifically
to the GAP1 coding sequence and does not necessarily reflect copy number throughout the entire CNV,
which may vary.

We used pulsed-field gel electrophoresis and Southern blotting to confirm CNV
structures (Figure 2.85). Using GAP1 and CEN11 probes for Southern blotting, we identified
size shifts in some samples consistent with the large CNVs ( >140 kilobases) we identified in
several clones. Interestingly, in some cases, we identified two discrete bands in our GAP1
Southern blot, indicating that the additional copies of GAP1 were not contained on chromosome
XI. The GAP1 Southern also provided further evidence for the GAP1 deletion in a clone isolated
from urea-limitation. Importantly, while control populations evolving in glutamine-limited
chemostats did not show evidence for GAP1 CNVs on the basis of fluorescence, sequence and
Southern blotting analysis identified GAP1 amplifications in lineages isolated from these
populations (Figure 2.85). As one and two copy control strains do not have the GAP1 CNV
reporter, this suggests that GAP1 CNV formation and selection is not affected by the reporter.
Moreover, we find no evidence that the molecular features of GAP1 CNVs are affected by the
presence of the CNV reporter.

We determined the fithess of GAP1 CNV-containing clones using pair-wise competitive
fitness assays in glutamine-limited chemostats (Figure 2.S6, Figure 2.S7 and Figure 2.3C).
Four independent competition assays with the ancestral strain containing the GAP1 CNV
reporter showed no significant differences in fitness compared to the isogenic non-fluorescent
reference strain. The majority of evolved clones (18/28) have higher relative fitness than the

ancestor, indicating that GAP1 CNVs typically confer large fitness benefits. Several clones have
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neutral (8/28) or lower (2/28) relative fitness, which indicates that either 1) the fitness effect of

GAP1 CNVs may be context-specific or 2) not all GAP1 CNVs confer a fithess benefit.

2.3.4: DUR3 CNVs are repeatedly selected during urea limitation

We analyzed the genome sequences of 21 clones that were randomly isolated from
urea-limited populations at generation 150 and generation 250 and identified multiple CNVs at
the DURS3 locus (Figure 2.S8A). DUR3 encodes a high affinity urea transporter and we have
previously reported DUR3 amplifications during experimental evolution in a urea-limited
chemostat (Hong and Gresham 2014). We compared properties of GAP1 and DUR3
amplifications and found that the average copy number for clones with GAP1 CNVs is 3 (Figure
2.S8B) whereas clones with DUR3 CNVs contain significantly more copies with an average
copy number of 5 (Figure 2.S8C, t-test, p-value < 0.01). Copy number within clones does not
significantly increase between 150 and 250 generations at either locus. DUR3 CNV alleles
(average of 26 kilobases) are also significantly smaller than GAP1 CNVs (average of 105
kilobases) (Figure 2.S8D-E, t-test, p-value < 0.01). Thus, comparison of GAP1 and DUR3
CNVs suggests differences in the properties of selected CNVs as a function of locus and the

selective condition.
2.3.5: CNV breakpoints are characterized by short, interrupted inverted

repeats

To resolve CNV breakpoint sequences, we generated a pipeline integrating CNV calls
from multiple existing CNV detection methods (CNVnator, Pindel, Lumpy, and SvABA (K. Ye et

al. 2009; Layer et al. 2014; Wala et al. 2017; Abyzov et al. 2011)) and optimized their
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performance on synthetic yeast genome data. Although these algorithms perform well using
simulated data, we found that they had a high false positive and false negative rate when
applied to real data and in general were not informative about the novel sequence formed at
CNV boundaries. Therefore, we developed a breakpoint detection pipeline that integrates
information from read depth, discordant reads and split reads. To define the breakpoint
sequence, we performed de novo assembly using split reads and aligned the resulting contig
against the reference genome (methods). In addition to GAP1 and DUR3 CNVs, we identified 3
structural variants in our clonal sequencing data using this method. A read-depth based
approach was also used to characterize CNVs genome-wide and calculate rDNA and CUP1
copy number, which exhibit variation among lineages.

We analyzed 29 lineages containing GAP1 CNVs and inferred the underlying
mechanisms for 19 (66%) of them on the basis of copy number and breakpoint sequences
(methods). Of the 19 GAP1 CNVs that can be reliably resolved, 3 are the result of aneuploidies
and 2 are the result of non-reciprocal interchromosomal translocations. Translocations were
confirmed using pulsed-field gel electrophoresis and Southern blot analysis (Figure 2.S5),
which clearly shows that the second copy of GAP1 is located on a different chromosome.
Southern blotting also indicates that an additional 3 GAP1 CNVs are the result of partial (i.e.
segmental) aneuploidies, which include the chromosome Xl| centromere (CEN11) but are
smaller than the ancestral chromosome Xl (Figure 2.S5). At least 4 GAP1 CNVs appear to be
the result of a tandem duplication mediated by non-allelic homologous recombination (NAHR).
For two of these CNVs, novel junction sequences were obtained that included a hybrid

sequence composed of half of each flanking long terminal repeat (YKRCdelta11/YKRCdelta12),
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similar to our previous report (Gresham et al. 2010). This mechanism is also likely to underlie
the GAP1 deletion that we identified in one urea-limited population.

For 12 out of 29 (41%) GAP1 CNVs and 8 out of 9 (89%) DUR3 CNVs, we identified a
pair of short, interrupted, inverted repeats proximate to at least one breakpoint (Figure 2.4). We
were able to resolve breakpoints at both ends of the CNV for 12 of the 20 CNVs. Analysis of
these breakpoints indicates that inverted repeat sequences range in length from 4-24 base pairs
(Figure 2.4D) and are typically separated by 40 base pairs (Figure 2.4E). Microhomology at
breakpoint junctions is characteristic of replication-based CNV formation, including
microhomology-mediated  break-induced replication (MMBIR) and origin-dependent
inverted-repeat amplification (ODIRA). ODIRA has several other requirements including the
presence of at least one replication origin within the CNV, an internal inversion, and an odd copy
number. The identification of inverted sequence relative to the reference at all identified
breakpoint junctions is consistent with an inverted structure. We find that 6/29 GAP1 CNVs and
8/9 DUR3 CNVs meet these criteria and thus are likely the result of ODIRA. In cases where the
CNV lacks an odd copy number (see methods) we cannot reliably infer the mechanism.
Interestingly, in one case (ure_07_c1) the CNV meets all the requirements of ODIRA, but does

not contain a DNA replication origin (see discussion).
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Figure 2.4. Inverted repeats mediate CNV formation. Nucleotide resolution of CNV breakpoints for (A)
GAP1 and (B) DUR3 CNVs were identified using a combination of discordant and split reads. To
characterize novel sequence, we identified all supporting split reads, performed de novo assembly and
aligned the resulting sequence against the reference genome. Sequences in the reference genome (blue)
are inversely oriented in the assembled contig, suggesting an inverted structure within CNVs. (C)
Schematic representation of replication-based CNV formation. After fork stalling, fork regression results in
the newly replicated inverted repeat sequence annealing to the complementary sequence and ligating to
the lagging strand. (D-E) Distribution of sequence features across 28 breakpoints at the GAP1 and DUR3
loci that contain inverted repeats.

2.3.6: Whole genome population sequencing provides insight into
population heterogeneity

To comprehensively characterize genomic variation in populations, we performed whole
population, whole genome sequencing of glutamine-, urea-, and glucose-limited populations at
generations 150 and 250. Analysis of relative sequence read depth is consistent with high
frequency GAP1 CNVs in glutamine-limited populations. Population sequencing also confirmed
the fixation of a GAP1 deletion (ure_05) in a urea-limited population. Relative sequence read
depth at the GAP1 locus correlates well with the normalized fluorescence of the GAP1 CNV
reporter in populations (Figure 2.S9) providing additional evidence for the utility of the CNV
reporter. In glutamine-limited chemostats, GAP1 copy number estimated within populations
(which is a function of copy number within clones and allele frequencies) ranges from 2-4
copies, with a trend towards increased copy number over time (Figure 2.S9).

We performed single nucleotide variant (SNV) analysis using genome sequencing data
from populations and clones at generations 150 and 250. More non-synonymous SNVs were
identified in glucose-limited populations than the glutamine- and urea-limited populations (Table
2.2), which contained GAP1 and DUR3 amplifications at high frequencies at 150 and 250

generations. In contrast to previous studies (Brown, Todd, and Rosenzweig 1998; Kao and
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Sherlock 2008), we did not identify CNVs at the HXT6/7 locus in glucose-limited populations.
Increased nucleotide variation within these populations may reflect alternative adaptive

strategies in glucose-limited populations.

Table 2.2. Summary of single nucleotide variation in three different selection conditions.
Populations were sequenced at 150 and 250 generations. For variants that were identified at
both time points, we determined whether they increased (1) or decreased (1) in frequency
between generation 150 and 250.

Glucose (n=10) Urea (n=11) Glutamine (n=11)
Total Trend Total Trend Total Trend
Predicted effect |g150 (9250 |1 L |g150 (9250 |t |! g150 |g250 |+ ||
Non-coding 4 9] 2| 1 8 12 1 0 6 5( 0] O
Missense 47| 61| 17| 4| 22 34| 6 2 12| 22| 4| 1
Frameshift 4 5( 1] 1 5 6| 2 0 2 2] 0] O
Synonymous 1 7( 0] O 4 10| 2 0 4 3| 0] O
Stop gained 41 10( 2| O 7 41 0 2 0 5/ 0f O
Start lost 0 1 0f O 0 of O 0 0 0| 0] O
Splice variant 2 3] O0f 1 0 0] O 0 0 11 0| O
Mito. genome 0 0 0| O 0 2] 0 0 0 0] O 0
Inframe insertion 0 0| 0| O 0 of O 0 0 11 0| O
Total variants 62 96| 22| 7 46 68| 11 4 24 39| 4 1

We find several genes with multiple independent, non-synonymous variation in
glutamine-limited populations (Table 2.3) including MCK1, a protein kinase with potential roles
in NHEJ; SOG2, a member of the RAM signaling pathway and regulator of bud separation after
mitosis; and TAO3, another member of the RAM network. We previously reported mutations in
MCK1 from selection in glutamine- and arginine-limited chemostats (Hong and Gresham 2014),
suggesting that it is a recurrent target of selection in these conditions. Changes in cell
morphology are potentially adaptive in nutrient-poor conditions, which may result from defects in

cell cycle progression and bud separation associated with mutations in the RAM pathway
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(Cullen, Sprague, and Jr. 2012). However, the effect of these mutations on bud separation is
likely to be minor as we did not observe increases in forward scatter (which varies with cell size)
in flow cytometry data, except in one glucose-limited population (Figure 2.S3).

In the nine urea-limited populations, we identified 14 independent non-synonymous
variants in DUR1,2 (Table 2.3). DUR1,2, encodes urea amidolyase, which metabolizes urea to
ammonium. At two different nucleotide positions, we find that the same nucleotide was mutated
multiple times independently. In a third location, we identified a SNV at the exact nucleotide
position as we previously reported (Hong and Gresham 2014). Thus, a subset of variants in

DURH1,2 appear to be uniquely beneficial and recurrently selected in urea-limited environments.

Table 2.3. Genes with multiple, independent, non-synonymous acquired mutations.
Variants found at greater than 5% frequency within each population.

Glucose-limitation Urea-limitation Glutamine-limitation
Gene Name | Total Variants | Gene Name | Total Variants | Gene Name | Total Variants
TRK1 11 DUR1,2 14 MCK1 3
SVF1 2 S0G2 3
CDC48 3 TAO3 2
WHI2 3 GPB2 2

In glucose-limited populations, we identified multiple, independent mutations in four
genes (Table 2.3): TRK1, a component of the potassium transport system; SVF1, which is
important for the diauxic growth shift and is implicated in cell survival during aneuploidy (Torres
et al. 2010); CDC48, an AAA ATPase; and WHI2, which is a mediator of the cellular stress
response. Previous studies have identified loss-of-function mutations in WHI2 suggesting it is a
general target of selection across different conditions (Hong and Gresham 2014; Payen et al.

2016; Gresham et al. 2008).
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Analysis of clonal samples was largely consistent with population sequencing.
Interestingly, we identified two cases in which SNVs occurred within GAP1 CNVs. These SNVs
are present at frequencies of 53% in a lineage containing a GAP1 duplication and 30% in a
lineage containing a GAP1 ftriplication indicating that they are present on only one of the copies
within the CNV. We also identified polymorphisms within DUR3 amplifications. This suggests
that individual copies of a gene within a CNV can accumulate additional nucleotide variation
even in relatively short-term evolutionary scenarios. Interestingly, 8 of the 9 clones with DUR3
amplifications also acquired a variant in DUR1,2, which may be indicative of a synergistic

relationship between CNVs and single nucleotide variation.

2.3.7: Lineage tracking reveals extensive clonal interference among CNV
lineages

The reproducible dynamics of CNV lineages observed during glutamine-limited
experimental evolution may be due to two non-exclusive reasons: either 1) a high supply rate of
de novo CNVs or 2) pre-existing CNVs in the ancestral population (Figure 2.S10). In both
scenarios, a single CNV or multiple, competing CNVs may underlie the reproducible dynamics.
Sequence analysis of clonal lineages suggests at least two, and as many as four, CNV lineages
may co-exist in populations (Figure 2.3); however, genome sequencing is uninformative about
the total number of lineages for two key reasons. First, the recurrent formation of CNVs
confounds distinguishing CNVs that are identical by state from those that are identical by
descent. Second, CNVs that arise de novo may subsequently diversify over time resulting in

distinct alleles that are derived from a common event.
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Figure 2.5. Lineage tracking reveals extensive clonal interference among CNV-containing lineages.
(A) We used fluorescence-activated cell sorting (FACS) to fractionate cells containing GAP1 CNVs from
two populations at four time points (dashed black lines) and performed barcode sequencing. (B) Using a
sample- and time point-specific false positive correction, we identified 7067, 973, 131, and 76 barcodes in
one population, bc01 (left), and 5305, 5351, 583, and 28 barcodes in another population, bc02 (right), at
generations 70, 90, 150 and 270 respectively. Each barcode found at >1% frequency in at least one time
point is represented by a unique color in the plot, for a total of 21 barcodes in bc01 and 18 barcodes in
bc02. All other lineages that are never detected at >1% frequency are shown in grey. Lineages denoted
by a * are found at >1% frequency in both populations.
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To quantify the number, relationship and dynamics of individual CNV lineages, we
constructed a lineage tracking library using random DNA barcodes (Levy et al. 2015). We
constructed a library of ~80,000 unique barcodes (Figure 2.811) in the background of the GAP1
CNV reporter and performed six independent replicate experiments in glutamine-limited
chemostats. Real time monitoring of CNV dynamics using the GAP1 CNV reporter recapitulated
the dynamics of our original experiment (Figure 2.5A, Figure 2.812A) although CNV lineages

appeared significantly earlier in these populations (T, ; t-test p-value < 0.01). As the lineage

up’

tracking strain was independently derived from the strain used in our original experiment, these
results indicate that selection of GAP1 CNVs in glutamine-limited chemostats is reproducible

and independent of genetic background.

Table 2.4. Estimation of CNV lineages in evolving populations across time. We determined the
number of GAP1 CNV containing lineages by correcting the number of identified barcodes by the
estimated false positive rate associated with CNV isolation using FACS. High confidence GAP1 CNV
lineages are defined as those that are found at two or more consecutive timepoints.

Number of FP corrected | Barcodes
detected False positive barcode identified at
Population Generation barcodes rate (FP) count >1 time point

bc01 70 9650 0.27 7067 891
bc01 90 1064 0.09 973 891
bc01 150 136 0.04 131 131
bc01 270 79 0.04 76 38
bc02 70 7243 0.27 5305 2676
bc02 90 5851 0.09 5351 2710
bc02 150 606 0.04 583 162
bc02 270 29 0.04 28 22

To quantify individual lineages, we isolated the subpopulation containing CNVs from two

populations (bc01 and bc02) at multiple timepoints (generations 70, 90, 150, and 270). Isolation
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of the CNV subpopulation was performed by fluorescence activated cell sorting (FACS) using
gates based on one and two copy control populations (Figure 2.5A). We sequenced barcodes
from the CNV subpopulation at each time point and determined the number of unique lineages
((L. Zhao et al. 2017) and methods). To account for variation in the purity of the FACS-isolated
CNV subpopulation, we analyzed individual clones using a flow cytometer. Using these data, we
estimated a false positive rate, which we find varies between time points (Figure 2.812B and
methods), and applied this correction to barcode counts (Table 2.4).

Strikingly, we detect thousands of independent GAP1 CNV lineages at generation 70
indicating that a large number of independent GAP1 CNVs are generated and selected in the
early stages of the evolution experiments (Figure 2.5B). Applying a conservative false positive
correction, we identified 7,067 GAP1 CNV lineages in bc01 and 5,305 GAP1 CNV lineages in
bc02 at generation 70 (Table 2.4). If we only consider lineages detected in the CNV
subpopulation at multiple time points, we identify 891 CNV lineages in bc01 and 2,676 CNV
lineages at generation 70 (Table 2.4). Thus, 10%-10* independent CNV lineages initially compete
within each population that are on the order of ~108 cells. The overall diversity of CNV lineages
decreases with time, consistent with decreases in lineage diversity observed in other evolution
experiments (Levy et al. 2015; Blundell et al. 2017). By generation 270, we detect only 76 CNV
lineages in bcO1 and 28 CNV lineages in bc02. To determine the dominant lineages in each
population, we identified barcodes that reached greater than 1% frequency in the CNV
subpopulation in at least one time point: 21 independent lineages are found at greater than 1%
frequency in bc01 and 18 independent lineages are found at greater than 1% frequency in bc02

(Figure 2.5B). These results indicate the presence and persistence of multiple GAP1 CNVs
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across hundreds of generation of selection during which there is a continuous reduction in the
overall diversity of CNV lineages.

Although CNVs rise to high frequencies in both populations (Figure 2.5A), the
composition of competing CNV lineages is dramatically different: in bc02, a single lineage
dominates the population by generation 150 (Figure 2.5B), whereas in bc01, there is much
greater diversity at later time points. In both populations, several CNV lineages that comprise a
large fraction of the CNV subpopulation at early generations (generations 70, 90, or 150) are
extinct by generation 270. Thus, within populations, individual CNV lineages do not increase in
frequency with uniform dynamics despite the consistent and reproducible dynamics of the entire
CNV subpopulations (Figure 2.5A and Figure 2.2). Differences in fitness between individual
CNV lineages, possibly as a result of variation in copy number, CNV size and secondary

adaptive mutations, are likely to contribute to these dynamics.

2.3.8: CNV subpopulations comprise de novo and pre-existing CNV alleles

To distinguish the contribution of pre-existing genetic variation (i.e. CNVs introduced to
the population before chemostat inoculation; Figure 2.810) and de novo variation (i.e. CNVs
introduced to the population following chemostat inoculation) to CNV lineage dynamics, we
assessed whether barcodes were shared between CNV lineages in independent populations.
We identified four barcodes at greater than 1% frequency that are common to both populations
(Figure 2.5B). At generation 70, one of these barcodes (indicated in light purple) was present at
14% and 19% in bc01 and bc02, respectively. We find that the barcode for this lineage was
over-represented in the ancestral unselected population (an initial frequency of 0.014%, which is

one order of magnitude greater than the average starting frequency of 0.0011%; Figure 2.S11).
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Although there is a possibility that de novo CNVs formed independently in this barcode lineage,
it is more likely that this lineage contained a pre-existing CNV in the ancestral population. While
this lineage represented a sizable fraction of the CNV subpopulation in both replicate
populations, it was only maintained at high frequency in one of them (bc01). Only one of the four
pre-existing CNV lineages persists throughout the experiment in both populations. By contrast,
in each population, we identified 17 and 14 unique high frequency CNV lineages that are most
likely new CNVs. These results indicate that both pre-existing CNVs and de novo CNVs that

arise during glutamine limitation contribute to adaptive evolution.

2.4: Discussion

Copy number variants are an important class of genetic variation and adaptive potential.
In this study, we sought to understand the short-term fate of CNVs as they are generated and
selected in evolving populations. Previous work from our laboratory and others has shown that
the defined, strong selective conditions of a chemostat provides an ideal system for studying
CNVs. We used nitrogen limitation to establish conditions that select for amplification and

deletion of the gene GAP1, which encodes the general amino acid permease, in S. cerevisiae.

2.4.1: A GAP1 CNV reporter reveals the dynamics of selection

To determine the dynamics with which CNVs are selected at the GAP1 locus, we
inserted a constitutively expressed fluorescent gene adjacent to GAP1 and tracked changes in
single cell fluorescence over time. While one and two copy control strains with mCitrine at
neutral loci maintain a steady fluorescent signal over 250 generations of selection, all
glutamine-limited populations with the GAP1 CNV reporter show increased fluorescence by
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generation 75. Importantly, the structure and breakpoints of CNVs within and between
populations are different, indicating independent formation of CNVs. Control strains were
inoculated independently, and have different genetic backgrounds, but also form CNVs at the
GAP1 locus as determined by whole genome sequencing and Southern blot analysis. These
data indicate that GAP1 CNVs are positively selected early and repeatedly in glutamine-limited
environments.

While the majority of evolved clones with GAP1 CNVs (18/28) have higher relative
fitness in glutamine-limited chemostats compared to the ancestor, several clones have neutral
(8/28) or lower (2/28) relative fitness. CNV-containing clones were selected on the basis of
increased fluorescence, which does not necessarily mean the clone had higher fitness than the
ancestor. The fitness effect of a CNV within the chemostat environment is context-specific, and
may depend on factors such as frequency-dependent selection. In addition, if GAP1 CNVs are
generated at a high rate as we have hypothesized, neutral or deleterious CNVs could be
present for several generations before these lineages are purged from the population or acquire
additional adaptive mutations. The data presented here explicitly demonstrate that there is a
selective advantage provided by GAP1 CNVs: 1) GAP1 CNVs provide a fithess benefit for 64%
of the evolved clones tested, 2) GAP1 CNVs are repeatedly selected during independently
replicated evolution experiments, and 3) GAP1 CNVs are selected regardless of genetic

background.

2.4.2: Inferences of CNV formation mechanisms

Whole genome sequencing of GAP1 CNV lineages isolated on the basis of increased

fluorescence uncovered a wide range of CNV structures within and between populations. We
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found cases in which distinct alleles were identified within populations at different time points
and cases in which we identified the same CNV allele 100 generations later. GAP1 CNV alleles
are 105 kilobases on average, but can include the entire right arm of chromosome XI (260
kilobases). A previous study in bacteria showed that there is a cost to gene duplication, with a
fitness reduction of 0.15% per kilobase (Adler et al. 2014). Therefore, we hypothesized that
CNVs would decrease in size over evolutionary time through a refinement process in order to
reduce the fitness burden. However, we failed to detect a significant reduction in CNV allele size
over time. This may be because increased CNV size does not confer a fitness cost in yeast, the
fitness benefit of the GAP1 CNV outweighs this cost, or because there are other genes within
the CNV whose amplification confers a fithess benefit.

Our reporter detects increases in gene copy number that result from a variety of
processes including aneuploidy, non-reciprocal translocation, tandem duplication, and complex
copy number variants including inverted triplications. The ability to track and isolate these
diverse gene amplifications allows us to enumerate the frequency of each type and characterize
the mechanisms underlying their formation. Combining our approach with molecular techniques
allowed us to further understand the nature of these GAP1 CNVs. Three particularly interesting
GAP1 CNV-containing clones appear to have partial (i.e. segmental) aneuploidies that
encompass centromere XI| (Figure 2.85). As the presence of two centromeres in one
chromosome is extremely unlikely, it is plausible that these exist as independent,
supernumerary chromosomes (Natesuntorn et al. 2015). Similar adaptive rearrangements occur
in other yeast species: isochromosome formation, potentially mediated by the presence of
inverted repeats, has been observed during treatment of Candida albicans with antifungal drugs

(A. Selmecki, Forche, and Berman 2006). The use of a CNV reporter should facilitate
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determination of the frequency with which these and other complex mechanisms give rise to
CNVs at a given locus.

Breakpoint analysis provided further insight into the mechanisms underlying CNV
formation. We identified breakpoints within LTRs and other repetitive elements for 4 unique
glutamine-limited clones that have 2 copies of GAP1. These findings suggest that these CNVs
were formed by a tandem duplication mediated through NAHR. Of these, 3 GAP1 gene
amplifications (3/28) are formed after NAHR between flanking LTRs YKRCdelta11 and
YKRCdelta12. The GAP1 deletion, which occurred in one population undergoing urea limitation,
also had breakpoints in these flanking elements consistent with NAHR-mediated gene deletion.
NAHR may drive the non-reciprocal translocations we identified, and additional unresolved
events with breakpoints adjacent to LTRs. Surprisingly, we did not find evidence for the selection
of GAP1°™ CNVs in any population. Thus, it may be that circular elements containing beneficial
genes only exist transiently in cells and may rapidly resolve to chromosomal amplifications via
homologous recombination-mediated reintegration.

We identified 9 GAP1 CNVs and 8 DUR3 CNVs containing breakpoints that comprise
closely-spaced inverted repeat sequences. Of these, the majority (14/17) also had an odd copy
number, and contained an origin of replication consistent with the ODIRA mechanism (Brewer et
al. 2011, 2015). However, we also identified one DUR3 CNV that does not include a replication
origin (ure_07_c1), although the origin is nearby (<1 kilobase). This could result from a distinct
replication-based mechanism of CNV generation. For example, microhomology-mediated
break-induced replication (MMBIR) is a RAD51-independent process that relies on short
stretches of homology (“microhomology”) to restart a stalled replication fork (Hastings, Ira, et al.

2009). While we cannot explicitly distinguish between these models, the short stretches of
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homology in the inverted repeats is inconsistent with formation of this CNV by NAHR. Thus,
while NAHR plays an important role in CNV formation, our results suggest that replication-based
mechanisms may be a major source of gene amplification in yeast. This is consistent with
increasing evidence for replication-based CNV formation in diverse organisms including yeast,
mice, and humans (Feng Zhang et al. 2009; Ottaviani, LeCain, and Sheer 2014; Arlt et al. 2012;
Sakofsky et al. 2015).

Comparison between DUR3 and GAP1 CNVs identified quantitative differences in CNV
formation at the two loci. We primarily identified CNVs with 2 or 3 copies of GAP1 in
glutamine-limited clones, but urea-limited clones always contained 5 copies of DUR3. The size
(average of 26 kilobases) of DUR3 CNVs was also significantly smaller than GAP1 CNVs.
Molecular characterization revealed a diverse range of processes underlying GAP1 CNV
formation, whereas DUR3 CNVs are all characterized by inversions mediated by short,
interrupted, inverted repeats. These data suggest that generation and selection of CNVs varies
as a function of locus and selective condition. The CNV reporter can readily be integrated
throughout the genome to further test whether there are fundamental differences in CNV
formation mechanisms at different loci and how these differences change the temporal

dynamics of CNV selection.

2.4.3: Clonal interference underlies CNV dynamics

By combining a CNV reporter with lineage tracking, we identified a surprisingly large
number of independent CNV lineages. Whereas clonal isolation and sequencing suggested at
least four independent lineages within populations, lineage tracking indicates that hundreds to

thousands of individual CNV lineages emerge within less than 100 generations. Most of these
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lineages do not achieve high frequency, as we identified only 18-21 lineages present at >1%
frequency in the CNV subpopulation. The number of independent CNV lineages we identified is
remarkable. Although we have attempted to account for technical factors that may inflate this
number, unanticipated aspects of barcode transformation and library construction, cell sorting,
and barcode sequencing and identification may impact this estimation. Conversely, the exact
number of CNV lineages may be underestimated, as the unselected barcode library was not
maximally diverse and each unique barcode was shared by multiple founding cells.

While we found lineages that were common to both populations (at least one of which is
likely to contain a pre-existing CNV), ancestral CNV lineages do not drive the evolutionary
dynamics. Pre-existing CNV lineages have different dynamics in each population, and do not
prevent the emergence of unique de novo CNV lineages. This demonstrates that the ultimate
fate of a CNV lineage depends on multiple factors, and a high frequency at an early generation
does not guarantee that a lineage will persist in the population. Thus, CNV dynamics result from
pre-existing and de novo variation and are characterized by extensive clonal interference and
replacement among competing CNV lineages.

The large number of CNV lineages identified in our study indicates that they occur at a
high rate. Recent studies have suggested that adaptive mutations may be stimulated by the
environment. Stress can lead to increases in genome-wide mutation rates in both bacteria and
yeast (Foster 2007; Galhardo, Hastings, and Rosenberg 2007; Shor, Fox, and Broach 2013)
and replicative stress can lead directly to increased formation of CNVs (Chen et al. 2015;
Wilson et al. 2015). Other groups have proposed an interplay between transcription and CNV
generation, and that active transcription units might even be “hotspots” of CNV formation

(Thomas and Rothstein 1989; Skourti-Stathaki and Proudfoot 2014; Aguilera and Gaillard
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2014). These hotspots, often designated as common fragile sites, may occur in long, late
replicating genes, with large inter-origin distances (Wilson et al. 2015). Local transcription at the
rDNA locus leads to rDNA amplification, and is thought to be regulated in response to the
environment (Jack et al. 2015; Mansisidor et al. 2018). Transcription of the CUP1 locus in
response to environmental copper leads to promoter activity that further destabilizes stalled
replication forks and generates CNVs (Hull et al. 2017). Given the high level of GAP1
transcription in nitrogen limited chemostats (Airoldi et al. 2016) it is tempting to speculate that
this condition may promote the formation of GAP1 CNVs. Further studies are required to
understand the full extent of processes that underlie CNV formation at the GAP1 locus and how
these different mechanisms may contribute to the fitness and overall success of CNV lineages.

The frequency of GAP1 CNVs can be attributed to a combination of factors including: a
high mutation supply rate due in part to the large chemostat population size (~10%), the strength
of selection, and the fitness benefit typically conferred by GAP1 amplification. Together, these
factors contribute to an early, deterministic phase, during which CNVs are formed at a high rate
and thousands of lineages with CNVs rapidly increase in frequency. During a second phase, the
dynamics are more variable as competition from different types of adaptive lineages, and
additional acquired variation, influence evolutionary trajectories of individual CNV lineages. This
phenomenon has recently been observed in other evolution experiments, where early events
are driven by multiple competing single-mutant lineages (Blundell et al. 2017), but later
dynamics are influenced by stochastic factors and secondary mutations (Levy et al. 2015).

The high degree of clonal interference observed among a single class of adaptive
mutations may have important implications for adaptive evolution. CNVs are alleles of large

effect that can simultaneously change the dosage of multiple protein-coding genes and
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subsequently lead to changes in cell physiology. Epistatic relationships between CNVs and
other adaptive mutations could therefore dramatically alter the fitness landscape (Kvitek and
Sherlock 2011). Additionally, CNVs can confer a fitness benefit per se but also serve to increase
the amount of DNA in the genome that can accumulate mutations. Therefore, CNVs can
potentially increase the rate of adaptive evolution by increasing the target size for adaptive
mutations. In this study, we found evidence for polymorphisms within individual CNVs and
potential epistasis between SNVs and CNV alleles, two phenomena that require further

exploration as we continue to define the role of CNVs in driving rapid adaptive evolution.

2.5: Conclusion

The combined use of a fluorescent CNV reporter and barcode lineage tracking provides
unprecedented insight into this important class of mutation. Previous studies have tracked
specific mutations and their fitness effects (Lang, Botstein, and Desai 2011), but ours is the first
single-cell based approach to identify an entire class of mutations and follow evolutionary
trajectories with high resolution. While barcode tracking alone provides information about the
number of adaptive lineages and their fitness effects, the CNV reporter enables us to specifically
determine the number of unique CNV events. In addition, the reporter provides an estimate of
the total proportion of CNVs in the population, which we can use to inform our understanding of
lineage dynamics. Using these tools, we have shown that CNVs are generated at a high rate
through diverse mechanisms including homologous recombination and replication-based errors.
These processes lead to the formation of many distinct CNV alleles segregating within
populations. One limitation of our approach is that a complex copy number variant could be the

product of multiple, independent events (for example, a duplication followed by a subsequent
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triplication). Evolution experiments that start with a pre-existing CNV would be informative for
studying how CNVs diversify when maintained under selection.

Our results demonstrate an important role for CNVs in driving rapid adaptive evolution in
microbial populations, but could be broadly applicable to plants, animals, and humans. Our
system provides a facile means for studying the molecular processes underlying CNV
generation as well as evolutionary aspects of CNVs including: whether there are fundamental
differences in CNV formation and selection at different loci, the impact of a high rate of CNV
formation on the evolutionary dynamics of other adaptive lineages, how CNVs are maintained or
refined over longer evolutionary timescales, how CNVs interact with other adaptive mutations to
influence fitness landscapes, whether there are consequences and tradeoffs in alternative
environments, and how the formation of CNVs impacts gene expression and genome
architecture. Extension of this method is likely to be useful for addressing additional
fundamental questions regarding the evolutionary and pathogenic role of CNVs in diverse

systems.

2.6: Methods

2.6.1: Strains and media

We used FY4 and FY4/5, haploid and diploid derivatives of the reference strain S288c, for all
experiments. To generate fluorescent strains, we performed high efficiency yeast transformation
(Gietz and Schiestl 2007) with an mCitrine gene under control of the constitutively expressed
ACT1 promoter (ACT1pr::mCitrine::ADH1term) and marked by the KanMX G418-resistance

cassette (TEFpr::KanMX::TEFterm). The entire construct, which we refer to as the mCitrine
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CNV reporter, is 3,375 base pairs. For control strains, the mCitrine reporter was integrated at
two neutral loci: HO (YDL227C) on chromosome IV and the dubious ORF, YLR123C on
chromosome XII. Diploid control strains containing 3 and 4 copies of the mCitrine CNV reporter
were generated using a combination of backcrossing and mating. We constructed the GAP1
CNV reporter by integrating the mCitrine construct at an intergenic region 1,118 base pairs
upstream of GAP1 (integration coordinates, chromosome XI: 513945-517320). PCR and Sanger
sequencing were used to confirm integration of the GAP1 CNV reporter at each location.
Transformants were subsequently backcrossed and sporulated, and the resulting segregants

were genotyped.

For the purpose of lineage tracking, we constructed a strain containing a landing pad and the
GAP1 CNV reporter by segregation analysis after mating the original GAP1 CNV reporter strain
to a landing pad strain (derived from BY4709) (Levy et al. 2015). As the kanMX cassette is
present at two loci in this cross, we performed tetrad dissection and identified four spore tetrads
that exhibited 2:2 G418 resistance. A segregant with the correct genotype (G418 resistant, ura-)
was identified and confirmed using a combination of PCR and fluorescence analysis. We
introduced a library of random barcodes by transformation and selection on SC-ura plates (Levy
et al. 2015). We plated an average of 500 transformants on 200 petri plates and estimated

78,000 independent transformants.

Nitrogen limiting media (glutamine and urea limitations) contained 800 uM nitrogen regardless
of molecular form and 1 g/L CaCl,-2H,0, 1 g/L of NaCl, 5 g/L of MgSO,-7H,0O, 10 g/L KH,PO,,

2% glucose and trace metals and vitamins as previously described (Hong and Gresham 2014).
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Glucose limiting media contained 0.08% glucose, 1 g/L CaCl,-2H,0, 1 g/L of NaCl, 5 g/L of
MgSO,-7H,0, 10 g/L KH,PO,, 50g/L (NH,),SO, and trace metals and vitamins (Brauer et al.

2008).

2.6.2: Long-term experimental evolution

We inoculated the GAP1 CNV reporter strain into 20mL ministat vessels (A. W. Miller et al.
2013) containing either glutamine-, urea-, or glucose-limited media. Control populations
containing either one or two copies of the CNV reporter at neutral loci (HO and YLR123C) were
also inoculated in ministat vessels for each media condition. Ministats were maintained at 30°C
in aerobic conditions and diluted at a rate of 0.12 hr (corresponding to a population doubling
time of 5.8 hours). Steady state populations of 3 x 10® cells were maintained in continuous
mode for 270 generations (65 days). Every 30 generations, we archived 2 mL population

samples at -80°C in 15% glycerol.

2.6.3: Flow cytometry sampling and analysis

To monitor the dynamics of CNVs, we sampled 1mL from each population every ~8 generations.
We performed sonication to disrupt any cellular aggregates and immediately analyzed the
samples on an Accuri flow cytometer, measuring 100,000 cells per population for mCitrine
fluorescence signal (excitation = 516nm, emission = 529nm, filter = 514/20nm), cell size
(forward scatter) and cell complexity (side scatter). We generated a modified version of our

laboratory flow cytometry pipeline for this analysis (https://github.com/GreshamLab/flow), which

uses the R package flowCore (Ellis et al. 2016). We used forward scatter height (FSC-H) and

forward scatter area (FSC-A) to filter out doublets, and FSC-A and side scatter area (SSC-A) to
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filter debris. We quantified fluorescence for each cell and divided this value by the forward
scatter measurement for the cell to account for differences in cell size. To determine population
frequencies of cells with zero, one, two, and three plus copies of GAP1, we used one and two
copy control strains grown in glutamine-limited chemostats to define gates and perform manual
gating. We used a conservative gating approach to reduce the number of false positive CNV
calls by first manually drawing a liberal gate for the one copy control strain, followed by a

non-overlapping gate for the two copy control strain.

2.6.4: Quantification of CNV dynamics

To quantify the dynamics of CNVs in evolving populations, we defined summary statistics as in
(Lang, Botstein, and Desai 2011). T, is the generation at which CNVs are initially detected and
S, is the slope of the linear fit during initial population expansion of CNVs. We first determined
the proportion of cells with a CNV and the proportion of cells without CNVs at each time point,
using the manually defined gates. To calculate T,,, we defined a false positive rate for CNV
detection in evolving one copy control strains from generations 1-153 (defined as the average
plus one standard deviation = 7.1%). We designate T, once an experimental population

surpasses this threshold. To calculate S _, we plotted the natural log of the ratio of the proportion

up’
of cells with and without a CNV against time and calculated the linear fit during initial population
expansion of CNVs. We defined the linear phase on the basis of R? values. S,, can also be

defined as the percent increase in CNVs per generation, which is an approximation for the

relative average fitness of all CNV alleles in the population.
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2.6.5: Isolation and analysis of evolved clones

Clonal isolates were obtained from each glutamine- and urea-limited population at generation
150 and generation 250. We isolated clones by plating cells onto rich media (YPD) and
randomly selecting individual colonies. We inoculated each clone into 96 well plates containing
the limited media used for evolution experiments and analyzed them on an Accuri flow
cytometer following 24 hours of growth. We compared fluorescence to unevolved ancestral
strains and evolved 1 and 2 copy controls grown under the same conditions, and chose a

subset of clones for whole genome sequencing.

To measure the fitness coefficient of evolved clones, we performed pairwise competitive fitness
assays in glutamine-limited chemostats using the same, glutamine-limited conditions as our
evolution experiments (Hong and Gresham 2014). We co-cultured our fluorescent evolved
strains with a non-fluorescent, unevolved reference strain (FY4). We determined the relative
abundance of each strain every 2-3 generations for approximately 15 generations using flow
cytometry. We performed linear analysis of the natural log of the ratio of the two genotypes

against time and estimated the fitness, and associated error, relative to the ancestral strain.

2.6.5: Plug preparation, pulsed-field gel electrophoresis, and Southern
blotting

Evolved clones were grown overnight in glutamine-limited media and embedded in agarose

using Bio-rad plug molds. Plugs were incubated in zymolyase T100 (200ug/mL) overnight at
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37°C, proteinase K (4 mg/mL) overnight at 50°C, and PMSF (1 mM) for one hour at 4°C. PMSF
was removed by washing plugs with 1 mL of CHEF TE three times for thirty minutes. Plugs were
subsequently run in a 1X TAE, 1% agarose gel using a Bio-rad CHEF-DR Il. Southern blotting
was performed by alkaline transfer using Hybond-XL membranes. Blots were subsequently
probed with **P-labeled DNA complementary to GAP1 or CEN11. Probes were created using
nested PCR. Signal from blots was detected using FujiFilm imaging plates and imaged using

Typhoon FLA900O0.

2.6.6: Genome sequencing

For both population and clonal samples, we performed genomic DNA extraction using a
modified Hoffman-Winston protocol (Hoffman and Winston 1987). We used SYBR Green | to
measure gDNA concentration, standardized each sample to 2.5 ng/uL, and constructed libraries
using tagmentation following a modified Illumina Nextera library preparation protocol (Baym et
al. 2015). To perform PCR clean-up and size selection, we used an Agilent Bravo liquid handling
robot. We measured the concentration of purified libraries using SYBR Green | and pooled
libraries by balancing their concentrations. We measured fragment size with an Agilent

TapeStation 2200 and performed gPCR to determine the final library concentration.

DNA libraries were sequenced using a paired-end (2x75) protocol on an Illlumina NextSeq 500.
Standard metrics were used to assess data quality (Q30 and %PF). To remove reads from a
potentially contaminating organism that was introduced after recovery from the chemostats, we
filtered any reads that aligned to Pichia kudriavzevii. Given the evolutionary divergence between

these species, the majority of filtered reads belonged to rDNA and similar, deeply conserved

73


https://paperpile.com/c/wlhFlH/cJLVG
https://paperpile.com/c/wlhFlH/gBzvE
https://paperpile.com/c/wlhFlH/gBzvE

sequences. The median percent contamination was 1.165%. We modified the S. cerevisiae
reference genome from NCBI (assembly R64) to include the entire GAP1 CNV reporter and
aligned all reads to this reference. We aligned reads using bwa mem ((Li and Durbin 2010),
version 0.7.15) and generated BAM files using samtools ((Li et al. 2009), version 1.3.1). FASTQ

files for all sequencing are available from the SRA (accession SRP142330).

2.6.7: Sequence read depth and breakpoint analysis

To manually estimate CNVs boundaries we used a read-depth based approach. For each
sample sequenced, we used samtools (Li et al. 2009) to determine the read depth for each
nucleotide in the genome. We liberally defined CNVs by identifying 2300 base pairs of
contiguous sequence when read depth was =23 times the standard deviation across
chromosome Xl for GAP1 or chromosome VIl for DUR3. These boundaries were further refined
by visual inspection of contiguous sequence =100 base pairs with read depth =23 times the
standard deviation. These analyses were only performed on sequenced clones because
population samples are likely to have multiple CNVs and breakpoints thereby confounding

read-depth based approaches.

To determine CNV breakpoints at nucleotide resolution, we extracted split and discordant reads
from bam files using samblaster (Faust and Hall 2014). Both split reads and discordant reads
were used to identify breakpoints using a weighted scoring method; wherein a split read was
worth 1 and discordant reads were worth 3. Positively identified breakpoints required at least 4
split reads and a combined score of at least 9. Breakpoint sequences were generated by

making local assemblies of breakpoint associated split reads using MAFFT, EMBOSS, and
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velvet (Katoh and Standley 2013; P. Rice, Longden, and Bleasby 2000; Baxevanis et al. 2002).
The relationship between breakpoint sequences and the reference genome was determined

using BLAST+ (Camacho et al. 2009), with blastn and blastn-short using default settings.

To infer the underlying mechanism by which CNVs were formed, we applied the following
criteria. If at least one of the two CNV boundaries contained inverted repeat sequences, and we
estimated an odd number of copies in the CNV, we classified the mechanism as ODIRA (Brewer
et al. 2011, 2015; Payen et al. 2014). If both of the CNV boundaries occurred within repetitive
sequence elements (LTRs or telomeres) and had two copies, we inferred tandem duplication by
NAHR (Hastings, Lupski, et al. 2009). Aneuploids were defined on the basis of increased read
depth throughout the entire chromosome, but no detected novel sequence junctions.
Translocations were identified by LUMPY and Southern blot analysis. All breakpoints that failed

to meet these criteria were defined as unresolved.

In addition to CNVs at GAP1 and DUR3 we also identified additional structural variants and
CNVs. Structural variants were identified using the split and discordant read approach described
above. Additional CNVs were identified using a two pass genome wide read depth approach. In
the initial pass, each sample was scanned for regions (400 nucleotide minimum size) with read
depth higher than 3 standard deviations relative to the genome. During the second pass, the
read depth of each candidate is normalized by the median read depth of that region, as
calculated using a subset of clones that lack a candidate in that region. This normalization

allows for the correction of sequencing artifacts, batch effects, and the removal of CNV regions
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that are not substantially different between the evolved and ancestral clones (ie. rDNA, Ty

elements, etc.)

2.6.8: SNV and variant identification

SNVs and indel variants were first identified using GATK4’s Mutect2 (McKenna et al. 2010),
which allows for the identification of variants in evolved samples (‘Tumor’) after filtering using
matched unevolved samples (‘Normal’) and pool of normals (PON). The PON was constructed
using six sequenced ancestral clones, while the paired normal was a single, deeply sequenced,
ancestor. Variants were further filtered using GATK’s FilterMutectCalls to remove low quality
predictions; only variants flagged as ‘passed’ or ‘germline risk’ were retained. Given the haploid
nature of the evolved population, and further downstream filtering of ‘too-recurrent’ mutations,
we allowed germline risk variants to be retained. Variants were further filtered if they occurred in
low complexity sequence; i.e. variants were filtered if the SNV or indel occurred in, or
generated, a homogenous nucleotide stretch of five or more of the same nucleotide. Variants
from within populations that were detected at less than 5% frequency were considered low
confidence and excluded. Finally, variants were filtered if they were found to be ‘too-recurrent’;
that is, if the exact nucleotide variant was identified in more than three independently evolved
lineages, we deemed it more parsimonious to assume that the variant was present in the

ancestor at low frequency.

2.6.9: Quantifying the number of CNV lineages

We inoculated the lineage tracking library into 20mL ministat vessels (A. W. Miller et al. 2013)

containing glutamine-limited media. Control populations containing either zero, one or two
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copies of the GAP1 CNV reporter at neutral loci (HO and YLR123C) were also inoculated in
ministat vessels for each media condition. Control populations did not contain lineage tracking
barcodes. Ministat vessels were maintained and archived as above. Samples were taken for

flow cytometry every ~8 generations and analyzed as previously described.

We used fluorescence activated cell sorting (FACS) to isolate the subpopulation of cells
containing two or more copies of the the mCitrine CNV reporter using a FACSAria. We defined
our gates using zero, one, and two copy mCitrine control strains sampled from ministat vessels
at the corresponding timepoints: 70, 90, 150, and 265 generations. Depending on the sample,
we isolated 500,000-1,000,000 cells with increased fluorescence, corresponding to two or more
copies of the reporter. We grew the isolated subpopulation containing CNVs for 48 hours in
glutamine-limited media and performed genomic DNA extraction using a modified
Hoffman-Winston protocol (Hoffman and Winston 1987). We verified FACS isolation of true
CNVs by isolating clones from subpopulations sorted at generation 70, 90, and 150 (sorted from
all lineage tracking populations, bc01-06) and performing independent flow cytometry analysis
using an Accuri. We estimated the average false positive rate of CNV isolation at each time
point as the percent of clones from a population with FL1 less than one standard deviation
above the median FL1 in the one copy control strain. Only subpopulations with fluorescence

measurements for at least 25 clones were included in calculations of false positive rate.

We performed a sequential PCR protocol to amplify DNA barcodes and purified the products
using a Nucleospin PCR clean-up kit (Levy et al. 2015). We quantified DNA concentrations by

gPCR before balancing and pooling libraries. DNA libraries were sequenced using a paired-end
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(2x150) protocol on an lllumina MiSeq 300 Cycle v2. Standard metrics were used to assess
data quality (Q30 and %PF). However, the reverse read failed due to over-clustering, so all
analyses were performed only using the forward read. We used the Bartender algorithm with
UMI handling to account for PCR duplicates and to cluster sequences with merging decisions
based solely on distance except in cases of low coverage (<500 reads/barcode), for which the
default cluster merging threshold was used (L. Zhao et al. 2017). Clusters with a size less than
four or with high entropy (>0.75 quality score) were discarded. We estimated relative abundance
of barcodes using the number of unique reads supporting a cluster compared to total library

size.

2.7: Supplemental figures
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Figure 2.81. Assessment of CNV reporter fithess effects. The fitness of strains carrying one
(DGY500) or two copies (DGY1315) of a constitutively expressed mCitrine gene was assayed.
Fluorescent strains were co-cultured with the non-fluorescent, unevolved reference strain (FY4). We
performed three independent competitive fitness assays in glutamine-limited chemostats using the same
conditions as evolution experiments. No significant fitness defect was observed for either strain indicating
that constitutive expression of one or two copies of the fluorescent gene does not confer a fitness cost in
these conditions. Error bars are 95% confidence intervals.
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Figure 2.S2. The GAP1 CNV reporter indicates the emergence of GAP1 CNVs in all
glutamine-limited populations. Distributions of single-cell fluorescence over time for all
glutamine-limited experimental populations. Fluorescent signal is normalized by forward scatter, which
varies as a function of cell size. Each distribution is based on 100,000 single cell measurements.
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Figure 2.83. Normalization by forward scatter mitigates effects of cell physiology and morphology
variation on CNV reporter signal. Dashed grey lines represent one and two copy control populations.
(A) Median unnormalized fluorescence across time for all evolving populations. (B) Median forward
scatter over time for all populations. One glucose-limited population (pink) developed a bud separation

defect,

resulting in a cell aggregation phenotype and large forward scatter and fluorescence

measurements. Normalizing by forward scatter accounts for this issue and other changes in overall cell
physiology during the evolution experiments (see Fig 2.2B).
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Figure 2.84. Gating flow cytometry data enables estimation of CNV alleles that contain more than
two copies. The proportion of cells with zero, one, two, and three or more copies of GAP1 in each
glutamine-limited experimental population. Proportions were calculated after generating gating criteria
based on one and two copy control populations.
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Figure 2.S5. Pulsed-field gel electrophoresis enables molecular characterization of GAP1 CNVs.
Analysis of ancestral and evolved clones. Whole chromosomes were visualized by ethidium bromide
staining (left) then probed for GAP1 and CEN11 (right). In the majority of cases, the CEN11 probe
correlates with GAP1 probe signal, indicating that these GAP1 amplifications are located on chromosome
Xl. Instances where the CEN11 and GAP1 probes do not correlate are indicative of non-reciprocal
translocations. Duplication of CEN11 may indicate segmental aneuploidy.
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Figure 2.S6. Fitness is calculated using linear regression after performing pairwise competition
assays. Evolved lineages with GAP1 CNVs were co-cultured with a non-fluorescent, unevolved reference
strain (FY4) in glutamine-limited chemostats. We determined the proportion of fluorescent cells over time
(for either 10 or 15 generations) using flow cytometry. The slope of the linear fit is equivalent to the
fitness, relative to the ancestor, for each evolved lineage. In cases where two independent fitness
measurements for a single lineage were in rough agreement, we included only the replicate with the
lowest standard error. Measurements for DGY 1729 were conflicting and are not reported in Figure 2.S7.
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Figure 2.S7. GAP1 CNV-containing lineages have a higher relative fitness than the ancestral strain.
The fitness of evolved lineages containing GAP1 CNVs was determined by pairwise competition
experiments with a non-fluorescent, unevolved reference strain (FY4) in glutamine-limited chemostats.
The majority (18/28) of evolved CNV-containing lineages have significantly higher fitness (t-test,
bonferroni-corrected p.val < 0.00156) than the ancestor. Decreased (2/28), or insignificant fithess
differences (8/28), may reflect context-specific fitness effects of GAP1 CNV-containing lineages. Error
bars are 95% confidence intervals.
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Figure 2.S8. Identification of CNV alleles at the DURS3 locus. (A) A schematic illustrating the genomic
context and estimated breakpoints for clones containing DUR3 CNVs isolated from urea-limited
chemostats at generation 150 and generation 250. Breakpoint boundaries were estimated using a read
depth based approach. Compared to (B) clones isolated from glutamine-limited chemostats containing
GAP1 CNVs, (C) clones isolated from urea-limited chemostats have significantly higher copy number
(t-test p.val < 0.01). (D) GAP1 CNV alleles are significantly larger than (E) DUR3 CNV alleles (t-test p.val
< 0.01). ARS = autonomously replicating sequence.
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Figure 2.S9. Population estimates of GAP1 copy number by CNV reporter and quantitative
sequencing are linearly correlated and increase with time of adaptive evolution. Relative depth at
the GAP1 locus, calculated from whole genome sequencing data, is strongly correlated with the median
normalized fluorescence of the GAP1 CNV reporter in populations. Glutamine-limited populations
measured at generation 250 tend to have higher fluorescence and higher relative read depth at the GAP1
locus than at generation 150.
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Figure 2.510. Population prehistory of independent evolution experiments. All independent
populations share a common history prior to founding of individual populations. The prehistory of
experiments using the GAP1 CNV reporter (A) differ with respect to the size of the founding population in
experiments using a lineage tracking library (B). Any variation that is introduced prior to founding of
individual populations may contribute to the evolution of all populations. Variation that is introduced after
separation into individual populations contributes to evolutionary outcomes in that population only. YPD =
yeast extract-peptone-dextrose (rich media). GIn-lim = glutamine limited. YPGAI = yeast
extract-peptone-galactose.
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Figure 2.S11. Distribution of barcode counts in ancestral populations. We determined the
distribution of read counts supporting each unique barcode in the ancestral population, after filtering out
low confidence clusters. The relative frequencies of barcodes vary by over an order of magnitude and we
observe a long tail with a few barcodes significantly overrepresented in the ancestral population. The red
arrow indicates an overrepresented barcode in the ancestral population that was identified in the CNV
subpopulation in both independent barcoded evolution experiments (indicated in purple in Fig 5B). This
distribution is consistent with that found in other barcode lineage tracking experiments (Levy et al. 2015).
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Figure 2.812. Identification of barcoded GAP1 CNV-lineages in evolving populations. (A) GAP1
CNV dynamics in barcoded populations assayed using a CNV reporter. (B) Estimation of true positive rate
of CNV isolation by FACS at generations 70, 90, and 150. CNV subpopulations were isolated by FACS at
each timepoint and clones isolated by plating for single colonies. The percent of cells containinga CNV
in the fractionated subpopulation was estimated using at least 25 clones. A one copy control strain was
used to define gates.
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Chapter 3: Comparing CNV dynamics across loci
using a fluorescent CNV reporter

3.1: Abstract

Copy number variants (CNVs) are a common outcome during adaptive evolution in
nutrient-limited environments, but the dynamics with which they are generated and selected
across different environmental conditions are largely unknown. To overcome the inherent
challenge in detecting CNVs at low frequency, we previously developed a reporter construct that
uses fluorescence to distinguish single cells that acquire CNVs at a specific locus. An
advantage of this approach is that the CNV reporter can be integrated throughout the genome,
allowing comparative analysis across multiple loci and selective conditions. To determine the
dynamics with which CNVs emerge and are selected across loci, we inserted the CNV reporter
at three different locations: between the high-affinity glucose transporters HXT6 and HXT7,
adjacent to the ammonium permease MEP2, and adjacent to the general amino acid permease
GAP1. In agreement with our previous findings, we observe CNVs arising early and predictably
at the GAP1 locus. We also identified CNVs at the HXT6/7 locus, but CNV formation was more
variable and CNV dynamics were complex. We did not observe CNVs at the MEP2 locus. Our
results show that the CNV reporter enables quantitative, high-resolution temporal
measurements of CNV dynamics across three different nutrient limitations and loci under
selection, providing the first comparative analysis of the emergence, selection, and maintenance

of adaptive gene amplifications in evolving populations.
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3.2: Introduction

Copy number variants (CNVs) are duplications or deletions of DNA sequence that result in
polymorphisms among individuals of a population. In evolution, CNVs can drive rapid
phenotypic diversification and adaptation. During short-term evolutionary scenarios, such as
niche specialization or domestication, changes in DNA copy number can result in strong
selective advantages (Clop, Vidal, and Amills 2012; Zmienko et al. 2014; Greenblum, Carr, and
Borenstein 2015; Meyer and Purugganan 2013; Ramirez et al. 2014; Dhami, Hartwig, and
Fukami 2016). Across longer evolutionary timescales, duplication of genes allows diversification
and evolution of gene families through neofunctionalization and subfunctionalization (Conant
and Wolfe 2008). For example, CNVs played a significant role in human evolution, especially in
dietary adaptations and in advancing brain function and development (Barreiro et al. 2008;
Iskow et al. 2012). Despite the prevalence and importance of CNVs for phenotypic variation and
adaptive evolution, fundamental questions regarding their rate of formation, the molecular
mechanisms underlying their formation, and their ultimate fate in evolving populations remain

unresolved.

CNVs are commonly observed in experimentally evolving lineages of microbial populations. In
studies that use a limited nutrient as the selective agent, evolved strains often have
amplification alleles for the transporter of that specific nutrient. This phenomenon was first
observed in experiments with Escherichia coli limited for lactose. These evolved lineages
produce large amounts of B-galactosidase as a result of amplifications in the lac operon

(Horiuchi, Horiuchi, and Novick 1963). Early studies in Saccharomyces cerevisiae identified
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amplification alleles of the gene that hydrolyzes organic phosphates in phosphate-limited
environments (Hansche 1975). Subsequently, multiple, independent studies have identified
amplifications of the high-affinity sulfur transporter SUL1 (Gresham et al. 2008; Payen et al.
2014) and the high affinity glucose transporter genes HXT6 and HXT7 in glucose-limited media
(Brown, Todd, and Rosenzweig 1998; Kao and Sherlock 2008; Gresham et al. 2008). HXT6 and
HXT7 have 99.7% sequence similarity and unequal crossover by non-allelic homologous

recombination (NAHR) can lead to their amplification (Brown, Todd, and Rosenzweig 1998).

Amplification alleles for the corresponding limiting nutrient have been identified in the
high-affinity proline transporter PUT4, the urea transporter DUR3, the allantoin permease DALA4,
and the ammonia permease MEP2 (Hong and Gresham 2014; Hong et al. 2018). We have also
previously shown that CNV formation occurs early and repeatedly at the GAP1 locus during
selection in nitrogen-limited environments (Hong and Gresham 2014; Gresham et al. 2010;
Lauer et al. 2018). GAP1 is a general amino-acid permease that can transport all natural
L-amino acids, several D-amino acids, related compounds, and toxic analogs (Stanbrough and

Magasanik 1995).

One mechanism of CNV formation contributing to GAP1 amplification in nitrogen-limited
environments is generation of a self-propagating extra-chromosomal circle that contains the
GAP1 locus and an origin of replication (Gresham et al. 2010). This amplification event is
mediated by intrachromosomal recombination between long terminal repeats (LTRs) flanking
GAP1. CNVs often occur in response to DNA damage, such as double strand breaks (DSBs).

Typically, DSBs are repaired by homologous recombination (HR) and do not result in structural
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or genomic alterations. However, LTRs and other repetitive elements increase the probability

that NAHR will occur.

LTRs are common in the yeast genome and include retrotransposon elements from the Ty1,
Ty2, Ty3, Ty4, and Ty5 families. A total of 483 Ty element insertions have been identified,
comprising ~3% of the yeast genome (Carr, Bensasson, and Bergman 2012). GAP1 is relatively
unique in that it has flanking LTRs and flanking tRNA genes, which have also been implicated in
genome instability (Tran et al. 2017). This means GAP1 could be a potential “hotspot” of
repeated CNV formation. This is contrast to other loci including MEP2, which does not have
repetitive sequence elements in close proximity. As a result, CNV formation at the MEP2 locus

may rely on other mechanisms.

Several mechanisms of CNV formation require little or no homology. These include
microhomology-mediated repair (MMR) and origin-dependent inverted-repeat amplification
(ODIRA). First observed for amplifications in the SUL1 locus, ODIRA requires a nearby origin of
replication and inverted-repeats that are closely spaced, no more than a distance the length of
Okazaki fragments (Brewer et al. 2011, 2015). Replication fork slippage occurs and results in
broken forks, which regress and anneal to their complementary repeat. The invading strand
becomes ligated to the adjacent Okazaki fragment, resulting in a “closed” fork (Brewer et al.
2011, 2015). This forms an extra-chromosomal circle that can replicate autonomously because it
contains an origin of replication. Alternatively, it can stably reintegrate into the genome through

homologous recombination (Brewer et al. 2011, 2015). Recent evidence suggests that
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extrachromosomal circles are quite common, even in the absence of selection, and may be a
major source of CNVs (Mgller et al. 2015; K. M. Turner et al. 2017).

A central challenge to quantifying CNV dynamics is the development of accurate and sensitive
methods to detect and analyze CNVs in heterogeneous evolving populations. To overcome this
challenge, we previously developed a novel fluorescent reporter to detect and isolate
subpopulations of cells that acquire de novo CNVs. Our new assay allows detection of CNVs
with unprecedented temporal resolution and provides an opportunity to perform comparative
analysis across different selective conditions and loci. To determine the effect of local genomic
features and varying selective pressures on the rate and molecular mechanisms of CNV
formation, we analyzed CNV dynamics across three distinct loci under three different
environmental conditions. We find that temporal dynamics differ, with CNV formation occurring

at the GAP1 and HXT6/7 loci, while MEP2 amplifications were not observed.

3.3: Results

3.3.1: Stability of a fluorescent reporter during laboratory evolution

For a fluorescent marker to accurately report on CNV formation, fluorescent signal must remain
stable during long term laboratory evolution. To determine the stability of the fluorescent
reporter, | performed three independent evolution experiments with a strain that has mCitrine
integrated at an endogenous neutral locus (HO) in FY4, a haploid derivative of the reference
strain S288c. The mCitrine reporter is under control of the constitutively expressed ACT1
promoter and marked by the KanMX G418-resistance cassette. Populations were maintained in

ammonium-limited media on continuous mode (dilution rate = 0.12 culture volumes/hr;
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population doubling time = 5.8 hours) for 170, 174, and 120 generations respectively. Flow
cytometry was used to measure fluorescence of 100,000 cells per sample. Fluorescence
remains constant for the duration of each replicated evolution experiment (Figure 3.1).
Maintenance of protein fluorescence is consistent with the absence of a detectable fithess cost
associated with one copy of the CNV reporter in ammonium-limited chemostats. A small
population of cells have high fluorescence (generation 11 in population 1), which we believe is a

direct result of aberrant changes to cell size during sampling (see Figure 3.10).
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Figure 3.1. Fluorescent signal of an mCitrine reporter integrated at a neutral locus remains
constant during adaptive evolution. Normalized distributions of single-cell fluorescence over time for a
one-copy reporter strain evolving in three independent ammonium-limited chemostats. The mCitrine
cassette is integrated at an endogenous neutral locus, HO, in S. cerevisiae. Single cell fluorescence is
normalized by the forward scatter measurement of the cell, and 100,000 single cells were measured to
generate each distribution. Cells from population 1 had abnormal cell sizes at the time of sampling
(generation 11) which affected the normalized fluorescence value.

3.3.2: Creation of a CNV reporter

To study the effect of genomic context on the rate and diversity of CNVs, | inserted the CNV
reporter at three distinct loci: 1) the high-affinity glucose transporters HXT6 and HXT7, 2) the
ammonium permease MEP2, and 3) the general amino-acid permease GAP1. Each locus has
distinct genomic features (Figure 3.2): HXT6 and HXT7 are 99.7% identical gene sequences
that lie proximal to an autonomously replicating sequence (ARS) whereas GAP1 is adjacent to
an ARS and flanked by Ty1 long terminal repeats (LTRs) and tRNA genes (not shown in the
diagram). By contrast, MEP2 does not have large flanking repetitive sequences or a nearby
ARS. The mCitrine reporter construct was stably integrated into FY4 at intergenic regions to
avoid promoters and 5’ and 3'-UTRs. For GAP1 and MEP2, this location is approximately 1-1.2
kilobases upstream of the coding sequence (integration coordinates, chromosome Xl: 513945
and chromosome XIV: 356282, respectively). For HXT6/7, the construct is inserted between the

two genes, avoiding the ARS sequence (integration coordinates, chromosome VI: 1157590).

Limiting environment: Known loci of amplification:
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Figure 3.2. Schematic representation of mCitrine integration. Reporter strains were generated by
integration of mCitrine into nearby intergenic regions for loci of interest: HXT6/7, MEP2, and GAP1.

3.3.3: CNV dynamics for MEP2 in ammonium-limited chemostats

To test detection of de novo CNVs in evolving populations, | performed a long-term evolution
experiment using the MEP2-mCitrine strain in three ammonium-limited chemostats for 199 or
215 generations using the same continuous culturing mode as described above. Using flow
cytometric analysis in the flowCore R package (Ellis et al. 2016), | plotted the distribution of
fluorescence for 100,000 single cells, each normalized by their forward scatter measurement (a
proxy for cell size). During ammonium-limitation, changes in fluorescent signal were not
observed (Figure 3.3). In fact, fluorescence remains low and constant, similar to what was
observed with the 1 copy control strain in ammonium-limited chemostats (Figure 3.1). This is
consistent with previous data from our laboratory, which demonstrates that while MEP2 CNVs
have been observed, single nucleotide variants are also a common mode of adaptation during
ammonium limitation in chemostats (Hong and Gresham 2014; Hong et al. 2018). There are
three non-exclusive explanations for the observed data: 1) CNVs form at the MEP2 locus, but
CNV formation is rare and three (relatively) short-term replicates simply don’t provide enough
data points to make any conclusions, 2) CNVs form at the MEP2 locus, but the MEP2-mCitrine
reporter does not accurately report on their formation, and 3) MEP2 CNVs form but are quickly
outcompeted and eliminated from the population by adaptive mutations with higher fitness

benefits (see discussion).
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3.3.4: CNV dynamics of HXT6/7 in glucose-limited chemostats

In addition to the three ammonium-limited chemostat experiments, three additional replicates in
glucose-limited media were performed simultaneously. These evolution experiments were
performed as described above, but using the HXT6/7-mCitrine strain, and were carried out for
240 generations. | detected a subpopulation of cells with increased fluorescence at generation
87 in population Gluc1 and at generation 95 in Gluc3 (Figure 3.4). These data are consistent
with generation of one or more adaptive CNV(s) at the HXT6/7 locus that are under strong
positive selection. In Gluc3, a small subset of the population maintained increased fluorescence
for the duration of the experiment. In Gluc1, the increase in fluorescence was more dramatic
and more variable, which could be indicative of multiple subpopulations with 3, 4 or more copies

of mCitrine.
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Figure 3.3. Fluorescent signal of a MEP2-mCitrine reporter does not increase during hundreds of
generations of ammonium limitation. Normalized distributions of single-cell fluorescence over time for
the MEP2-mCitrine reporter strain evolving in three independent ammonium-limited chemostats. Single
cell fluorescence is normalized by the forward scatter measurement of the cell, and 100,000 single cells
were measured to generate each distribution.
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Figure 3.4. Increases in fluorescence for the HXT6/7-mCitrine CNV reporter suggest the presence
of HXT6/7 amplifications in glucose-limited populations. Distributions of single-cell fluorescence over
time for three independent glucose-limited experimental populations. Fluorescent signal is normalized by
forward scatter, which varies as a function of cell size. Each distribution is based on 100,000 single cell
measurements. The x-axis has been modified to remove a large population of non-fluorescing cells (see

Figure 3.6 for comparison).
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Using fluorescence activated cell sorting (FACS), | fractionated the evolved population from
Gluc1 into two distinct groups: those with a single copy of the CNV reporter, and cells with
increased fluorescent signal that have two, or more, copies of the HXT6/7 locus. To confirm the
purity of the sorted population, fractionated samples were analyzed using an Accuri flow
cytometer (Figure 3.5). Importantly, the CNV subpopulation was isolated with high accuracy,

and shows our ability to enrich for single cells with 2 or more copies of the reporter.

Entire Population FACS-Sorted No CNV Subpopulation FACS-Sorted CNV Subpopulation

(=)
¢

o
fT)V

Fluorescence Signal (AU)
2

Cell size

Figure 3.5. Fluorescence activated cell sorting (FACS) can be used to fractionate the
subpopulation containing CNVs from heterogeneous evolving populations. An Accuri flow
cytometer was used to determine the fluorescence of 100,000 fractionated cells from each sample sorted
using FACS. Samples were fractionated from evolved population Gluc1.

While these experiments demonstrate the utility of the method for monitoring CNV dynamics
and isolating subpopulations of CNV-containing cells, we identified additional concerns.
Surprisingly, there were large populations of non-fluorescing cells in all 3 glucose-limited
populations, which could be indicative of a high rate of loss of the fluorescent reporter gene

(Figure 3.6; see discussion).
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Figure 3.6. Large populations of non-fluorescing cells are maintained throughout the duration of
glucose-limited experimental evolution. Despite increases in fluorescence indicating the presence of
HXT6/7 CNVs, a subpopulation of non-fluorescing cells is present at high frequency. This figure presents
the same data as Figure 3.4, but with an unmodified x-axis. Distributions of single-cell fluorescence over
time for three independent glucose-limited experimental populations. Fluorescent signal is normalized by
forward scatter, which varies as a function of cell size. Each distribution is based on 100,000 single cell
measurements.
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To summarize CNV dynamics, the median fluorescence of each sample is plotted by time point.
However, plotting this value for the glucose-limited population yielded trajectories with large
fluctuations in fluorescence at alternating time points (Figure 3.7A). Since this phenomenon
was somewhat mitigated by plotting the mean fluorescence at each time point, it indicates that
there were cells with extreme outlying fluorescence values. In addition, after generation 175, the
median forward scatter more than doubled, indicating significant changes to cell size (Figure
3.7B). Cell aggregation, also called flocculation, is common in chemostat experiments and may
partially explain increases in forward scatter (Hope et al. 2017). We discuss these technical
challenges and other issues further below. Since increases in fluorescence were observed
many generations earlier than the increases in forward scatter, we believe that these anomalies

do not change our overall interpretation of CNV formation at this locus.
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Figure 3.7. Glucose-limited populations experience extreme fluctuations in forward scatter and
fluorescent signal. For each glucose-limited population, the median forward scatter (A) and median
fluorescence (B) are plotted at each time point sampled during glucose limitation. Forward scatter is
typically used as a proxy for cell size.

3.3.5: CNV dynamics in glutamine-limited chemostats

In addition to the experiments performed above, | also inoculated the GAP1-mCitrine strain into
three glutamine-limited chemostats during a separate round of adaptive laboratory evolution.
We previously used the GAP1-mCitrine reporter for experiments in smaller format miniature
chemostats or “ministats” (Lauer et al. 2018). These evolution experiments were conducted in
large-format, standard chemostats: populations were maintained in glutamine-limited media on
continuous mode (dilution rate = 0.12 culture volumes/hr; population doubling time = 5.8 hours)
for either 219 or 182 generations. Flow cytometry was used to measure fluorescence of 100,000
cells per sample. For all three replicates, increases in fluorescence were identified between
generation 83 and 95, suggesting the emergence of de novo CNVs at the GAP1 locus (Figure
3.8). These dynamics are indicative of striking parallelism among populations. However, the
subsequent dynamics of CNVs were markedly different for each population: GAP1 CNVs in
replicate GIn2 decrease in frequency after generation 112 and are subsequently outcompeted,
while GAP1 CNVs are maintained for the duration of the experiment in GIn1 and GIn3. These

data are consistent with our previous report (Lauer et al. 2018).

3.3.6: Comparative dynamics across loci

While only the HXT6/7-mCitrine glucose-limited and MEP2-mCitrine ammonium-limited

experiments were performed concurrently, additional comparisons can be performed across loci.
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Increases in fluorescence indicative of the emergence of de novo CNVs were identified for both
the GAP1 and HXTG6/7 reporter strains. GAP1 amplifications may occur earlier than HXT6/7
amplifications, suggesting there is a higher rate of CNV formation at the GAP1 locus. HXT6/7
populations have larger increases in fluorescent signal, indicative of higher copy number
(Figure 3.9). In both cases, 2/3 replicates maintained increased fluorescent signal for the
duration of the experiment. Additional replicate experiments should be performed
simultaneously in both conditions to determine if there are any statistically significant differences

in GAP1 and HXT6/7 CNV dynamics.
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Figure 3.8. The GAP1 CNV reporter indicates the emergence of GAP1 CNVs in all glutamine-limited
populations. Distributions of single-cell fluorescence over time for all glutamine-limited experimental
populations. Fluorescent signal is normalized by forward scatter, which varies as a function of cell size.
Each distribution is based on 100,000 single cell measurements.

8e+051
Be+05 1
4e+05 1

2e+051 ﬁ

0e+00 -
8e+05

Be+05-
8 4e+05-
@ 2e+05-
w

& 0e+00-
3 8e+051
w

e 6e+05
= de+051
2e+05 -

Oe+00
8e+051
B6e+05 1

4e+051

2e+05 - ,d’“-——&

0e+00 - e i :
0 50 100 150 200 250
Generations

B U LY

josuo s

Bs0an|5

BUILLEIN(E

Fig 3.9. Comparative CNV dynamics across all evolving populations. Mean fluorescence over time
for each population evolving in ammonium (MEP2 reporter, n=3), ammonium (HO reporter/control, n=3),
glucose (HXT6/7 reporter, n=3) and glutamine (GAP1 reporter, n=3) limitation. Fluorescence signal is not
normalized by forward scatter. Any observed increases in fluorescence for ammonium-limited populations
are due to changes in forward scatter (see Figure 3.10).
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Fig 3.10. Changes to forward scatter during adaptive evolution in glucose- and ammonium- limited
chemostats. Mean forward scatter over time for each population evolving in ammonium (MEP2 reporter,
n=3), ammonium (HO reporter/control, n=3), glucose (HXT6/7 reporter, n=3) and glutamine (GAP1
reporter, n=3) limitation. Normalization by forward scatter is typically used to mitigate effects of cell
physiology and morphology variation on CNV reporter signal. However, the dramatic FSC increases
observed here are potentially indicative of diploidization or systemic changes during an evolution
experiment.

As described above, glucose-limited populations experience a dramatic increase in forward

scatter by generation 182. A similar increase in forward scatter was observed for the
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ammonium-limited populations by generation 199 (Figure 3.10). These experiments were
performed at the same time using the same chemostat devices, and these changes to forward
scatter could therefore be the result of systematic changes to the chemostat devices

themselves (see discussion).

3.4: Discussion

The results presented here are the first characterization of CNV dynamics across different loci
and nutrient-limited environments. Determining the dynamics with which CNVs are generated
and selected in these diverse conditions can provide further insight into the role of genomic

context and selective condition on CNV formation.

CNVs are formed at the GAP1 and HXT6/7 loci during glutamine- and glucose-limitation,
respectively. Amplifications were identified at the GAP1 locus in all three replicate populations,
and as a result, may form at a higher rate than HXT6/7 amplifications. While we lacked the
proper controls to directly quantify the proportion of cells with 2, 3, and more copies, it is
possible that HXT6/7 amplifications were present in higher copy number than GAP1
amplifications since we identified larger and more variable increases in fluorescence. These

data could reflect fundamental differences in CNV generation and selection at these loci.

We originally hypothesized that GAP1 CNVs occur primarily through non-allelic homologous
recombination (NAHR) between flanking Ty1 LTRs, but subsequent studies revealed that GAP1
CNVs are generated through diverse mechanisms (Lauer et al. 2018). HXT6 and HXT7 share

99.7% sequence identity and non-allelic homologous recombination (NAHR) between the two
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loci has been reported (Brown, Todd, and Rosenzweig 1998). Repeated recombination events
that further increase copy number could therefore be driving the large and variable increases in
fluorescence. Additional replicate experiments for both reporter constructs and conditions
(performed simultaneously) are required to determine if there are any statistically significant
differences in CNV formation between the two loci. While whole genome sequencing was
performed for Glu1, it was relatively uninformative since we used a whole-population sample
(where any increases in read depth would be obscured by the high frequency of
non-fluorescing/non-CNV containing cells). Genome sequencing of isolated clones would
provide additional information about differences in CNV allele size, CNV copy number, and any

differences in the molecular mechanisms underlying CNV formation.

As discussed in Chapter 2, we previously used the GAP1-mCitrine reporter to perform evolution
experiments in glutamine-limited chemostats (Lauer et al. 2018). While the earlier experiments
were performed in miniature chemostats (20mL media instead of 300mL media), all other
parameters were consistent. Direct comparisons between these experiments are not possible
(we did not use 1 and 2 copy controls in the large-format chemostats), but the overall dynamics
we observed are consistent. CNV dynamics include an early, reproducible stage where CNVs
form in all replicate populations, and a stochastic phase where dynamics are more variable and
CNVs sometimes decrease in frequency. While CNVs may have emerged slightly earlier in the
miniature chemostats, this could also be due to more accurate CNV detection enabled by the
use of matched control populations. Importantly, these results are an independent verification of
the findings from Chapter 2, further supporting the early increase in GAP1 CNVs during

adaptive evolution in glutamine-limited chemostats.
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We did not identify increases in fluorescence consistent with adaptive MEP2 CNVs in any of the
three ammonium-limited chemostats. While it is possible that MEP2 CNVs formed but were
quickly outcompeted from the population, we find this scenario unlikely. Previous results from
our laboratory show that MEP2 amplifications are common and have large fitness benefits
(Hong et al. 2018). In this study, MEP2 amplifications were only detected after genome
sequencing at generation 250 (Hong et al. 2018), which could indicate that they do not form at a
high rate, and that our experiments were too short-term to observe them. Unlike GAP1 and
HXT6/7, MEP2 is not adjacent to any large repetitive sequences that facilitate NAHR, and as a
result, CNV formation may proceed by an alternative mechanism (such as a microhomology
mediated mechanism) that does not occur as readily. Additionally, since the MEP2 reporter is ~1
kilobase upstream of the gene, it would not capture partial MEP2 CNVs or small CNVs, which
potentially form at this locus (personal communication with Farah Abdul-Rahman). Redesign of
the CNV reporter could facilitate more accurate identification of small MEP2 CNVs and is
ongoing in the laboratory. Further studies are needed to determine the frequency of CNV
formation at this locus and the dynamics with which CNVs are selected and maintained in

ammonium-limited chemostats.

Glucose-limited populations had a high proportion of non-fluorescing cells and cells with
extreme or outlying fluorescent values. Frequent and rapid NAHR between HXT6 and HXT7
could result in high rates of loss for the reporter gene (personal communication with Grace
Avecilla). In addition, we observed increases in forward scatter for all three glucose-limited
populations consistent with significant changes to cell size. Flocculation can lead to cell-cell

adhesion or cell-surface adhesion and biofilm formation; this is a common adaptive strategy in
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the chemostat as it can prevent dilution of cells from the vessel (Hope et al. 2017). Flocculation
also presents technical challenges as it can lead to clogs in outflow tubing. These unforeseen
issues may have led to the extreme fluctuations in fluorescence and cell size we observed. To
avoid these potential issues in the future, we can perform evolution experiments in a FLO1

deletion background (Hope et al. 2017).

Cell size changes may have been systematic, as cells in the ammonium-limited chemostats
running concurrently also exhibited increases in forward scatter. Uncontrolled changes to
temperature and oxygen availability could cause cells in both media conditions to exhibit similar
physiological changes. Another possibility is that cells in all the replicates simultaneously
underwent diploidization, leading to concomitant increases in cell size. However, this seems like
an unlikely explanation. The strains used during this evolution experiment (DGY1588 and
DGY1592 in ammonium- and glucose-limited chemostats respectively) were later identified as
strains that form petite colonies when plated. Petite colonies typically denote respiratory
deficiency (i.e. cells cannot metabolize non-fermentable carbon sources). Therefore, any issues
observed during this laboratory evolution experiment could be the result of using strains with
defective mitochondria. These strains have since been back-crossed to the wild-type strain

(FY5).

While the experiments described here provide the first evidence for fundamental differences in
CNV dynamics across loci and selective condition, further studies are required. In order to
directly test the role of genomic context on CNV formation, we plan to re-engineer the

surrounding features of GAP1, MEP2 and HXTG6/7. For example, we could remove the Ty1 LTRs
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and the ARS from the GAP1-mCitrine strain and the ARS from the HXT6/7-mCitrine strain while
inserting repetitive elements near MEP2 (Figure 3.11). Evolution experiments would be
repeated with these modified strains and compared directly to the dynamics observed for
unmodified strains. By re-engineering these loci, we will test how repetitive sequence elements
and replication origins influence the rate of CNV formation. Genome sequence analysis in the
presence or absence of these elements will provide insights into the role of various mechanisms
in generating CNVs. Understanding the rate at which CNVs are formed, the dynamics with
which they are selected, and how they interact with other adaptive variants will provide critical
insight into this complex class of large-effect alleles. These findings will have broad implications
for addressing evolutionary dynamics and mechanisms of adaptive evolution in natural
populations, and may lead to a better understanding of how CNVs contribute to phenotypic

diversity and human disease.
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Fig 3.11. Schematic depiction of potential modifications to HXT6/7, MEP2 and GAP1 loci.
Re-engineering these loci permits direct testing of the hypothesis that genomic context contributes to the
rate and mechanisms underlying CNV formation.
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3.5: Materials and Methods

We used FY4, a haploid derivative of the reference strain S288c, for all experiments. To
generate fluorescent strains, we performed high efficiency yeast transformation (Gietz and
Schiestl 2007) with an mCitrine gene under control of the constitutively expressed ACT1
promoter (ACT1pr::mCitrine::ADH1term) and marked by the KanMX G418-resistance cassette
(TEFpr::KanMX::TEFterm). The entire construct, which we refer to as the mCitrine CNV
reporter, is 3,375 base pairs. To generate a one copy control strain, the mCitrine reporter was
integrated at a neutral locus: HO (YDL227C) on chromosome V. We constructed the MEP2
CNV reporter by integrating the mCitrine construct at an intergenic region 1,171 base pairs
upstream of MEP2 (integration coordinates, chromosome XIV: 356282). We constructed the
HXT6/7 reporter by integrating the mCitrine construct at an intergenic region 1,662 base pairs
upstream of HXT7 (integration coordinates, chromosome VI: 1157590). We constructed the
GAP1 CNV reporter by integrating the mCitrine construct at an intergenic region 1,118 base
pairs upstream of GAP1 (integration coordinates, chromosome Xl: 513945). PCR and Sanger
sequencing were used to confirm integration of the CNV reporter at each location. For the
GAP1-mCitrine strain used in this study, transformants were subsequently backcrossed and

sporulated, and the resulting segregants were genotyped.

Nitrogen limiting media (glutamine and urea limitations) contained 800 pM nitrogen regardless
of molecular form and 1 g/L CaCl,-2H,0, 1 g/L of NaCl, 5 g/L of MgSO,-7H,0O, 10 g/L KH,PO,,
2% glucose and trace metals and vitamins as previously described (Hong and Gresham 2014).

Glucose limiting media contained 0.08% glucose, 1 g/L CaCl,-2H,0, 1 g/L of NaCl, 5 g/L of
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MgSO,-7H,0, 10 g/L KH,PO,, 50g/L (NH,),SO, and trace metals and vitamins (Brauer et al.

2008).

We inoculated the CNV reporter strains, DGY1588, DGY1592, and DGY1657 into 300mL
chemostat vessels containing either ammonium-, glucose, or glutamine-limited media,
respectively. The control strain with the CNV reporter at the HO locus was inoculated into
ammonium-limited chemostats. Chemostats were maintained at 30°C in aerobic conditions and
diluted at a rate of 0.12 hr' (corresponding to a population doubling time of 5.8 hours). Steady
state populations were maintained in continuous mode for a range of generations, between
120-240 generations, depending on condition. Typical population sizes were 1.5 x 10 cells in
ammonium-, 3 x 10° cells in glucose-, and 6 x 10° cells in glutamine-limited chemostats. Every

30 generations, we archived 1 mL population samples at -80°C in 15% glycerol.

To monitor the dynamics of CNVs, we sampled 1mL from each population every ~4-12
generations. We stored samples in phosphate-buffered saline at 4°C for up to 5 days before
performing the analysis. We used sonication to disrupt any cellular aggregates and
subsequently analyzed the samples on an Accuri flow cytometer, measuring 100,000 cells per
population for mCitrine fluorescence signal (excitation = 516nm, emission = 529nm, filter =
514/20nm), cell size (forward scatter) and cell complexity (side scatter). We quantified
fluorescence for each cell and divided this value by the forward scatter measurement for the cell

to account for differences in cell size.
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Chapter 4: Determining the rate of intrachromosomal
recombination and GAP1 deletion

4 1: Abstract

Copy number variants (CNVs) are duplications and deletions of DNA sequence that can lead to
rapid adaptation and maladaptive phenotypes such as cancer and other human diseases.
Understanding the full range of processes that contribute to CNV formation in diverse systems
is an understudied but important problem in biology. Previous work from our laboratory
demonstrates that CNVs are generated at a high rate, and that there are multiple mechanisms
underlying their formation. Here, we aim to dissect the contribution of one particular mechanism:
non-allelic homologous recombination (NAHR). NAHR can occur when the wrong template is
used for homologous repair, a process that occurs more frequently when DNA sequences share
high levels of sequence identity. The general amino acid permease (GAP1) is a model locus for
studying the role of NAHR in CNV formation because it has two flanking Ty1 long terminal
repeats that can undergo recombination. Recombination between these sequences leads to
excision of the GAP1 locus and the formation of a hybrid LTR. To determine the rate at which
this particular event occurs, we constructed a reporter for intrachromosomal recombination and
subsequent GAP1 deletion. We tested the efficiency of the reporter and find that it does not
accurately reflect GAP1 deletions. We discuss the potential issues with our reporter system and

suggest alternative strategies as well as additional follow-up experiments.
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4.2: Introduction

Copy number variants are the substrate for myriad evolutionary processes. Seminal
contributions by Susumo Ohno and others first described the importance of gene duplication for
generating evolutionary novelty and diversification through modification of existing heritable
material (Ohno 1970; Michael Lynch and Conery 2000; Austin L. Hughes 1994; R. P. Anderson
and Roth 1977). Now that detection of gene duplications and deletions from genome sequence
data has vastly improved, we know copy number variants (CNVs) are extremely common in
natural populations. In humans, de novo CNVs introduced each generation are more numerous
than point mutations (ltsara et al. 2010), and among individuals, between 4.8-9.5% of the
genome contains CNVs (Zarrei et al. 2015). CNVs are important sources of phenotypic
diversification and adaptation in animals, plants, and microbes (Barreiro et al. 2008; Iskow et al.
2012; Clop, Vidal, and Amills 2012; Zmienko et al. 2014; Greenblum, Carr, and Borenstein

2015).

A prevailing view in evolutionary biology is that mutations are randomly generated and then
selection acts on them to dictate their ultimate fate in a population. However, recent studies
suggest that CNV mutation is directly linked to DNA repair, replication, and transcription (Chen
et al. 2015; Wilson et al. 2015; Thomas and Rothstein 1989; Skourti-Stathaki and Proudfoot
2014). Induction of replicative stress leads to increased formation of CNVs (Foster 2007;
Galhardo, Hastings, and Rosenberg 2007; Shor, Fox, and Broach 2013). Active transcription
units may be “hotspots” for CNV formation, as collisions between the replisome and RNA

polymerase (as well as other transcription-mediated events) can lead to DNA damage and a
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higher probability of improper DNA repair (Wilson et al. 2015). Gene duplication may generally
occur in response to environmental stimuli, a process that has been observed at the rDNA and
the CUP1 locus in yeast (Hull et al. 2017; Jack et al. 2015). In addition, nearby genomic
features may contribute to genome instability at certain loci. For example, long terminal repeats
and tRNA genes can lead to fork stalling (Labib et al. 2007; Bermudez-Santana et al. 2010; Di
Rienzi et al. 2009; Tran et al. 2017). Further empirical tests are needed to disentangle the
respective contributions of transcription and selective environment on stimulating CNV

formation.

CNVs can be generated by a variety of mechanisms, but are often preceded by formation of
DNA double strand breaks (DSBs). Damaging exogenous agents, including ionizing radiation
and toxic chemicals, can lead to DSBs (Mehta and Haber 2014). Spontaneous DSBs can also
occur during replication after the formation of atypical DNA structures, collisions with the
transcription machinery, or collisions with transcription factors and other DNA-binding proteins
(Mehta and Haber 2014). Spontaneous DSBs have been estimated at one DSB per 10° base

pairs (Vilenchik and Knudson 2003; Coic et al. 2008).

DSBs are routinely repaired by homologous recombination and do not result in CNV formation.
However, non-allelic homologous recombination (NAHR) can generate CNVs when the incorrect
template is used for repair, which is often an outcome for repetitive sequences such as long
terminal repeats (LTRs). NAHR frequency depends on the extent of homology, the distance
between sequences, and sequence length (Dittwald et al. 2013; Peng et al. 2015). NAHR can

occur between sequences on sister chromatids, homologous chromosomes, and even
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sequences on the same chromatid (known as intrachromosomal recombination).

Recurrent CNVs, which repeatedly occur in specific regions of the genome, typically underlie
re-occurring germline mutations and human disease (Itsara et al. 2009; Girirajan, Campbell, and
Eichler 2011). Formation of recurrent CNVs is driven by NAHR between repetitive sequence
elements such as segmental duplications, also known as low copy repeats (LCRs), which are
>1 kilobase in size and have >90% sequence identity (Sharp et al. 2005). Segmental
duplications and other repetitive regions can act as “hotspots,” generating spontaneous CNVs at
the same site in different individuals. Several microduplication and deletion syndromes resulting
from NAHR have been characterized in humans including Williams-Beuren, Prader-Willi,
Smith-Magenis and Potocki-Lupski syndromes and Charcot-Marie-Tooth disease, among others

(Lupski 2009).

The gene encoding the general amino acid permease, GAP1, in Saccharomyces cerevisiae is a
model locus for understanding the role of NAHR in CNV formation. We have previously shown
that GAP1 is amplified under amino acid limitation and deleted under urea limitation (Gresham
et al. 2010; Hong and Gresham 2014). We have determined that GAP1 CNVs can be generated
by a diverse range of processes (Lauer et al. 2018), one of which is NAHR between flanking
Ty1 LTRs, YKRC811 and YKRC®12. There is 85% homology between YKRC®11 and YKRCd12,
which are each 300 base pairs in length. Intrachromosomal recombination between these
elements is hypothesized to result in excision of a GAP1%® and the formation of a hybrid

YKRC®11/YKRC®12 LTR. Since NAHR occurs recurrently between these flanking LTRs (Lauer
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et al. 2018), GAP1 is also an ideal locus for further dissecting the potential effects of

transcription and environment on CNV stimulation.

To determine the spontaneous rate of intrachromosomal recombination and GAP1 deletion, we
constructed a GAP1 deletion reporter. We inserted a URA3 gene ~1 kilobase upstream from the
GAP1 coding sequence and hypothesized that any deletion event occurring between YKRC®11
and YKRC®12 would subsequently result in loss of the URA3 gene. Loss-of-function (LOF) in
the URA3 gene can then be identified after plating cells on 5-fluoroorotic acid (5-FOA), which is
converted to toxic 5-fluorouracil by the URA3 gene product, orotidine-5'-phosphate
decarboxylase. To distinguish between GAP1 deletion and URA3 inactivation by other methods
(e.g. point mutations or indels), we sought to confirm simultaneous GAP1 and URA3 LOF. The
results of this study were largely inconclusive, as we were unable to confirm GAP1 LOF for the
majority of isolated ura3- mutants. We highlight several potential issues with our approach and

discuss improvements to the method as well as future experiments.

4 .3: Results

4.3.1: Creation of a reporter for the GAP1 deletion
GAP1 is flanked by two Ty1 LTRs: YKRC®11 and YKRC®12. These LTRs share 85% sequence

identity, making them an effective substrate for NAHR. We have previously shown that NAHR
between YKRC&11 and YKRC®12 can lead to both tandem duplications and deletions of the
GAP1 gene (Lauer et al. 2018). GAP1 deletion may be accompanied by excision of a
self-propagating GAP1°  After GAP1 deletion or excision, a hybrid LTR remains in the

genome: YKRC&11/YKRC312. To determine the role of NAHR in CNV formation at the GAP1

119


https://paperpile.com/c/wlhFlH/Rkyf
https://paperpile.com/c/wlhFlH/Rkyf

locus, | sought to generate a reporter strain for the specific deletion event that removes all
intervening sequence between YKRC®11 and YKRC®12, including GAP1 (indicated as

gap1A-"*R) The principle and design of the reporter is depicted in Figure 4.1.
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Fig 4.1. Schematic representation of experimental design for a GAP1 deletion reporter. A URA3
gene is inserted ~1 kilobase upstream of the GAP1 open reading frame. Intrachromosomal recombination
between the LTRs YKRC®11 and YKRC®12 results in formation of a hybrid LTR and simultaneous
deletion of both URA3 and GAP1. Spontaneous NAHR between YKRC®11 and YKRC®12 should
therefore lead to the formation of mutant colonies that grow on 5-FOA and D-Histidine/D-Serine media.
However, additional mutational events can occur (red arrows), rendering either URA3 or GAP1
nonfunctional. Bonafide gap1A""™™® mutants occurring as a result of intrachromosomal recombination
should therefore be ura3- and gap1-.

To generate the GAP1 deletion reporter, | inserted a URA3 gene 1,118 base pairs upstream of
the GAP1 start codon (integration coordinates, ChrXl: 513945; Figure 4.1). The transformation
was performed in a strain background where the endogenous open reading frame for the URA3
gene is deleted and replaced by the KanMX G418 resistance cassette (DGY1428). Five
independent deletion reporter strains were constructed: two by transformation (DGY2010 and

DGY2011), and three by transformation with a subsequent backcross to FY4, sporulation, and

tetrad dissection analysis (DGY2012, DGY2013, and DGY2014). Insertion of URA3 was
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confirmed by PCR. The strains generated here and all other strains used as controls in this
study are listed in Table 4.1. This panel of strains was used to perform all the assays described

below.

Table 4.1. Yeast strains used in Luria Delbriick fluctuation assays.

Strain Use Growth on 5-FOA | Growth on D-His/D-Ser
FY4 (DGY1, wild-type) | Negative control No No
DGY41 (ura3-52) Positive control Yes No
DGY1428 (ura3A0) Positive control Yes No
DGY138 (gap1A) Positive control No Yes
DGY1764 (gap1A-""®) | Positive control No Yes
DGY2010 Reporter No No
DGY2011 Reporter No No
DGY2012 Reporter No No
DGY2013 Reporter No No
DGY2014 Reporter No No
DGY2041 (gap1A0) Positive control No Yes
DGY2047 (gap1A-""*R) | Positive control No Yes

4.3.2: Determining spontaneous URA3 mutation rate in the reporter strain

To determine the spontaneous frequency of GAP1 deletion, we used Luria Delbriick fluctuation
assays where cells are grown in rich, non-selective media, than plated to 5-fluoroorotic acid

(5-FOA). 5-FOA is converted to toxic 5-fluorouracil by the URA3 gene product,
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orotidine-5'-phosphate decarboxylase. Plating on 5-FOA selects for cells with URA3 loss of
function (LOF), which should include all URA3 gene deletions generated concurrently with
intrachromosomal recombination and GAP1 deletion (Figure 4.1). GAP1 deletions can be
confrmed by plating on D-Histidine/D-Serine media (D-His/D-Ser). GAP1 LOF confers
resistance to toxic D-amino acids by preventing their uptake. A ura3” gap1  phenotype
(D-His/DSer® and 5-FOAR) should therefore specifically report on GAP1 deletions that
encompass the entire genomic region flanked by Ty1 LTRs (gap1A-®'™®). This phenotype is
important for distinguishing between deletion events resulting from intrachromosomal

recombination and inactivation of either URA3 or GAP1 by point mutations or indels.

Several important controls were used during this study (Table 4.1): two positive controls where
GAP1 is inactivated and growth occurs on D-His/D-Ser (DGY138 and DGY1764) and two
positive controls where URAS is deleted and growth occurs on 5-FOA (DGY41 and DGY1428).
The GAP1 deletion strains were confirmed to grow successfully on D-His/D-Ser media. While
DGY138 has an inactivating frameshift mutation in GAP1, the deletion in DGY 1764 includes
GAP1 and all intervening sequence from YKRC311 to YKRC312 (gap1A-""*™?). The wild-type
strain FY4 (DGY1) is an important negative control, as wild-type GAP1 and URA3 genes
prevent growth on both D-His/D-Ser and 5-FOA. FY4 mutants growing on 5-FOA after the Luria

Delbriick fluctuation assay report on the basal mutation rate for the endogenous URA3 gene.

All strains were grown overnight in SmL of non-selective media (yeast extract-peptone-dextrose
or YPD) at 30°C and then 1 million, 10 million, or 100 million cells were plated on 5-FOA.

Colonies were counted after 3 days of growth at 30°C. Five independent replicate experiments
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were performed, but data is only shown for four of these replicates (Figures 4.2-4.5; only 1
million cells were plated for each strain in the first replicate and very few colonies were
counted). Controls with the URA3 gene deletion (DGY41 and DGY1428) consistently formed

lawns on 5-FOA after overnight growth in YPD and colonies were not counted.

Unsurprisingly, the basal mutation rate for the endogenous URA3 gene is low, with the largest
number of mutant colonies for FY4 occurring during replicate five: 47 mutant colonies/10® cells
plated. Only a coarse estimate of the phenotypic mutation rate for 5-FOA resistance can be
obtained from this data: ~3 x 10® mutations/generation. For the deletion reporter strains
(DGY2010, DGY2011, DGY2012, DGY2013, and DGY2014), the amount of colonies growing on
5-FOA plates varied depending on the replicate. This is consistent with URA3 mutations
occurring randomly during overnight growth, where an early mutation leads to a “jackpot” and
higher total mutant colonies. In the majority of cases, each test strain formed more colonies than
FY4 by an order of magnitude. This result demonstrates that the mutation rate for URA3 in the
deletion reporter is higher than the mutation rate at the endogenous URA3 locus. Within
replicates, colony counts increased proportionally with the amount of total cells plated (see
Figure 4.4), indicating that the total cells plated on 5-FOA and the subsequent colony counts

were performed accurately.
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Fig 4.2. Replicate two colony counts after performing a Luria Delbriick fluctuation assay. Colonies
were counted after plating 108 cells on 5-FOA media.

300
200 1
100+

uoli g

1000+
500 1

uaijiia ool

Colonies counted

7501
500 1
2501

Ui 05

Strain

Fig 4.3. Replicate three colony counts after performing a Luria Delbriick fluctuation assay.
Colonies were counted after plating 107-108 cells on 5-FOA media. All strains were plated with 10 million
cells, but only strains DGY2010, DGY2014, and FY4 were plated with 100 or 50 million cells.
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Fig 4.4. Replicate four colony counts after performing a Luria Delbriick fluctuation assay. Colonies
were counted after plating between 10°%-107 cells on 5-FOA media. DGY138 and DGY1764 were only
plated with 10 million cells.

Across the first four replicates of the experiment, gap1A controls DGY 138 and DGY1764 had a
total of 0 mutant colonies on 5-FOA plates. This result was surprising, and suggests synthetic
lethality between gap1 LOF and ura3 LOF. To rule out this possibility, we used two independent
gap1A strains, DGY2041 and DGY2047 during the fifth and final replicate of the Luria Delbriick
fluctuation assay. While the colonies that grew on 5-FOA were smaller overall, colony formation
occurred at a similar rate to FY4 (Figure 4.5). These results demonstrate that there may be an
interaction between GAP1 and URAS, but that this could also be a direct result of the specific

strains that were used as positive controls (see discussion).
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Fig 4.5. Replicate five colony counts after performing a Luria Delbriick fluctuation assay. Colonies
were counted after plating between 107-108 cells on 5-FOA media. Two independently generated gap1A
strains (DGY2041 and DGY2047) were used as controls.

4.3.3: Assessment of reporter accuracy

Spontaneous LOF mutations in URA3 can also include point mutations, indels, and other
mutations (Figure 4.1). To determine what fraction of ura3- mutants are bona fide GAP1
deletions (ura3- gap1-), we simultaneously assayed for GAP1 LOF by replica plating to
D-histidine/D-serine media. Since D-amino acids are toxic to the cell, GAP1 LOF prevents their
uptake, and cells can grow in their presence. Importantly, D-Histidine/D-Serine plates are
composed of minimal media where proline is the only available nitrogen source. Proline is a
poor nitrogen source and cells grow slowly, typically requiring longer periods of growth at 30°C
(up to 5 days). Since D-His/D-Ser selection is not particularly strong, positive and negative

controls must always be plated simultaneously. Secondly, in this Luria Delbrick fluctuation
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assay, we specifically selected mutants that lose the ability to grow on uracil. During standard
preparation of D-His/D-Ser media, there is no uracil present. To remedy this situation,

D-His/D-Ser plates used for this assay must be supplemented with uracil.

During Luria Delbriick replicates two and three, | isolated a subset of 5-FOAR mutants. To
confirm that these 5-FOAR mutants were also gap1A-""*™R | used a 3-primer PCR technique
and Sanger sequencing. The 3-primer PCR results in a band regardless of genotype but band
size depends on the presence or absence of the gap1A-™™'® allele (Figure 4.6). The 3-primer
PCR assay confirmed a gap1A-"*"R genotype for a total of 3 independently generated mutants
(for an example, see Figure 4.7). Sanger sequencing identified hybrid YKRC511/YKRC®12
LTRs in the genome, with each mutant having distinct nucleotide breakpoints. While these
results demonstrated that 5-FOAR could accurately report on intrachromosomal recombination

and GAP1 deletion, we noticed a higher incidence of false positives than expected.

~1400bp 857
TRy A LTR 12
(e [RAT ] GAPT S (il Wild type
ARS
_________________ 1530
22 ~1300bp
T ~58000p T ’

— ) — gap1ALTRLR

Hybrid LTR 11/12

~11 OObp 1530
=

Fig 4.6. Schematic representation of 3-primer PCR assay. Flanking primers 1527 and 1530 are
combined with primer 857 to assay for the presence of URA3 and primer 292 to determine the presence
of GAP1. These are 2 separate PCR reactions. Primers 1527 and 1530 do not form a product unless
GAP1 is deleted (when a 2 minute extension time is used) and the 2 PCR reactions both result in a ~1100
base pair band. However, if URA3 and GAP1 are present, the 2 PCR reactions will instead result in a
~1400 and ~1300 base pair band respectively.
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Fig 4.7. Representative PCR result from Luria Delbriick replicate two. Samples 1, 3, 5, and 6 have
two bands of the same size, indicating the presence of the gap1A-™®R allele in these samples (see
Figure 4.6). Sanger sequencing was used to confirm the genotype. Nucleotide resolution shows that the
breakpoints for all four samples are identical. These clones are likely to be descended from a single event

since they were isolated from the same plate. The control sample used here was a negative control: strain
DGY2010.

To determine the proportion of 5-FOAR cells that are also gap1-, 30 total 5-FOAR mutants were
isolated and grown overnight in YPD. These mutants were isolated from Luria Delbriick
replicates four and five, and included 5-FOA mutants in the following strain backgrounds:
reporter strains (DGY2010, DGY2011, DGY2012, DGY2013, and DGY2014), gap1A strains
(DGY2041 and DGY2047), and FY4. | performed a 10-fold dilution series and plated 107-102

cells on a variety of media conditions: rich media with a glucose carbon source (YPD), rich
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media with a glycerol carbon source (YPG), synthetic complete media lacking uracil (sc-ura),
5-FOA media and D-His/D-Ser media. The 30 5-FOA mutants were plated across a series of 5
plates (5x5 or 25 total plates; Fig 4.8-Fig 4.12). Each plate included ura3A and gap1A strains
that never underwent 5-FOA selection as controls. All control strains grew as expected on the

various media conditions.

YPD YPG
107 108 10° 10* 10° 10%cells plated

Unselected URA3+ GAP1+
Controls URA3+ GAP1-
FY4 #1
DGY2010 #2
Sele,cted on (g} DGY2010 #4
DA @Qi’i"‘& DGY2014 #2
@ DGY2014 #4
DGY2013 #1

-~ L

sc-ura 5’'FOA DHis/Dser

Fig 4.8. Results of spot dilution assay for plate one. Unselected controls (shown in red) grow as
expected: growth occurs on sc-ura but not 5-FOA media. The gap1- control is the only strain that grows
successfully on D-His/D-Ser media.
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YPD YPG
107 10° 10° 10* 10° 102 cells plated

DGY2013 #2
URA3+ GAP1+

DGY2012 #2
Unselected DGY2012 #6

Controls DGY2011 #1
DGY2011 #4
DGY2011 #5
URA3+ GAP1-

sc-ura 5FOA DHis/Dser

Fig 4.9. Results of spot dilution assay for plate two. Unselected controls (shown in red) grow as
expected: growth occurs on sc-ura but not 5-FOA media. All other mutants were isolated after selection
on 5-FOA plates. Mutant DGY2011 #4 grows similarly to the gap1- control on D-His/D-Ser media,
indicating that it may be a bonafide ura3- gap1- mutant. Growth on D-His/D-Ser for mutant 2011 #4 was
independently confirmed by replica plating (data not shown).

Of the 30 mutants originally selected on 5-FOA, 29/30 (97%) were confirmed to grow on 5-FOA.
Since we specifically selected for URA3 LOF, these 29 mutants should all be ura3-, incapable of
growing on sc-ura media. However, there were 4/29 (14%) cases in which 5-FOAR mutants grew
on sc-ura media (see Figure 4.10 for an example). All 4 cases occurred in gap1A strain
backgrounds (DGY2041 and DGY2047). This result suggests that there is an additional

mechanism enabling growth on 5-FOA media (see discussion).
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YPD YPG
107 108 105 10 10° 102 cells plated

Unselected URA3+ GAP1+
Controls URA3+ GAP1-

DGY2047 #1 §
o | DGY2047 #2
Selectedon| o™ co| DGY2041 #3

SFOA | & | bovaoar #4
DGY2041 #5
FY4 #6

sc-ura 5'FOA DHis/Dser

Fig 4.10. Results of spot dilution assay for plate three. Unselected controls (shown in red) grow as
expected: growth occurs on sc-ura but not 5-FOA media. In this assay, a subset of mutants that are in a
gap1A background were isolated from 5-FOA plates (shown in blue). All of these mutants should grow on
D-His/D-Ser media, but only mutant DGY2041 #4 grows similarly to the gap1- control.

Surprisingly, of the 29 confirmed 5-FOA mutants, only 3 of these were able to grow on
D-His/D-Ser media. These results raise important concerns, especially because a third of the
mutants isolated (9/30) after the Luria Delbrick fluctuation assay were from gap1A strains.
While these mutants were selected on 5-FOA, they should also still be able to grow on
D-His/D-Ser since GAP1 is deleted from the genome. However, only 2/9 (22%) were able to
grow on D-His/D-Ser (see Figure 4.10 for an example). One possibility is that these mutants
lost the ability to grow on proline, and it would be useful to include a proline plate without

D-His/D-Ser as a control in the future. The third mutant able to grow on D-His/D-ser is in the
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reporter background, and could represent a bonafide ura3- gap1- strain (Figure 4.9). These
results demonstrate that reporter accuracy is extremely low, as only 1/12 (.08%) ura3- mutants
were also gap1- mutants. Future follow-up experiments should also include confirmation by
3-primer PCR and Sanger sequencing, as D-His/D-ser growth can be difficult to interpret,
potentially as a result from inconsistencies in making and storing D-His/D-Ser plates.
Unfortunately, 3-primer PCR requires further optimization and was uninformative during a

large-scale attempt to confirm gap1- mutants.

YPD YPG
107 10° 10° 10* 10° 10%cells plated

~

FY4 #7
FY4 #8
FY4 #9
Unselected ‘ URAS+ GAP1+
Controls URA3+ GAP1-
DGY2047 #15
O
QN o| DGY2047 #16
X | pavaoat #17

5FOA DHis/Dser

Fig 4.11. Results of spot dilution assay for plate four. Unselected controls (shown in red) grow as
expected: growth occurs on sc-ura but not 5-FOA media. All other mutants were isolated after selection
on 5-FOA plates. In this assay, a subset of mutants that are in a gap1A background were isolated from
5-FOA plates (shown in blue). All of these mutants should grow on D-His/D-Ser media, but none of them
grow comparably to the gap1- control. None of the other mutants isolated from 5-FOA plates grow on
YPG.
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While the results presented here indicate that the reporter strain is inaccurate for detecting
GAP1 deletions by NAHR, | observed a phenomenon that could prove informative for further
studies. Since 23/30 (77%) 5-FOA mutants did not grow on YPG, these results suggest that
selection on 5-FOA media is associated with absence of growth on YPG. One possible
explanation is that selection on 5-FOA simultaneously selects for the formation of petite cells
that have dysfunctional mitochondria and cannot metabolize glycerol (see discussion).
Interestingly, 3 of the 7 mutants (43%) that grew on YPG were also able to grow on D-His/D-Ser,
suggesting a correlation between growth on these two media types (see Figure 4.10 for an
example). Therefore, an additional selection for growth on YPG after plating cells to 5-FOA
might prove informative for determining the number of bona fide GAP1 deletions.

YPD YPG
107 10 10° 10* 10° 10 cells plated

FY4 #10
FY4 #11
Selected on | Fy4 #12
SFOA FY4 #13
FY4 #14

DGY2041 #18

Unselected | URA3* GAP1+

Controls | URA3+ GAP1-

sc-ura 5'FOA DHis/Dser

Fig 4.12. Results of spot dilution assay for plate five. Unselected controls (shown in red) grow as
expected: growth occurs on sc-ura but not 5-FOA media. In this assay, one mutant from a gap1A
background was isolated from 5-FOA plates (shown in blue), and only this mutant grows comparably to
the gap1- control.
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4 4: Discussion

Non-allelic homologous recombination (NAHR) is an important mechanism underlying CNV
formation. Repetitive elements, including segmental duplications, mediate CNV formation by
NAHR in diverse scenarios including microduplication and microdeletion syndromes in humans.
To dissect the relative contribution of NAHR to spontaneous CNV formation, we constructed a
CNV reporter for a specific deletion event. This event is driven by NAHR between flanking long
terminal repeats at the GAP1 locus in yeast. Design and implementation of a deletion reporter,
which includes integration of a URA3 gene and Luria Delbriick fluctuation assays to measure
the rate of URAS loss of function (LOF), are tractable in principle. However, reporter accuracy is
low in practice. While the results of this assay were somewhat inconclusive, we have identified
several unexpected avenues for further exploration. We discuss alternative strategies and

potential follow-up experiments below.

To determine the spontaneous mutation rate for the GAP1 deletion reporter compared to the
endogenous URA3 locus, we performed Luria Delbrick fluctuation assays. Mutations at the
endogenous URAS3 locus are relatively low, as indicated by the small number of mutant colonies
for the wild-type strain (FY4) growing on 5-FOA. We were able to provide a coarse estimate of
phenotypic resistance to 5-FOA: ~3 x 10® mutations/generation. A previous estimate of the

Lang and Murray 2008) | order to provide

phenotypic mutation rate for 5-FOA resistance is 5.43 x 1078
a more accurate estimate of the mutation rate, future experiments should be performed with
higher throughput, using at least 96 parallel cultures and either the p, or MSS-maximum

likelihood method to estimate the mutation rate and 95% confidence intervals (Lang 2018).
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The number of mutant colonies growing on 5-FOA was consistently higher (usually by an order
of magnitude) for the deletion reporter. This indicates that URA3 LOF mutations are occurring
more frequently than at the endogenous URAS3 locus. This result is surprising considering the
failure of our reporter to accurately predict simultaneous deletions at the GAP1 locus (discussed
further below). There are two possible explanations that are not mutually exclusive: 1) the GAP1
locus is a “hotspot” for mutational events and the URA3 mutation rate is similarly increased by
proximity, resulting in a position effect or 2) the URA3 promoter and terminator sequences in the
reporter strain recombine with endogenous URA3 promoter and terminator sequences, leading
to partial translocations or truncations that inactive the gene. In the first scenario, mutational
events could include recombination with other Ty1 elements in addition to recombination
between YKRC®11 and YKRC®12 (Winston et al. 1984). A useful control that would help in
distinguishing between position effects due to proximity of the GAP1 gene would be a GAP1
deletion in the background of our reporter. In order to rule out the second possibility, the GAP1
deletion reporter should be reconstructed in a background where the promoter and terminator

sequences are removed in addition to the URA3 open reading frame.

Surprisingly, GAP1 deletion control strains (DGY138 and DGY1764) had a total of 0 mutant
colonies across four replicate Luria Delbrick fluctuation assays, even when 100 million cells
were plated. In addition, when we plated a subset of 5-FOA mutants isolated from GAP1
deletion backgrounds onto D-His/D-Ser media, only 2/9 were D-His/D-Ser®. Future experiments
should include proline plates without D-His/D-Ser as a control, since it is possible that these

5-FOA mutants lost the ability to grow on proline. These data raised concerns about potential
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synthetic lethality between GAP1 and URA3. One group previously observed a synthetic
interaction between GAP1 and URAS3, but growth was only affected on certain nitrogen sources
including tryptophan and citrulline (Iraqui et al. 1999). Plating on minimal media supplemented
with ammonium resulted in normal growth during their experiment, and our 5-FOA media uses

ammonium sulfate as the nitrogen source.

When the experiment was repeated for a fifth time, two different GAP1 deletion control strains
were used. While the colonies that formed were smaller than expected, mutant colony counts on
5-FOA plates were relatively similar to those for FY4. These data could be indicative of a strain
effect, where GAP1 deletion alone is not responsible for the observed phenotype. The strains
used in the first four Luria Delbriick replicates, DGY138 and DGY1764, were isolated from
evolution experiments in urea-limited chemostats. Therefore, it is possible that they acquired
additional adaptive mutations that somehow either 1) prevent growth on 5-FOA plates and/or 2)
require URA3 function for survival. To confirm that there is no synthetic interaction between
gap1- and ura3- strains, additional experiments in various strain backgrounds should be

performed.

5-FOA resistance primarily arises through URAS3 loss of function mutations. However, in this
study, we identified 4/29 (14%) cases in which 5-FOA mutants grew on sc-ura media. All 4
cases occurred in GAP1 deletion strains (DGY2041 and DGY2047). This result further implies
an interaction between GAP1 and URA3, but also suggests that either: 1) Mechanisms other
than URA3 LOF enable growth on 5-FOA media and/or 2) there is a high level of background

noise, where many “mutants” are not actually 5-FOAR. In the second scenario, the URA3+
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mutants we observe should have a no-growth phenotype on 5-FOA, which is not the case in our
experiment. These results suggest a potential mechanism of 5-FOA resistance other than URA3
LOF. For example, over-expression of LOG1 has been shown to mitigate the effects of 5-FOA
on cellular toxicity (Ko, Nishihama, and Pringle 2008). 5-FOA is metabolized to 5-fluorouracil
(5-FU) by the cell, and there are several genes implicated in 5-FU resistance, including LOG1
(Carlsson, Hu, and Ronne 2018). Another study suggests that growth in YPD supplemented
with 5-FOA does not prevent growth of all URA3+ strains (Boeke et al. 1987). Using a minimal
media for the overnight growth step could therefore reduce identification of false positives by our

reporter.

After plating confirmed 5-FOAR mutants on D-His/D-Ser media, we determined that reporter
accuracy is extremely low (.08%). While a multitude of factors may contribute to this process as
described above, | believe that off-target recombination events between 1) other Ty1 elements
and/or 2) the endogenous URA3 promoter and terminator sequences are primarily responsible.
While it may be difficult to rule out the first scenario, the second can be amended by reporter
reconstruction. In addition, we identified a correlation between growth on YPG and D-His/D-Ser
media. One possible explanation is that selection on 5-FOA simultaneously selects for the
formation of petite cells that have defects in respiration and cannot grow on non-fermentable
carbon sources such as glycerol. Similarly, 5-FOA could be mutagenic and lead to damaged
mitochondria, or there could simply be a high spontaneous rate of petite formation. But another
possibility is that slow-growth phenotypes conferred by petite formation enable 5-FOAR without
requiring URA3 LOF. Depending on which scenario is relevant during our experimental

conditions, it could be feasible to increase the efficiency of our reporter by simultaneously
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replica plating to YPG or by performing the overnight culture in YPG. This process could reduce

the high number of false positives we observed.

Once the accuracy of our deletion reporter is improved, there are many potential applications.
Determining the spontaneous rate of GAP1 deletion by intrachromosomal NAHR is still a
primary goal. But after calculating the spontaneous rate, we could directly test how the rate is
affected by transcription at the target locus. GAP1 is highly expressed in the presence of
non-preferred nitrogen sources such as proline, but strongly repressed in rich media. By
comparing the mutation rates obtained from cells grown overnight in rich media to cells grown
overnight in repressive conditions, we could determine the effect of environmental condition on
CNV formation. We could also keep the environment constant and directly assess how the rate
changes when 1) transcription is induced under conditions where GAP1 is normally repressed,
and 2) transcription is repressed at the GAP1 locus when it is normally expressed. A variety of
methods could be used to perform these experiments, including an estradiol-inducible system, a
Tet-on/Tet-off system (using doxycycline to either repress transcription or activate gene
expression), and the use of nuclease-deficient dCas9 to block GAP1 transcription. These
experiments would provide further insight into the mechanistic role of NAHR by directly testing
the effect of transcription and environmental condition on CNV formation. To confirm that NAHR
is the main driver of intrachromosomal recombination, we could also compare the rates
observed in our reporter strain to those observed in a rad52A background. Dissecting the
relative contribution of NAHR in generating CNVs is an important next step in the field that will

provide further insight into the molecular basis of CNV formation.
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4.5: Materials and Methods

We used FY4, a haploid derivative of the reference strain S288c, for all experiments. To
generate the GAP1 deletion reporter, we performed high efficiency yeast transformation (Gietz
and Schiestl 2007) in a strain where the open reading frame of URAS3 is deleted and replaced
with the KanMX G418 resistance cassette (DGY1428). We integrated the URA3 gene at an
intergenic region 1,118 base pairs upstream of GAP1 (integration coordinates, chromosome XI:
513945). Two independent transformations were performed and synthetic complete media
lacking uracil (sc-ura) was used to select successful transformants. Transformants were
confirmed by PCR. The strain isolated from the first transformation (DGY1829) was identified as
petite (respiratory deficient), and was subsequently backcrossed with FY4 to produce a diploid
(DGY1826). After sporulation and tetrad dissection, the resulting segregants were genotyped for
G418R, the ability to grow on sc-ura media, and the ability to grow on YPGlycerol (which selects
for non-petite cells). Segregants with the correct genotype were confirmed by PCR. Three
independent GAP1 deletion reporter strains were produced: DGY2012, DGY2013, and
DGY2014. Two additional strains (DGY2010 and DGY2011) were generated by a second round

of transformation and confirmed by PCR.

Plates containing 5-fluoroorotic acid (5-FOA) consisted of synthetic complete base media with
2% glucose, 50ug/mL uracil, and 5-FOA dissolved in DMSO and filter-sterilized for a final
concentration of 0.1%. Plates containing D-Histidine and D-Serine (D-His/D-Ser) consisted of
synthetic complete base media with 10mM proline, 10mM D-Histine and 5mM D-Serine, 2%

glucose, and 50ug/mL uracil.
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Several important positive and negative controls were used in this study (see Table 4.1)
including FY4 as a negative control for growth on both 5-FOA and D-His/D-Ser and DGY 1428
as a positive control for growth on 5-FOA. DGY41 which contains the ura-52 allele was also
used as a positive control for growth on 5-FOA. GAP1 deletion strains used as positive controls
for growth on D-His/D-Ser include: DGY138 and DGY1764 (isolated from urea-limited

chemostats during evolution experiments) and DGY2041 and DGY2047 (generated by cloning).

To perform Luria Delbrick fluctuation assays, we plated for single colonies on rich,
non-selective media (yeast-peptone dextrose or YPD) and inoculated one colony/strain into 5mL
liquid YPD. Liquid cultures were grown overnight at 30°C. For each overnight culture, we
counted cells per milliliter using a Z2 Beckman Coulter Counter. Depending on the replicate
experiment, between 10° and 10° total cells were plated on 5-FOA media. After 3 days of growth
at 30°C, colonies were counted manually when possible (<200 colonies) or counted using a

Synbiosis aCOLyte and accompanying software.

A 3-primer PCR was used to confirm ura3A (DGP1527, DGP1530, DGP857) and gap1A
(DGP1527, DGP1530, DGP292) genotypes. A bona fide gap1A-"™R mutant resulting from
intrachromosomal recombination between YKRC511 and YKRC®12 leads to a 1.1-1.2 kilobase
product for both the URA3 and GAP1 PCRs. The wild-type genotype for URA3 and GAP1
results in a 1.4 and 1.3 kilobase product for the URA3 and GAP1 PCRs, respectively (see

Figure 4.6 and Figure 4.7).
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To determine the fraction of 5-FOAR mutants that were also gap1-, we randomly chose a subset
of 5-FOAR colonies for further analysis. 12 mutants were chosen from Luria Delbriick replicate
four, individually streaked onto YPD, then a single colony was chosen for overnight growth in
liquid YPD at 30°C. 18 additional mutants were isolated from Luria Delbriick replicate five, but
only grown overnight in liquid YPD at 30°C (not re-streaked). All 30 mutants and unselected
control strains (here, DGY2010 or DGY2012 and DGY138) were grown together in 200uL
volume in 96 well plates. From these overnight cultures, 10-fold serial dilutions were performed
and ranged from 107 to 10? cells. A frogger was used to spot each dilution onto a series of 5
plates: YPD, YPG (yeast-peptone-glycerol), sc-ura (synthetic complete media lacking uracil),

5-FOA, and D-His/D-Ser.

Chapter 5: Conclusion

A central challenge in biology is understanding the genetic basis of both adaptive evolution and
disease. Copy number variants (CNVs) are an important class of genetic variation underlying
both adaptive and maladaptive phenotypes, but are understudied compared to single nucleotide
variants (SNVs). While SNVs affect 1 base pair of DNA, a single CNV can affect 10%-10° base
pairs. By duplicating or deleting such large genomic segments, which are likely to contain
multiple protein-coding genes and regulatory regions, CNVs can have immediate consequences
on organismal fithess. CNVs have been shown to directly alter gene dosage and protein
abundance, but they can also affect global levels of transcription and even chromatin
organization. CNVs can also provide new functionality through position effects that result in the

formation of chimeric genes and modification of regulatory elements such as promoters and

141



enhancers. The diversity of possible functional effects of CNVs can result in a range of
phenotypic effects. In Chapter 1, | highlighted the diverse roles of CNVs in driving rapid adaptive
evolution in animals, plants, microbes, and pathogens. | also discussed the challenges in
studying CNVs, including their potential for widespread pleiotropic and epistatic interactions,
which can result in fitness costs and trade-offs in alternative environments. Importantly, CNVs
segregating within populations can be polymorphic among individuals. Detecting CNVs in
heterogeneous evolving populations remains difficult, and as a result, the dynamics with which
they are generated, selected, and maintained were previously unknown. The goal of this
dissertation research was to determine both the temporal dynamics of CNVs under selection

and the diversity of CNV alleles that arise during adaptive evolution.

To study the temporal dynamics with which CNVs are generated and selected, | designed a
novel phenotypic reporter that detects de novo gene duplications and deletions on the basis of
changes in fluorescent signal. | used the reporter to study CNV dynamics and allelic diversity at
a model locus in S. cerevisiae: the gene encoding the general amino acid permease (GAP1).
The results of this study are presented in Chapter 2. Under the strong selective conditions of
nutrient-limited chemostats, GAP1 undergoes both gene duplication and deletion depending on
the type of limiting nitrogen source present. During glutamine limitation, GAP1 amplification
alleles are repeatedly generated and selected with remarkably reproducible dynamics: they
emerge early, they rapidly increase in frequency, and they are maintained in each population
throughout the selection. This consistently early increase in GAP1 CNV frequency, indicative of
a high rate of GAP1 CNV formation, was independently confirmed by results from Chapter 3.

Using barcode lineage tracking, we found that hundreds to thousands of CNV lineages initially

142



compete, resulting in extreme clonal interference. Competition among CNV-containing lineages
results in subpopulation dynamics that are distinct between populations despite the overall
reproducibility of whole-population dynamics. Since CNVs are alleles of large effect, this high
degree of clonal interference has important implications for the field of evolution. Epistatic
relationships between CNVs and other adaptive mutations can dramatically alter the fitness
landscape, leading to antagonistic pleiotropy and fithess consequences in alternate
environments. CNVs also serve to increase the amount of DNA substrate that can accumulate
mutations, and additional polymorphisms could subsequently increase the rate of adaptive
evolution. Both of these phenomena are important to consider as we continue to define the role

of CNVs in evolutionary processes.

During urea-limited chemostat evolution, we identified a GAP1 deletion using our CNV reporter.
While we did not specifically track or isolate CNVs at other loci, we used genome sequencing to
detect amplifications at another locus: DUR3, the high-affinity urea permease. We detected
quantitative differences in copy number and CNV allele size between the two loci, which
suggested that there are fundamental differences in generation and selection of CNVs
depending on locus and selective condition. Because the CNV reporter can be integrated
throughout the genome, we sought to test how different features of a genomic locus change the
temporal dynamics of CNV selection. This work is presented in Chapter 3. We used the CNV
reporter to track gene amplification at two loci in addition to GAP1: the high-affinity glucose
transporters HXT6 and HXT7 and the ammonium permease MEP2. This comparative analysis
of adaptive gene amplification across environments demonstrates that the temporal dynamics of

CNV selection are distinct for each locus. While additional replicates should be performed to
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determine if there are statistically significant differences, GAP1 amplification appears to occur
earlier and at a faster rate than HXT6/7 amplification. However, HXT6/7 amplification may reach
a higher copy number. Increases in fluorescence were not observed at the MEP2 locus,
consistent with an absence of de novo amplification events. Unlike GAP1 and HXT6/7, MEP2
does not have an origin of replication or repetitive elements in close proximity to the open
reading frame. Because these features appear to be important for facilitating fast and reversible
CNV formation, MEP2 amplification may represent a secondary mode of adaptation in
ammonium-limited chemostats that we were unable to detect during our relatively short-term

experiment.

The use of a CNV reporter can easily be extended for future applications. Follow-up
experiments using fluctuating or complex environments in chemostats are particularly tractable.
For example, analyzing GAP1 CNV dynamics in a nitrogen-limited chemostat where glutamine
and urea are both present in limiting concentrations would allow us to simultaneously track
divergent ecological niches and adaptive strategies (i.e. the presence of GAP1 amplifications
vs. GAP1 deletions in independent replicates). Implementing a two-color system (for example,
mCitrine at the GAP1 locus and mCherry at the DURS3 locus) would enable direct comparisons
of CNV dynamics at these two loci in this type of complex environment. A two-color system
could also be useful for differentiating between diploidization or aneuploidy and amplification of
a specific gene of interest. Diversification of a previously identified GAP1 CNV allele could also
be determined after generating a barcode library, inoculating the library into chemostats, and

performing lineage tracking. In addition to the experiments described here which could be
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performed in yeast or other microbes, the CNV reporter could be feasibly integrated into cell

lines to study tumorigenesis.

Our ability to track and isolate cells with gene amplifications enabled us to characterize the
mechanisms underlying CNV formation in Chapter 2. | performed genome sequencing of whole
populations and isolated clones and uncovered a diverse range of processes contributing to
CNV formation including: aneuploidy, non-reciprocal translocation, tandem duplication, inverted
triplication, and segmental aneuploidies potentially resulting from the formation of
neo-chromosomes. CNV formation is mediated by both recombination and replication-mediated
mechanisms that require extensive sequence homology and microhomology (4-24 nucleotides),
respectively. These findings suggest that errors in DNA replication may be a previously
underappreciated source of non-recurrent structural variation at the GAP1 locus. Dissecting the
relative contributions of each mechanism to CNV formation is therefore an important next step
that we sought to address in Chapter 4. We generated a reporter for intrachromosomal
recombination between the flanking LTRs at the GAP1 locus, a process which results in excision
of the GAP1 gene and formation of a hybrid LTR. Our reporter construct relies on the
simultaneous deletion of a URA3 gene integrated ~1 kilobase upstream of the GAP1 open
reading frame. While we determined that the reporter was inaccurate for determining the
number of bona fide GAP1 deletions, we identified alternative solutions and new strategies for

reporter design.

While determining the spontaneous rate of gene duplication and deletion is still an outstanding

question in the field, important follow-up experiments are needed to further define the
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mechanisms underlying CNV formation. While we believe that replication errors are important
contributors to de novo CNV generation, this should be tested directly by removal of key repair
enzymes such as RAD51 and RAD52. If CNV formation can proceed in the absence of
homologous recombination, we will have identified replication-mediated errors as the main
driver of CNV formation in S. cerevisiae. Secondly, recent studies strongly suggest a role for
environmental stimulation in CNV generation, potentially through elevated rates of transcription
at a locus under selection. Ideally, future studies would directly test the role of transcription in
mediating CNV stimulation. While this is a potentially difficult avenue of research, the findings
would have broad implications for challenging our historical belief that natural selection is driven

by genotypic variation arising as a result of random mutation.
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