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"Science is a match that a person has just got alight. They thought they
were in a room — in moments of devotion, a temple — and that this light
would be reflected from and display walls inscribed with wonderful secrets
and pillars carved with philosophical systems wrought into harmony.

It is a curious sensation, now that the preliminary splutter is over and the
flame burns up clear, to see lit just their hands and just a glimpse of them-
selves and the patch they stand on visible, and around them, in place of all
that comfort and beauty they anticipated, darkness still."

- H.G. Wells, 1891,
adapted for 2018
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Abstract

Cellular responses to changing environments frequently involve rapid transcriptome re-

programming, and regulated changes in mRNA degradation rates can accelerate this

process. Upon the addition of glutamine to budding yeast (Saccharomyces cerevisiae)

limited for nitrogen, yeast cells resume rapid growth. Preceding the changes in popu-

lation growth rate, the transcriptome quickly reprograms through a transition state dis-

tinct from either rapid or slow growth. As part of this, the five fastest decreasing mRNA

are all Nitrogen Catabolite Repression (NCR)-regulated transporters, decreasing signif-

icantly faster than expected from their mRNA stability measured in nitrogen-replete

conditions. I determined the stability of the yeast transcriptome preceding and during

a nitrogen upshift using 4-thiouracil labeling and found that 78 mRNAs are destabi-

lized, a set enriched for NCR and carbon metabolism mRNAs. To find factors specifying

or effecting the destabilization, I developed a novel method combining mRNA FISH,

fluorescence-activated cell sorting, and DNA barcode sequencing to screen the pooled

deletion collection library for trans factors that mediate rapid GAP1 mRNA repression.

Modeling of the data identifies known factors of mRNA degradation, namely all three

tested components of the Lsm1-7p/Pat1p complex, as being important for wild-type

GAP1 mRNA levels and dynamics. Deletions of the modulators EDC3 and SCD6 have

more complex phenotypes including reduced clearance of GAP1. Re-analyzing previ-

ously collected data, I identified that a scd6∆, tif4632∆ (eIF4G2 delete), and a GAP1

5’ UTR delete strain all share a similar phenotype of lower GAP1 expression preceding

the upshift, and reduced decay upon the upshift. This suggests a connection between

translation initiation and mRNA level in different environments of nitrogen availability,

and that the destabilization phenomenon may in fact be the release of a stabilizing

effect on these mRNA during growth in nitrogen limitation.
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1

Introduction

Organisms adapt to their environment by expressing different phenotypes as environ-

ments change. We expect this to be an advantageous strategy, depending on the fit-

ness consequences of each phenotype in each environment balanced against the costs

of innovating and maintaining the machinery for adaptive differential gene expression

(Kussell and Leibler 2005). One way to achieve this is through the regulation of gene

expression. If different mechanisms of gene expression act on different properties of

gene expression, or have different costs of energy or complexity, then we would expect

that as the environment selects for the use of gene expression patterns that advanta-

geously model the environment (Tagkopoulos et al. 2008), we may see the use of dif-

ferent mechanisms used to achieve different regulatory demands. Thus, understanding

how different mechanisms can be used to regulate one particular level of gene expres-

sion may inform our understanding of these mechanisms and how multiple levels of

selection balance in causing an adaptive outcome.

Expression of a protein-coding gene product involves many steps, each with a vari-

ety of opportunities for regulation. At the outset, DNA sequences that encode genetic

elements are transcribed into corresponding messenger RNA (mRNA). The rate of this

transcription is helped by factors that facilitate recruitment of RNA polymerase II (PolII)

and is hindered by factors that block this process by physical occlusion or changes in

the accessibility to the chromatin (Hahn and Young 2011). The translation of mRNA

into a protein product by ribosomes occurs at different rates for different genes and

different environments, and this approximately 15-fold variation (Weinberg et al. 2016)

1



is thought to be regulated by a complex interplay between ribosomes and associated

translation factors, RNA binding proteins (RBPs), and intrinsic factors of the mRNA like

length or codon-usage (Dever et al. 2016). For both the mRNA and its protein product,

stability is also important (McManus et al. 2015; Pérez-Ortín et al. 2013). Additionally,

localization or allosteric regulation can change the activity of a gene product. Myriad

factors contribute to the expression of a gene product, and determining the functional

adaptive basis for particular regulatory mechanisms, if they are indeed adaptive, would

help us better understand the diversity of gene regulatory mechanisms.

The budding yeast Saccharomyces cerevisiae is a model system for many fields, in-

cluding gene expression regulation. In response to different nutrient availabilities yeast

changes its rate of growth, and this is accompanied by large changes in gene expres-

sion (Brauer et al. 2008; Conway et al. 2012) and changes in physiology (Carter et al.

1978; Waldron 1977) including a changed rate of proliferation (Slator 1918), cell size

(Jorgensen et al. 2004), RNA content (Waldron and Lacroute 1975), protein content (Kief

and Warner 1981), and resistance to stressors (Elliott and Futcher 1993). This integra-

tion of diverse metabolic signals into a coordinated program of growth is thought take

place with multiple hierarchies of control in response to different particular types of nu-

trients as well as the general availability of any nutrient source (Broach 2012; Cooper

1982; Winderickx et al. 2003). These signals are integrated into a similar systemic

output by well conserved growth signalling pathways of eukaryotic cells, like TORC1,

Snf1p/AMPK, or PKA (Conrad et al. 2014; Thevelein 1994). Thus, the study of nutrient

limitations to growth, especially with the aim of discerning particular molecular mecha-

nisms and how these may overlap (Oliveira et al. 2015a,b; Péli-Gulli et al. 2015; Stracka

et al. 2014; Tate et al. 2017) would shed light on our understanding of how a eukaryotic

cell regulates its most essential project of growth in the face of diverse limitations.

Nutrient availability is described in terms of the quality and quantity of the source

2



provided. Quantity refers to the molar availability of the nutrient that the yeast can

take up, while quality is an empirical reference to how rapidly budding yeast can bio-

chemically incorporate the nutrient into their metabolism and grow. One prediction

from this understanding is that altering the quantity of the nutrient availability to vary

growth rates in a range below which the quality limits growth rates will elicit a common

response between various nutrient limitations. Indeed, studies systematically varying

nutrient environments have shown that about a quarter of the transcriptome is differ-

entially expressed at different steady-state nutrient-limited growth states, regardless

of nutrient used to limit growth (Brauer et al. 2008; Regenberg et al. 2006), and that

a small subset of transcripts were regulated particular to the specific type of limita-

tion. Statistical modeling of this process determined that the molecular signature of

this growth-rate signalling could be captured in a small number of calibrator genes

whose expression was very well correlated with changes in growth rate or perturbation

of signalling pathways associated with this process, and importantly also changed dur-

ing dynamic transitions or upon perturbation of growth signalling pathway PKA (Airoldi

et al. 2009). Dynamic transitions to better nutrient environments (nitrogen, carbon,

and phosphorus upshifts) shared a similar pattern (Conway et al. 2012), and the pat-

tern of gene expression associated with increased nutrient availability and growth rates

is similar but of opposite sign compared to the Environmental Stress Response (ESR) —

a shared in co-regulation of ∼600 mRNA across dynamic responses to various stressors

(Gasch et al. 2000). Together, this shows how yeast has a common molecular response

that largely corresponds to the suitability of the sensed environment, in addition to the

physiological changes previously described. A better environment translates to faster

growth, with more growth associated mRNA and less stress response mRNA, and this

holds true in different steady-states and in the dynamics of transitions between steady-

states.
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1.1 Functional transcriptome reprogramming during a

nitrogen upshift

One classically studied transition between growth rates is the nitrogen upshift. Yeast

grows quickly when provided with nitrogen sources like glutamine or ammonium, but

can make use of various nitrogen sources like proline or urea by expressing overlapping

sets of specific and general nitrogen-source permeases that concentrate these sources

inside the cell for use (Grenson 1992). Various nitrogen sources are then catabolized to

eventually make glutamate and glutamine, with an estimated∼85% of macromolecular

nitrogen coming from the amino nitrogen in glutamate and the rest from the side-chain

of glutamine (Magasanik and Kaiser 2002). The addition of glutamine to a nitrogen-

limited culture, for example grown with only the non-preferred proline as a nitrogen

source, is called an upshift because it is the change from a slow growing condition to

one of rapid growth (Kjeldgaard et al. 1958; Waldron 1977). Upon an upshift, a regu-

latory phenomenon called nitrogen catabolite repression (NCR) ensures that the set of

transporters, metabolic enzymes, and regulatory factors are repressed (Cooper 1982,

2002; Magasanik and Kaiser 2002). Through the use of a temperature-sensitive glu-

tamine synthase allele or treatment with methionine sulfoximine, it has been shown

that NCR appears to respond to intracellular glutamine availability (Crespo et al. 2002;

Grenson 1983; Stracka et al. 2014). However, recent work has specified that while the

transient NCR correlates with glutamine abundance, persistent NCR appears indepen-

dent (Fayyad-Kazan et al. 2016). Additionally, the use of a gln1-37 mutant to prevent

ammonium from glutamine conversion found that ammonium addition triggered swift

repression ofGAP1 and PUT4 despite not changing intracellular glutamine levels (Schure

et al. 1998). This suggests that the sensing might not be simply glutamine abundance,

but rather some sensor of flux through central nitrogen metabolism (like Gdh1p activity

(Fayyad-Kazan et al. 2016)) or some other, heretofore uncharacterized signalling mech-
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anism. Whatever the exact mechanism, the degree to which nitrogen sources can sup-

port growth by providing substrates of central nitrogen metabolism is sensed by yeast

to appropriately and quantitatively repress catabolic genes in conditions corresponding

to the degree to which they are unneeded for growth.

α-ketoglutarate glutamate glutamine

NH4+ NH4+

NH4+ α-ketoglutarate

proline

citric-acid
cycle

Figure 1.1: Core nitrogen metabolism in yeast. Glutamine (green) is a central
metabolite, and is thus a preferred nitrogen source for rapid growth. Proline (red) re-
quires specific transport and metabolic enzymes to convert it to glutamate. Redrawn
from Magasanik and Kaiser 2002.

One layer of the repression occurs at the level of transcript synthesis. Four of the

five GATA factors in yeast coordinate to control transcription of NCR genes, with two

factors (Gln3p and Gat1p) activating transcription while two (Gzf3p and Dal80p) re-

press transcription (Daugherty et al. 1993; Hahn and Young 2011; Scherens et al. 2006;

Stanbrough and Magasanik 1995). These factors are also subject to NCR control to dif-

ferent extents, with the activators increasing the expression of the repressive factors

(Cunningham et al. 2000). This is thought to be an adaptation to enable quick repres-

sion upon a nitrogen upshift, as may be encountered when yeast is introduced to a

new abundant nutrient environment of grape or wort. It has been long known that the

eukaryotic growth signalling pathway TORC1 largely regulates these factors by control-

ling the activity of phosphatases and thus localization of these transcription factors, via

Ure2p for Gln3p (Beck and Hall 1999; Cox et al. 2000) and unknown mechanisms for

5



Gat1p (Georis et al. 2008). However, the careful application of genetics has identified

that the requirements for phenotypes differ in different environments, with comparisons

of nitrogen starvation (8+ hours) versus limitation (<3 hours, or proline) showing that

about half of the Gln3-localization regulation (resulting in transcriptional regulation of

NCR) was still unexplained by TORC1 signalling alone (Tate and Cooper 2013). By way

of a temperature-sensitive tRNA allele, researchers have since identified that Gcn2p im-

pinges in a parallel pathway through the 14-3-3 proteins Bmh1/2 to promote the export

of Gln3p and Gat1p (Tate et al. 2015, 2017). Additionally, others have suggested that

the amino-acid permease Gap1p may directly signal to PKA (Donaton et al. 2003; Van

Zeebroeck et al. 2009). Thus, multiple growth signalling pathways converge to affect

the import and export of NCR GATA factors to effect multiply redundant layers of NCR

transcript synthesis control.

Gene product regulation can also occur post-translationally. NCR has primarily re-

ferred to the control of transcript synthesis rates, but it has been long observed that

upon addition of a preferred nitrogen source the enzymatic and permease activities

are repressed faster than can be caused by a shut-off of synthesis (Cooper and Sum-

rada 1983). A classical NCR-regulated gene is the general amino-acid permease GAP1.

Gap1p transport activity is repressed much faster than the re-localization and degrada-

tion of the protein-product (Stanbrough and Magasanik 1995), and we know that this

Gap1p shut-off is adaptive (Risinger et al. 2006), perhaps due to an excess of amino-

acid transport causing ammonia toxicity (Hess et al. 2006) or excess proton symport

driving a depolarization against futile Pma1p proton-export activity. This growth phe-

notype allowed the early identification of mutants in this process, and this indicates

that it is mediated by a ubiquitinyation mark that inactivates the permease and leads

to relocalization and degradation (Grenson 1983; Merhi and André 2012; Risinger and

Kaiser 2008). Thus multiple layers redundantly repress the NCR-regulated Gap1p.
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In Chapters 2 and 3, I show how mRNA degradation also plays a role in this repres-

sion, inactivating some NCR mRNA as well as mRNA associated with other metabolic

processes.

1.2 What is the function of rapid transcriptional repression

during an increase in growth rate?

A landmark integrative study of proteome and transcriptome dynamics (Lee et al. 2011)

showed that for most cases of mRNA repression upon osmotic stress, there was not a

correlated downregulation of protein products in the same timescale. This asymmetry

makes sense, with protein gene-products being approximately 30-50 times more sta-

ble than the mRNA intermediate (Christiano et al. 2014). Given the assumption that

adaptation implies function (Gould and Lewontin 1979), what purpose might this rapid

repression of mRNA fulfill?

An increase in growth rate is associated with a rapid up-regulation of the ribosomal

protein (RP) and ribosome biogenesis (RiBi) regulons (Griffioen et al. 1996; Jorgensen

et al. 2004). These regulons comprise the protein subunits and biogenesis factors re-

sponsible for ribosome biogenesis, and their relative abudnance is well-correlated with

growth rate in both dynamic and steady-state conditions (Airoldi et al. 2009; Brauer

et al. 2008). While some of the more numerous macro-molecules in the cell, ribosomes

are not infinite and the majority are likely engaged in peptide elongation (Boehlke and

Friesen 1975; Haar 2008; Shah et al. 2013), and are less abundant (Kief and Warner

1981; Powers and Walter 1999) and with a lower rate of overall translation (Waldron

et al. 1977) in slow-growth conditions.

The relative allocation of gene expression resources in the cell is a fundamentally

important decision cells must make, and modeling of this phenomenon across various

conditions in E. coli has led to a simple partitioning model in which the proteome can
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be divided into functional sectors (Scott et al. 2010, 2014). While these simple models

might explain the balance during steady-state growth, how does the relative allocation

of gene expression machinery change during transitions? In particular, what is the best

approach to re-balancing this allocation upon the resumption of rapid growth (Erickson

et al. 2017)?

Recent work has explored this to identify that an optimal strategy would be to re-

invest gene expression machinery activity in the task of expressing more gene expres-

sion machinery, at the neglect of an investment in metabolic enzymes (Giordano et

al. 2016). This phenomenon, a transient burst of ribosomal over production or a "bang-

bang singular" strategy appears to have been observed in yeast before in upshifts (Grif-

fioen et al. 1996; Wehr and Parks 1969) and recently by our lab in nitrogen upshifts

(Airoldi et al. 2016). Thus, concordant repression of stress-response and metabolism

gene expression is theoretically expected to allow more focus of gene expression ma-

chinery on this pulse of production. There is evidence for this in E. coli, where Shachrai

et al. 2010 induced the expression of a fluorescent protein at different growth stages to

show that induction during lag phase had a significant impact on lag duration, while in-

duction during exponential phase did not have a significant effect on growth. This is also

true in yeast, where misexpression of transgenic fluorophores has a cost during this pe-

riod of advantageous focus on producing gene expression machinery (Kafri et al. 2016),

although this may bemediated by themaintenance of additional stores of under-utilized

ribosomes (Metzl-Raz et al. 2017; Waldron et al. 1977). Thus, the repression of newly

unneeded mRNA in yeast may serve a role to reallocate the extant translational capac-

ity of the cell to enact a growth-optimal program (Kief and Warner 1981). Others have

suggested that swift repression may instead help to recycle nucleotides (Kresnowati et

al. 2006), so identifying the genetic factors responsible for the repression would allow

us to test if a particular regulatory event, perhaps a destabilization of mRNA, is indeed
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adaptive and by which mechanism.

1.3 mRNA degradation and its regulation

Even when considering only the regulation of mRNA abundance, there are at least two

processes that contribute — that of synthesis and degradation. We know much about

transcript synthesis, perhaps owing to the fact that virtually all events of mRNA synthe-

sis pass through a well-characterized reaction of synthesis by RNA Pol II, capping and

polyadenylation, and export into the cytoplasm. The details may vary, but the common

pathway is the same. mRNA degradation does have a main pathway that performs the

bulk of mRNA degradation, but mRNA are also subject to divergent redundant pathways

that have been challenging to measure. Moreover, the rates of these various processes

are subject to control in ways less well-understood. While some similarity is thought to

exist in how RBPs may recognize cis-element sequences in RNA similar to how TFs rec-

ognize upstream activating or repressing sequences in DNA, the single-stranded nature

of mRNA complicates this process with that ability to form diverse secondary structures

that can block linear cis-elements (Li et al. 2010). Additionally, these secondary struc-

tures of RNA may be recognized as the cis-element (Aviv et al. 2003; She et al. 2017),

complicating our approaches to recognize these patterns (Goodarzi et al. 2012).

1.3.1 Primary 5’ to 3’ pathway of mRNA degradation

The canonical protein-coding mRNA is synthesized in the nucleus from a DNA template

by RNA PolII, and is capped co-transcriptionally at the 5’ end with a m7G cap. As PolII

transcribes sequence 3’ of the stop codon the cleavage factor complex (of which Hrp1p

is a sub-unit (Chen and Hyman 1998)) recognizes cis-element binding motifs in the RNA

to direct cleavage and polyadenylation to specific sites in the mRNA.
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genome

m7G

transcription

cleavage, polyadenylation,
export to cytoplasm

m7G AAAAAAAAAAAAAAAAA

Pab1p Pab1p
eIF4F

loads ribosome

m7G AAAAAAAAAAAA

Pab1p
eIF4F

continued translation

error in transcription

m7G AAAAAASTOP

decapping

m7G AAAAAAeIF4F

continued translation

m7
G

AA
AA
ALsm1-7p

Pat1p
Dcp2p

Edc3p
Scd6p

decapping

AAAAALsm1-7pXrn1p

AAAAALsm1-7pXrn1p

AAAAALsm1-7pXrn1p

5’ to 3’ degradation

Figure 1.2: Diagram of canonical deadenylation-dependent 5’ to 3’ mRNA
degradation Newly transcribed and poly-adenylated mRNA are progressively dead-
enylated until the Lsm1-7p/Pat1p complex binds to recruit decapping factors and Dcp2p.
Co-transcriptional proof-reading surveils the transcript for aberrant translation dynam-
ics. Nonsense-mediated decay, for example, triggers decapping. A decapped mRNA is
rapidly degraded from 5’ to 3’ by Xrn1p.

Upon successful completion of this process, the nascent mRNA is exported to the cy-
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toplasm where it enters into the pool of translatable mRNA. Typically, translation begins

when initiation factors load ribosomal subunits to scan the 5’ leader or untranslated re-

gion (UTR) for the start codon, where the process of coding sequence translation begins.

These initiation factors (eIF4F) bind the m7G cap to load ribosome subunits (Dever et al.

2016), and thus most translation depends on the cap (with exceptions demonstrated

by internal ribosome entry sites (Gilbert et al. 2007)). The m7G cap is also critical for

mRNA stability. Xrn1p is a highly-processive combination of helicase and exonucleolytic

domains that alone can rapidly degrade transcripts from a 5’ to 3’ end, recognizing

unprotected 5’ phosphorylated ribonucleotides as substrates (Parker 2012). Thus, the

inverted linkage of the m7G escapes degradation.

During rounds of translation the poly-adenosine tail is shortened from about 65-

90 adenosines to about 10 adenosines by a combination of the Pan2/3 and Ccr4/Pop2

deadenylase complexes, with activity antagonized by the poly-A binding protein Pab1p

(Decker and Parker 1993; Parker 2012). When the tail is thus shortened, the Lsm1-

7p/Pat1p complex binds the remainder of the poly-A tail (Tharun et al. 2000). This

complex is a heptameric ring of the Lsm1-7 proteins with the Lsm1p’s C-terminal do-

main elegantly spanning the center (Sharif and Conti 2013), and the last eight residues

projecting into this center and critical for binding the shortened poly-A tail (Chowdhury

et al. 2016). The critical function of this complex is to recruit and promote activity

of the decapping complex to the 5’ end of the mRNA, and in cooperation with Pat1p

(Chowdhury et al. 2014) the binding of this complex to mRNA and to decapping factors

is indeed correlated with decapping of the mRNA (Chowdhury and Tharun 2009). Thus,

the complex maps the deadenylated status to the next step in mRNA degradation.

A cytoplasmic mRNA without a 5’ m7G cap is not long lived, by virtue of Xrn1p,

thus the recruitment and activation of the decapping complex is thought to be the key

regulatory step in rates of mRNA degradation (Coller and Parker 2004). Dcp2p carries
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out the catalytic activity of the holoenzyme but is promoted by the effects of Dcp1p,

and in comparing in vitro to functional in vivo assays of mutants it appears that the

catalytic rate of the enzyme is not the limiting step (Tharun and Parker 1999). Rather

it is re-modeling of the mRNP (mRNA-protein) complex that leads to association of the

decapping enzyme complex with the 5’ cap, and the rate of this process determines

the activity of this degradation pathway (Tharun and Parker 2001). This decapping-

enzyme-localization process is promoted by the Lsm1-7p/Pat1p complex and inhibited

by poly-A binding protein Pab1p (perhaps by competition of Pab1p with Lsm1-7p/Pat1p

for the poly-A tail) and eIF4E (Caponigro and Parker 1996; Coller and Parker 2004). eIF4E

and eIF4G compose the cap-dependent translation-initiation factor eIF4F (Dever et al.

2016), which gives rise to an elegant model of competition for the 5’ m7G cap to explain

the observation that translation initiation inhibits decapping (Huch and Nissan 2014).

The requirement of sufficient poly-A tail for Pab1p to bind is consistent with the effect

of deadenylation in promoting decapping (Parker 2012), and thus a model has emerged

wherein deadenylation promotes the association of the Lsm1-7p/Pat1p complex to the

shortened poly-A tail, then re-arranges to associate this 3’ end of the mRNA molecule

with the 5’ end, resulting in an interaction that recruits and triggers decapping of the

mRNA. The Lsm1-7p/Pat1p complex and Dcp2p/Dcp1p are physically associated (by

co-immunoprecipitation) with several factors that genetically modulate the activity of

remodeling step —Dhh1p, Edc3p, and Scd6p (Nissan et al. 2010).

Dhh1p is a helicase that associates with polysomes (mRNA with multiple ribosomes

bound) and has been recently demonstrated to be genetically required for the relation-

ship between codon optimality andmRNA stability (Presnyak et al. 2015; Radhakrishnan

et al. 2016; Sweet et al. 2012). Curiously, tethering Dhh1p to a 3’ UTR using the MS2

system resulted in lower translation rate of an mRNA despite causing more ribosomes

to be associated with the mRNA (Sweet et al. 2012), suggesting that Dhh1p resolves
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slowly translating ribosomes by promoting decapping andmRNA degradation. However,

physically tethering Dhh1p may affect its role if topology of interactions is important or

movement along the mRNA is important for its function. Dhh1p also appears to play a

role in promoting the association of mRNPs into processing bodies.

Edc3p physically associates with the decapping complex and stimulates its activity

(Nissan et al. 2010), but it has also been shown to be important (Decker et al. 2007;

Huch et al. 2016) but not critical (Rao and Parker 2017) for the formation of processing-

bodies. These are microscopically visible foci of mRNA and degradation factors that

form in response to stress conditions but are assumed to be condensed from mRNA-

protein complexes that exist before stress (Lui et al. 2014; Rao and Parker 2017; Sheth

and Parker 2003). A mutant deleted of EDC3 and the C-terminal domain of the essential

LSM4 is deficient in processing-body formation, and surprisingly this processing-body

deficiency also correlates with a deficiency in the stabilization of several mRNA upon

osmotic stress (Huch and Nissan 2017). Edc3p plays a role in promoting the association

of mRNPs together into processing-bodies, and perhaps its effect on decapping is by

virtue of co-localizing degradation factors in processing bodies.

Scd6p inhibits the formation of the 48S pre-initation complex (when the 40S sub-

unit associates with eIF4E cap-dependent initiation factors and begins to scan the 5’

UTR) via forming its own cap-binding complex with eIF4G subunit eIF4G1 in an arginine-

methylation-dependent manner (Poornima et al. 2016; Rajyaguru et al. 2012). This is

thought to physically occlude the normal initiation complex from binding. Scd6p also

binds to several other factors in the Lsm1-7p/Pat1p deadenylation-promoting complex

(Nissan et al. 2010), and thus may play an indirect role in preventing the pre-initiation

complex from binding and stabilizing the mRNA through translation.
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1.3.2 Alternative pathways of mRNA degradation — 3’ to 5’ and quality

control

Other pathways of mRNA degradation exist. If the poly-A tail is completely removed,

the cytoplasmic exosome complex can degrade the mRNA from 3’ to 5’. This redundant

mechanism allows a xrn1∆ mutant to grow, although slowly, as the 5’ to 3’ pathway is

throught to effect the bulk of mRNA degradation (Parker 2012). The balance between

the two may be because of the enzymatic rate of digestion, but more likely because the

binding of the Lsm1-7p complex to the shortened poly-A tail protects the mRNA from

further deadenylation and thus inhibit this 3’ pathway (Tharun 2009).

Three other pathways are known to act as a co-translational layer of quality control,

where errors detected by abnormal translation processes result in destruction of the pre-

sumably defective mRNA. Nonsense-Mediated Decay (NMD) is the canonical example

of this. A mutation, transcriptional error, alternative splicing event, or abnormal trans-

lational event (like leaky scanning or a uORF, explained later) can cause an mRNA to

have a stop codon well before the usual position, which is recognized for destruction by

a deadenylation-independent decapping and 5’ to 3’ decay (Muhlrad and Parker 1994).

How the aberrant nature of the misplaced stop codon is detected is still a mystery, but

NMD sensitivity is known to be more active at the 5’ end of the coding sequence (after

translating a sufficient stretch of amino-acids), with activity reducing towards the 3’

end of the transcript (Losson and Lacroute 1979). Non-Stop Decay refers to the inverse

of NMD, no stop codon. Ribosomes that over-run into the poly-A tail recruit degrada-

tion by the 3’ exonuclease (Schmid and Jensen 2008). No-Go Decay is named for the

phenomenon that triggers it, when ribosomes "no go" (encounter a difficult to elongate

sequence). Difficult to translate sequences (such as arginine or lysine repeats) trigger

the endonucleolytic cleavage of the offending mRNA, which is then degraded from the

cut site towards both ends (Doma and Parker 2006). While the molecular mechanisms
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of this process have been not been comprehensively defined, it has been shown that

it is likely the ribosome collisions that promote the ribosome ubiquitination associated

with the triggering of No-Go decay (Simms et al. 2017), and other work has suggested

that the protein Asc1p (Ikeuchi and Inada 2016) or K63 ubiquitination (Saito et al. 2015)

may play a role. Thus a model for ribosomal subunits sensing ribosome collisions and

activating this quality control pathway through ubiquitination of ribosome-associated

factors offers an elegant mechanism to sense locally-stalled ribsomes, although this

idea is still beginning to be explored.

Together these pathways surveil translating mRNAs for defects, but it is likely that

false positives in the recognition process also contribute to their regulatory effects. Dis-

ruption of the NMD pathway is associated with different expression of many transcripts.

Recent genome-wide analysis identifying∼900 mRNA upregulated upon deletion of any

of UPF1-3, and subsequent ribosome profiling found this targeting to be associated with

out-of-frame translation effects and non-optimal codons (Celik et al. 2017). NMD has

been implicated in the regulation of ribosomal subunit protein pre-mRNA (Garre et al.

2013) in different environmental conditions, has been shown to interact genetically with

Hrp1p and cis-elements spanning the start codon of PPR1 mRNA to target this mRNA

for degradation (Kebaara et al. 2003; Pierrat et al. 1993), and may be triggered by up-

stream open reading frames (uORFs, discussed later). These could be specific regula-

tory events, or aberrant probabilistic activation due to the sensitivity of co-translational

quality control (Celik et al. 2017).

1.3.3 The interaction of translation and mRNA degradation

Codon-optimality refers to the concept that certain codons are translated by the ribo-

some more quickly than other codons. This is thought to result in part from changes in

tRNA abundance and in part due to intrinsic differences in the decoding rates (Curran

and Yarus 1989; Thomas et al. 1988), and is often quantified using the tRNA adaptation
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index (tAI) (Reis et al. 2004). The expectation that tRNA availability is associated with

increased rates of translation has been tested with more recent ribosome footprint pro-

filing experiments, and consistent with this ribosomes tend to occupy optimal codons

less often (Weinberg et al. 2016).

The functional relationship between codon-optimality and mRNA degradation rate

had been considered and rejected by a review of single-transcript studies (Caponigro

and Parker 1996). However, with the advent of accurate genome-wide measurements

of mRNA degradation rates, we are able to explore the generality of this principle in a

relatively unbiased way. Several groups (Cheng et al. 2017; Harigaya and Parker 2016;

Neymotin et al. 2016; Presnyak et al. 2015) have found that poor codon-optimality and

lower ribosome density is associated with a higher degradation rate when considered

on a per-transcript basis. This can be explained through multiple models. One model

is that translation elongation rates are sensed, with slower elongation accelerating the

degradation of mRNA. Jeff Coller’s group has worked extensively on Dhh1p, and found

that it is genetically required for the clear relationship between codon-optimality and

mRNA stability (Presnyak et al. 2015; Radhakrishnan et al. 2016). Although the mech-

anism is at this point unclear, Dhh1p’s genetic association is an important link from

which to start.

Alternatively, competition between decapping enzymes and translation initiation

factors for access to the 5’ m7G cap has long been proposed as a mechanism by which

the two processes interact (Schwartz and Parker 1999, 2000). Karsten Weis’ group

(Chan et al. 2017) reproduced the result that slowing elongation with cycloheximide,

sordarin, or 3AT treatment slows mRNA degradation, but conversely inhibition of initia-

tion with hippuristanol or a dominant negative eIF4E increased degradation rates. These

measurements were made using 4-thiouracil and RNA sequencing, similar to RATEseq

(Neymotin et al. 2014). The connection between the effect of elongation rates and ini-
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tiation rates could also be explained by the effect of slow elongation rates inhibiting

initiation events, as predicted (Shah et al. 2013) and measured (Chu et al. 2014).

Thus, much evidence points to competition between translation initiation and 5’ to

3’ degradation initiation at the cap as a major determinant of mRNA stability, although

the molecular work with Dhh1p suggests that events after initiation still play a role.

Other mRNA degradation pathways like NMD or NGD during elongation (as discussed

earlier) could also possibly contribute to the effect.

1.3.4 Regulation of mRNA degradation

mRNA degradation can be affected by various trans factors. While micro RNAs are

prolific in regulating mRNA in animals and plants, budding yeast do not make use of

this mechanism. Instead, in yeast mRNA degradation appears to be determined by a

combination of intrinsic properties like length or codon-optimality, and trans factor RNA

binding proteins (RBPs) that can bind cis element sequences in the mRNA sequence to

effect changes in stability (Li et al. 2010). The best example of this is Puf3p, which binds

motifs in mRNA with products destined for mitochondrial function and degrades these

in the appropriate environment (Miller et al. 2013; Olivas and Parker 2000), perhaps by

mapping phosphorylation of Puf3p to association of thesemRNA to cytoplasmic granules

(Lee and Tu 2015). Secondary structures may complicate the recognition of linear cis

elements, or be used as cis elements in their own right (Li et al. 2010), for example Vts1p

(Smaug homolog) recognizes a small sequencemotif in the context of the loop of a stem-

loop hairpin (Aviv et al. 2003; She et al. 2017). Degradation rates can be affected by

many mechanisms. Elements in promoters (cis when in DNA but not part of the affected

mRNA) can mark transcripts for differential stability (Haimovich et al. 2013). One of the

most well known examples of this is Dbf2p loading onto SWI5 and CLB2mRNA to effect

destabilization upon mitosis (Trcek et al. 2011). In a direct example, the transcription

activation domain of Adr1p fused to a different DNA binding domain has been shown
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to be sufficient to mark ADH2 mRNA for destabilization upon a glucose upshift (Braun

et al. 2016). Thus, RBPs may recognize sequence elements in the mRNA or be loaded

onto messenger ribonucleo-protein complexes (RNPs) at synthesis (Gupta et al. 2016)

to effect control of mRNA stability in response to events in the cytoplasm.

Non-RBP mechanisms can also be used. Upstream open reading frames (uORFs)

were originally characterized using the phenotype of post-transcriptional regulation of

the Gcn2-regulated Gcn4p (Dever et al. 1992) in part through quality control pathways

(Ruiz-Echevarria and Peltz 1996). Canonical and non-canonical start-codons can recruit

initiation of scanning ribosome subunits with a variety of effects on the translation of

the main coding sequence and the mRNA stability (Spealman et al. 2017). Ribosomes

may skip re-initiation at the primary start codon to generate N-terminal diversity by

initiating at alternative start codons, or upon termination of a uORF very distant from

the 3’ end of the transcript trigger the NMD pathway to destroy the mRNA (Dever et al.

2016).

While the primary-sequence of the mRNA is often thought to be the primary source

of cis-elements, mRNA can be modified in a variety of ways. The most extensively

studied modification so far is m6A methylation of adenines, with demonstrated conse-

quences for localization and stability (Gilbert et al. 2016). The role of these, or other

modifications, is still being investigated. The critical nature of the 5’ m7G cap suggests

that the discovery of other capping structures, such as recent identification of NAD+

capped mRNA in yeast (Walters et al. 2017), could provide another type of RNA mod-

ifications loading during transcription to affect processes of translation initiation and

transcript degradation. Although at a low percentage, these modifications suggest that

non-m7G caps could contribute to a sizable fraction of euarkyotic mRNA. Application of

improvements in biochemical assays of modifications as well as long-read sequencing

technology (both PacBio and Nanopore) may yield a new and informative perspective on
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the single molecule extent of base modifications and their impacts on the progression

of mRNA through various degradation intermediates.

mRNA localization within the cytoplasm may affect degradation by virtue of regulat-

ing the accessibility of degradation factors. Processing-bodies were originally described

as cytoplasmic co-localized foci of 5’ to 3’ degradation factors that formed under stress

induction conditions, and on the basis of steady-state genetics and experiments with an

MS2 aptamer-based live-imaging system, it was concluded that processing-bodies are

foci of active mRNA degradation (Sheth and Parker 2003). These foci are usually studied

by microscopy during stresses, entry into stationary phase, and in the use of mutants

in degradation pathways, but recent advances in microscopy and nanoscopy particle

tracking have identified that these complexes are likely condensations of previously-

existing RNPs and depend on a network of redundant interactions between mRNA 5’ to

3’ degradation protein factors (Lui et al. 2014; Rao and Parker 2017). Additionally, re-

cent adjustments to the aforementioned MS2 aptamer system and explorations during

dynamic conditions point towards processing-bodies being sites of degradation factor

sequestration (Huch and Nissan 2017; Tutucci et al. 2017). Interestingly, the forma-

tion of these processing-bodies are halted upon cycloheximide treatment (Sheth and

Parker 2003), suggesting that translational status of the transcriptome and processing-

body composition may be related. In recent work, inhibition of translation initiation was

demonstrated to increase p-body formation in correlation with increased degradation

rates (Chan et al. 2017). Together, these observations indicate that processing-bodies

result from a complex balance of mRNA degradation initiation, resolution, and mRNA

degradation factor interactions with impacts on the accessibility of degradation factors

to mRNA targets of degradation.
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1.4 The role of stability control in transcriptome

reprogramming

The change in concentration of an mRNA (Rt) depends on the rates of mature transcript

synthesis (ks) and mRNA degradation (kd). We assume that synthesis is a constant rate

dependent on the unchanging concentration of the DNA encoding the gene, and that

degradation is a first order process of themRNA interacting with a fixed and unsaturated

factor degradation. We also disregard dilution from cell volume changes because this

is approximately 50 times slower than the average rates of mRNA degradation and

changes will thus not play a large role in our measurements of mRNA dynamics on this

timescale. Thus, the change in mRNA over time is

dRt

dt
= ks −Rtkd

From this, the two rates determine the steady-state equilibrium of ks
kd
. Given a singular

regulatory event, the doubling time (or half-life) of the mRNA is dependent on only the

degradation rate log(2)
kd

and thus a faster mRNA degradation rate will approach or relax

to the new equilibrium value quicker (Hargrove and Schmidt 1989).

While both synthesis and degradation contribute to changes in abundance, changes

in degradation rates can cause the changes to occur more rapidly. If we expect that

the existence of a mechanism implies a selective pressure specifically for it (Gould and

Lewontin 1979), we would expect that studying an example of a transcript subject to

both synthesis and degradation regulation might reveal a balance of selection across

steady-state and dynamic conditions.

1.4.1 Stress conditions trigger rapid regulation of mRNA stability

mRNA degradation rate changes have been characterized to play a role in responses

to heat-shock, osmotic stress, pH increases, and oxidative stress, sharing a similar pro-
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gram of destabilization of mRNA coding for ribosomal-biogenesis gene products and

stabilization of stress-responsive mRNA (Canadell et al. 2015; Castells-Roca et al. 2011;

Garre et al. 2013; Miller et al. 2011; Molin et al. 2009; Molina-Navarro et al. 2008;

Romero-Santacreu et al. 2009; Shalem et al. 2011). Simultaneous increases in both

synthesis and degradation rates of some of these mRNA are thought to serve to return

the transcriptome quickly to a new steady-state after effecting a transient pulse of reg-

ulation (Rabani et al. 2011; Shalem et al. 2008), demonstrating a key functional role

in stability control in achieving a particular pattern of mRNA dynamics. Interestingly,

these stability changes seem to usually be a singular regulatory event (Pérez-Ortín et

al. 2013), suggesting that the mechanism is coordinated in its effect across the entire

transcriptome during the first response to the stress.

1.4.2 Nutrient shifts also trigger mRNA stability changes

In response to a carbon-source downshift (glucose-grown cells resuspended in media

with only galactose available), functionally important regulatory changes in mRNA sta-

bility occur (Munchel et al. 2011). Ribosome biogenesis associated mRNAs are desta-

bilized, an effect that can be phenocopied by the addition of rapamycin (inhibitor of

the central growth signalling TORC1 pathway). Conversely, a carbon source upshift

(galactose to glucose) triggers a destabilization of inducible GAL genes, an effect that

appeared to be restricted to the dynamic condition as mRNA transgenically overex-

pressed in glucose media were stable (Munchel et al. 2011).

Global changes in transcription and mRNA destabilization have been observed be-

fore (Jona et al. 2000), and recently systematically measured to be correlated with

changes in growth rate (García-Martínez et al. 2016). The involvement of the TORC1

pathway in this process has identified that its effect is specified to differentially regu-

late the stability of certain transcript sets (Albig and Decker 2001; Talarek et al. 2010).

Recently, a phosphoproteomics approach to studying signallng of the AMPK homolog
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Snf1p during a carbon upshift identified a role in Xrn1p phosphorylation in the specifi-

cation by this factor (Braun et al. 2014). Thus, specific signalling pathways appear to

effect large changes in mRNA stability in response to different nutrient conditions for

growth.

Relieving nutrient limitation with a glucose upshift has been shown to mediate both

stabilization of mRNA in the ribosomal protein subunit regulon (Yin et al. 2003) and

destabilization of gluconeogenic transcripts (Cruz et al. 2002; Lombardo et al. 1992;

Mercado et al. 1994; Scheffler et al. 1998). Mapping the determinants of this effect has

been met with mixed success. The destabilization of SDH2 and GAL1 mRNA has been

mapped to elements in the 5’ UTR (Bennett et al. 2008; Scheffler et al. 1998) with desta-

bilization of GAL1 being associated with a growth advantage in switching carbon-source

environments (Baumgartner et al. 2011). JEN1 encodes a lactate/pyruvate transporter

that is destabilized in rich carbon-sources like glucose, and this has been determined

to result from transcription from a downstream transcription start-state destabilizing

the larger isoform, through unknown mechanisms (Andrade et al. 2005). Subsequent

work has identified DHH1 as being a genetic factor of the JEN1 destabilization (Mota

et al. 2014). Some transcripts respond at different levels of glucose addition (Yin et

al. 2000), and disrupting signalling through the PKA pathway affects destabilization of

some mRNA but not others (Yin et al. 2003). Thus, a systematic measurement of mRNA

stability and a broad determination of genetic factors of the transcript dynamics would

be useful for making progress at untangling the regulation of mRNA stability in response

to the increase in growth rate upon a nutrient upshift.

1.5 Measuring mRNA dynamics

While mRNA abundance measurements for entire transcriptomes are now routine, de-

termining the rates that underlie this molecular phenotype has lagged. Synthesis rate
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control has largely been assayed by techniques like Genome Run On (GRO) sequencing

(discussed below) to measure transcription rates or measuring intron-exon ratios (Gray

et al. 2014) as a proxy for synthesis rates (Pérez-Ortín et al. 2013). Degradation rate

measurements have used a variety of methods, but are now applied to the whole tran-

scriptome with enough accuracy to enable systematic modeling of the determinants of

mRNA degradation rates (Cheng et al. 2017; Neymotin et al. 2016; Pérez-Ortín et al.

2013).

Pioneering studies used pulse-chase experiments with radioactive nucleotides to

study turnover of the whole transcriptome (Petersen et al. 1976). Single gene measure-

ments allowed the characterization of individual gene rates of turnover, but required

the use of other methods for tracking the dynamics. One approach is to use promoters

with inducible repression characteristics to halt transcription, for example transgenic

repressors like the doxycycline-inducible Tet-Off (Gari et al. 1997). Researchers have

also made use of the native GAL1 promoter. Upon addition of glucose, transcription of

the GAL1mRNA is immediately halted. This property has been exploited to study mRNA

stability in a technically simple manner and has formed the basis of much of what we

understand about the pathways of mRNA degradation (Coller and Parker 2004; Parker

2012). While the GAL1 system is a convenient system for studying degradation inter-

mediates, its demonstrated destabilization upon glucose addition makes uncertain its

use for studying the native stability of different mRNA in different environments.

A system that does not rely on engineered cis-elements would avoid these issues and

scale to genome-wide assays, and thus two methods of transcriptional inhibition were

applied to study mRNA degradation rates in landmark studies. A temperature sensitive

rpb1-1 allele was demonstrated to halt most PolII transcription at non-permissive tem-

peratures, while the drugs thiolutin and 1,10-phenanthroline inhibited polymerases in-

cluding PolII to mostly halt transcription. These have been used widely, and are still used
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to this day. However, it has been shown that use of thiolutin or 1,10-phenalanthroline

induces some heat-shock genes (Adams and Gross 1991), thiolutin inhibits mRNA degra-

dation in a dose-dependent way (Pelechano and Pérez-Ortín 2008) (perhaps via induc-

ing processing-body formation, Huch et al. 2016), and eliminating the essential RNA

PolII complex from the nucleus has complex effects on the transcriptome dynamics

(Yu et al. 2016). While it may seem logical that studies of mRNA associated with pro-

cesses distinct from heat-shocks may be unaffected by these, the complexity of the cell

demonstrated itself in vital controls run in Mercado et al. 1994 which demonstrated that

gluconeogenic mRNA were subject to destabilization upon a heat-shock. Thus in sev-

eral examples we see that shutting off transcription has complex and difficult to predict

effects on transcript abundance as the cells die.

Orthogonal to these approaches is Genomic Run On approaches (Garcıa-Martınez

et al. 2004), including microarray or sequencing based assays (Pelechano et al. 2010).

This method uses a cold sarkosyl treatment to fix RNA PolII complexes onto genomic

DNA by freezing their elongation, then extraction and a defined in-vitro polymerase

extension and profiling the resulting mRNA with microarrays or RNAseq allows for an

estimate of the instantaneous transcription rate status for each gene in a population of

cells. Interpretation of these numbers must be considered in the context of the in-vitro

environment of the elongation step, but this method serves as an valuable orthogonal

measure of transcript dynamics — and an instantaneous one.

The development of 4-thiouracil metabolic labeling of RNA (Dölken et al. 2008) has

enabled a return to the pulse-chase methodology in the development of genome-wide

assays of mRNA dynamics. A thiol-containing analog of uracil, 4-thiouracil is readily

incorporated by yeast into their nucleotide metabolism and thus into the mRNA. The

label does not perturb growth at low concentrations (< 50µM) (Burger et al. 2013), and

supports normal growth. Fundamentally, these assays work by changing the labelling
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frequency ofmRNA at a time and tracking the dynamics as the labeledmRNA abundance

relaxes towards a new equilibrium of labeling. Below I review the basic model of these

assays, then focus on their applications and where the dissertation work is placed.

If we consider mRNA abundance at a certain time as being denoted as Mt, then

I expect this number to change as a zeroth order rate of synthesis per time (ks) and

a first order rate of degradation per mRNA (kd). While mRNA degradation is a multi-

step process (above) and more complex models may identify nuances in the rates of

progression through these intermediates (Deneke et al. 2013), at steady-state the rate

of degradation of mRNA in a population should be well modeled by a single first order

rate (Thattai 2016).
dMt

dt
= ks −Mt ∗ kd

Introducing a term L that denotes the fraction of newly synthesized mRNA that are

labeled andmeasured after purifyingmRNA for the labeledmRNA (thusMt is just labeled

and captured mRNA), we can now model the changes as simply

dMt

dt
= Lks −Mt ∗ kd

I introduce the superscript notation of Lo for the old labeling frequency and Ln for the

new labeling frequency, and solving for the change of Mt from some steady-state equi-

librium Lo k
o
s

kod
to a new equilibrium Ln kns

knd
, and rearranging terms we get

Mt = Lok
o
s

ko
d

e−knd t + Lnk
n
s

kn
d

(1− e−knd t)

This matches well with our intuition. On the right, the nascent transcripts are labeled at

the new rate and approach this new equilibrium controlled by the term (1−e−knd t), while

on the left the extant transcripts approach zero in an exponential decrease controlled

by the term e−knd t. These are both controlled by kn
d , or the rate of mRNA degradation

after chasing the label. Thus, by measuring the transition between the equilibrium we

get the mRNA degradation rate.
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Measuring specific rates with high confidence requires a steady-state approxima-

tion. RATEseq is one method to do so, using many timepoints to accurately model the

approach of labeled mRNA abundance to a new equilibrium (Neymotin et al. 2014). This

experimental design is theoretically themost accurate, although it requires the assump-

tion that the total mRNA (labeled + unlabeled) is indeed at a steady-state abundance.

Dynamic Transcriptome Analysis (Miller et al. 2011) violates this assumption to explore

changes in degradation rates during 6 minute windows. While the method sacrifices

high-confidence of an exact rate, the temporal resolution of stability changes during

osmotic stress has revealed an unprecedented dynamic view of the regulation of mRNA

dynamics during complex processes. This approach requires that 4-thiouracil transport

and incorporation into nucleotide metabolism occurs during the course of the pertur-

bation experiment, but with the right measurements, normalization, and integration

with other datasets an accurate and dynamic picture of transcriptome dynamics can be

built. To assess mRNA stability changes during dynamic processes, one can also label

the transcriptome to equilibrium and then chase out the label by adding an excess of

unlabeled nucleotides. This approach was used by researchers in the Weis group to

demonstrate changes in the stability of groups of mRNA in response to environmen-

tal changes, namely shifts in carbon sources and with rapamycin treatment inhibiting

TORC1 (Munchel et al. 2011)

In Chapter 3 I demonstrate the use of a similar 4-thiouracil label-chase experimental

design, with refined analysis to explore per-transcript destabilization upon a nitrogen

upshift.

26



1.6 Methods for determining the genetic basis of a transcript

dynamics phenotype

mRNA is an intermediate in the expression of a protein product, and has the key virtue

of being easy to measure in bulk. This has become especially true with the advent

of massively-parallelized DNA sequencers and the methods to accurately convert tran-

scriptomes to DNA libraries (RNAseq) (Shendure et al. 2017). For this reason, it is often

used as a proxy of gene expression at the protein level. Although the relationship is

strong when correcting for experimental noise (Csárdi et al. 2015), the quantitative

functional nature of this relationship within a particular gene in different environments

depends on the particular gene in question (Franks et al. 2017). It is also clear that

transcriptomic and proteomic responses greatly vary in the timescales of effect, with

the transcriptome subject to rapid impulses of changing abundance that may or may

not result in longer term regulation of the protein product (Cheng et al. 2016; Lee et

al. 2011). Even then, protein abundance in a cell does not correspond perfectly to its

activity, be that regulated allosterically or by localization.

Given this disparity, what can we learn about adaptive gene expression from mRNA

abundance regulation? First, the expression of a gene product requires mRNA, thus

the binary expression of mRNA is a predictor of the possibility of protein expression.

Additionally, cellular processes often impinge upon changes in mRNA abundance, be

they direct via regulation of abundance, activity, and localization of activity of spe-

cific effectors or by indirect effects on common gene expression machinery or cellular

metabolism. In this way, a specific perturbation of a signalling pathway is expected to

broadcast to changes in mRNA abundance. Quantification of the thousands of mRNA

that are expressed in a cell is a sensitively quantitative measurement on thousands of

dimensions, and can thus be used as a relatively-unbiased indicator of cellular status

with which to explore the genetic requirements of particular signalling perturbations
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(Gapp et al. 2016). Thus, efficient methods to explore the genetic basis of transcript

dynamics upon a perturbation should help to accelerate the study of cellular signalling

pathways.

Genetic screens in yeast have been a powerful tool to narrow down the immense

search space of possibilities to a narrow set of hypotheses about a biological process.

Classically, these function bymapping some phenotype of interest to a change in growth

rate. For example, mutants in transporters of a particular amino-acid can be isolated

by feeding the cells a toxic stereoisomer (like D-histidine). A more complex method in

Lee Hartwell’s classic screen for cell-cycle mutants used the assay of growth at a low

temperature and cessation of growth at a high temperature to identify mutants in criti-

cally important pathways (Hartwell et al. 1970), work that contributed to a 2001 Nobel

Prize for advancing our understanding of the cell cycle. However, this concept becomes

problematic when studying amolecular phenotype which is not known to change growth

rates, and thus is not known to be selected.

For example, gene regulation might not have a clear phenotypic outcome, or could

be subject to redundant layers of regulation that mask the effect of a mutation. One

solution is to engineer a specific reporter into the expressed gene, such that defects

in gene expression can be assayed. It becomes more difficult if the phenotype is a

transient one, such that a reporter through growth rate (perhaps a toxic peptide) does

not have time to accumulate the signal of growth. A fluorescent tag is one approach

that is more direct, as cells can be instantaneously assayed for the level of GFP fluo-

rescence at that moment via flow cytometry. The GFP can be fused to the protein of

interest or simply placed downstream of an appropriate reporter, such as the strategy

employed by Neklesa and Davis 2009. These researchers were able to use a DAL80

promoter upstream of a GFP reporter to explore the genetic requirements for the NCR-

regulated expression of this promoter, discovering the SEACIT complex components
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Npr2/3p upstream of TORC1. This approach is compatible with a pooled assay using

barcode-sequencing technologies, also known as SortSeq (Boer et al. 2017; Kinney et al.

2010; Oikonomou et al. 2014; Peterman and Levine 2016). While appropriate for study-

ing steady-state processes, this approach often uses fluorophores that require that the

expression phenotype be relevant at the level of protein expression, and that the GFP

tag be a relevant and faithful reporter of the protein abundance — a condition which is

not always satisfied given the stability of the cleaved GFP tag in the vacuole (Conibear

and Stevens 2002).

GAP1 mRNA degradation, which we identify as being subject to accelerated mRNA

degradation in Chapter 2 and 3, occurs much faster than the repression of the protein-

product (Hein and André 1997). We also know that Gap1p, the protein product of GAP1

mRNA, is subject to de-activation and re-localization in response to a nitrogen upshift.

Thus, a functional assay of Gap1p is irrelevant to the dynamics of GAP1 mRNA repres-

sion, and requires a novel method to screen for genetic factors of this molecular phe-

notype.

Ambitious work from the Capaldi group developed a workflow using extensive au-

tomation to perform qPCR assays for NSR1mRNA abundance 19minutes after induction

of an osmotic stress response (Worley et al. 2016). While accurate and reproducible,

the extensive automation and reagent usage to perform qPCR on ∼4700 mutant strains

poses a financial and logistical challenge. To perform the assay in different genetic back-

grounds, in larger libraries, in replicates, or in different timepoints requires a pooled

approach that can scale genome-wide without greatly increasing costs. To do this, I

adapted a mRNA FISH assay to use in budding yeast. While mRNA has been observed

by flow cytometry before (Yu et al. 1992 described its use on ∼1800 copies of histone

mRNA), the use of branched DNA probe sets has made sorting on low copies of mRNA

possible (Hanley et al. 2013). In Chapter 3 I discuss in depth the combination of this
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technology with the aforementioned SortSeq barcode sequencing and modeling ap-

proaches to directly estimate transcript abundance in a high-throughput pooled format,

and without genetic modifications.
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2

Modeling transcript dynamics upon a nitrogen upshift

This chapter was published as part of the article "Steady-state and dynamic gene ex-

pression programs in Saccharomyces cerevisiae in response to variation in environmen-

tal nitrogen in Molecular Biology of the Cell (vol. 27 no. 8 1383-1396. April 15, 2016.

doi.org/10.1091/mbc.E14-05-1013).

Authorship of this article was: Edoardo M. Airoldi, Darach Miller, Rodoniki Athanasi-

adou, Nathan Brandt, Farah Abdul-Rahman, Benjamin Neymotin, Tatsu Hashimoto, Tayebeh

Bahmani, and David Gresham.

Below is reprinted the abstract, then excerpts of the introduction, results, and con-

clusion to which I contributed. The text has been edited for clarity. Supplemental ta-

bles, figures, and files are available on the MBoC article website ( doi.org/10.1091/

mbc.E14-05-1013 ).

2.1 Abstract

Cell growth rate is regulated in response to the abundance and molecular form of es-

sential nutrients. In Saccharomyces cerevisiae (budding yeast), the molecular form of

environmental nitrogen is a major determinant of cell growth rate, supporting growth

rates that vary at least threefold. Transcriptional control of nitrogen use is mediated

in large part by nitrogen catabolite repression (NCR), which results in the repression

of specific transcripts in the presence of a preferred nitrogen source that supports a

fast growth rate, such as glutamine, that are otherwise expressed in the presence of

a nonpreferred nitrogen source, such as proline, which supports a slower growth rate.
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Differential expression of the NCR regulon and additional nitrogen-responsive genes

results in >500 transcripts that are differentially expressed in cells growing in the pres-

ence of different nitrogen sources in batch cultures. Here we find that in growth rate-

controlled cultures using nitrogen-limited chemostats, gene expression programs are

strikingly similar regardless of nitrogen source. NCR expression is derepressed in all

nitrogen-limiting chemostat conditions regardless of nitrogen source, and in these con-

ditions, only 34 transcripts exhibit nitrogen source-specific differential gene expression.

Addition of either the preferred nitrogen source, glutamine, or the nonpreferred nitro-

gen source, proline, to cells growing in nitrogen-limited chemostats results in rapid,

dose-dependent repression of the NCR regulon. Using a novel means of computational

normalization to compare global gene expression programs in steady-state and dynamic

conditions, we find evidence that the addition of nitrogen to nitrogen-limited cells results

in the transient overproduction of transcripts required for protein translation. Simultane-

ously, we find that that accelerated mRNA degradation underlies the rapid clearing of a

subset of transcripts, which is most pronounced for the highly expressed NCR-regulated

permease genesGAP1,MEP2, DAL5, PUT4, and DIP5. Our results reveal novel aspects of

nitrogen-regulated gene expression and highlight the need for a quantitative approach

to study how the cell coordinates protein translation and nitrogen assimilation to opti-

mize cell growth in different environments.

2.2 Introduction

The rate at which budding yeast cells grow is sensitive to the molecular form of nitro-

gen in the environment. Yeast cells are able to use and discriminate between different

nitrogen sources (Cooper 1982; Magasanik and Kaiser 2002). When a variety of ni-

trogen sources are available, a yeast cell will preferentially transport and metabolize

particular nitrogen-containing compounds by decreasing levels of transcripts and pro-
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teins required for use of nonpreferred nitrogen sources (Cooper 1982; Magasanik and

Kaiser 2002). A study of yeast cells growing in the presence of different individual nitro-

gen sources provided a genome-wide view of nitrogen-regulated gene expression and

suggested that >500 genes are differentially expressed as a function of environmen-

tal nitrogen source (Godard et al. 2007). On the basis of differential gene expression,

promoter sequence elements, and published literature, Godard et al. 2007 assigned

membership of many of these transcripts to five regulons that are responsive to en-

vironmental nitrogen: the nitrogen catabolite repression A (NCR-A) regulon, which in-

cludes bona fide NCR targets; the potential NCR target (NCR-P) regulon; the general

amino acid control (GAAC) regulon; the unfolded protein response (UPR) regulon; and

the SSY1-PTR3-SSY5 (SPS) regulon.

Transcriptional control of the NCR regulon (i.e., both NCR-A and NCR-P regulons)

is mediated by the transcription factors GLN3, GAT1, DAL80, and GZF3, which bind

to the 5-GATAA-3 consensus sequence in target gene promoter regions (Cooper 1982;

Magasanik and Kaiser 2002). Whereas DAL80 and GZF3 act as repressors of NCR tran-

scription, GLN3 and GAT1 activate the transcription of NCR genes in a nitrogen source-

dependent manner. The evolutionarily conserved TOR complex 1 (TORC1) is believed

to be an upstream regulator of NCR expression, as it promotes the nuclear exclusion of

GLN3 by physical association with URE2 in a phosphorylation-dependent manner (Beck

and Hall 1999).

To study the dynamics of nitrogen-responsive gene expression, we performed tran-

sient perturbation experiments in which different quantities and sources of nitrogen

were added to cells growing in nitrogen-limited chemostats. The addition of either the

preferred nitrogen source, glutamine, or the nonpreferred nitrogen source, proline, to

cells growing in nitrogen-limited conditions results in rapid repression of the NCR regulon

in a dose-dependent manner. Surprisingly, a sudden increase in environmental nitro-
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gen does not correspond to a detectable increase in biomass production or cell number,

consistent with a time delay between activation of the transcriptional growth program

and its manifestation in an increased rate of cell growth. To compare global gene ex-

pression in dynamic conditions with mRNA expression in steady-state conditions, we

used computational estimation of instantaneous growth rate from gene expression pro-

files (Airoldi et al. 2009; Brauer et al. 2008) and defined gene expression responses

to growth rate in both steady-state and dynamic conditions using linear regression.

We find that the response of transcripts required for protein translation (RP and RiBi)

in cells provided with an increase in nitrogen exceeds the response to growth rate in

cells growing in steady-state conditions consistent with a transient overproduction of

RP and RiBi transcripts. Finally, we show that accelerated degradation of some NCR

transcripts underlies gene expression remodeling in response to sudden relief from ni-

trogen limitation, indicating the activity of a posttranscriptional mechanism controlling

nitrogen-responsive gene expression.

2.3 Results

To obtain a high-resolution view of mRNA abundance changes during the first 10 min af-

ter addition of nitrogen, when changes in gene expression aremaximal, we repeated the

pulse experiments (addition of nitrogen source to yeast grown in steady-state nitrogen-

limited chemostat cultures) and assayed global gene expression at 1-2 min intervals

after the addition of 40 µM glutamine or 80 µM proline. We observed a rapid increase

in expression of the RiBi and RP regulons in response to a pulse of glutamine, with a

concomitant rapid decrease in expression of the NCR-A and NCR-P regulons. Consistent

with our initial observation, we observed a similar response to a pulse of proline.
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2.3.1 Accelerated degradation of mRNAs contributes to remodeling of the

transcriptome

The majority of NCR transcripts are strongly repressed in response to a nitrogen pulse.

If gene expression is repressed at the promoters of these genes and mRNA synthesis

ceases, the decrease in mRNA abundance is expected to be a function of the degra-

dation rate of the corresponding mRNA. Using our high-density time-series data, we

estimated the rate of change in abundance for all transcripts, assuming a first-order

exponential degradation model (Materials and Methods; Supplemental Table S7), which

is the standard method for estimating mRNA degradation rates. We found that in re-

sponse to a glutamine pulse, 269 genes fit a first-order exponential decay model (FDR

< 0.05; Supplemental Table S4), whereas 458 transcripts fit a first-order exponential

decay model in response to the proline pulse (Supplemental Table S4).
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Figure 2.1: Accelerated mRNA degradation contributes to gene expression
remodeling

Figure 2.1 — Accelerated mRNA degradation contributes to gene expression remod-

eling. Upon addition of glutamine to NCR-derepressed cells, a subset of transcripts

degrademore rapidly than their steady-state degradation rate both (A) in cells grown

in ammonia-limited chemostats and (B) in cells growing in proline media in batch
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cultures. All points are genes that fit a model of exponential decrease in abundance

(FDR < 0.05). Orange points are NCR genes that show significant accelerated degra-

dation, blue points are NCR genes that are not significant, green points are non-NCR

genes that show significantly accelerated degradation, and gray points are genes

that are neither accelerated nor NCR. The dashed line denotes equal degradation

rates in both conditions (i.e., slope equal to 1). Names of nitrogen transporter genes

are displayed. We measured the transient changes in the degradation rates of (C)

GAP1 and (D) DIP5 mRNA using a pulse-chase experiment. Cells were grown for

24 h in the presence of 4-thiouracil, which was chased at t = 0 min by the addi-

tion of excess uracil. At t = 13 min, we added either glutamine in water (orange)

or equal volume of water (blue). We extracted and quantified the abundance of

4-thiouracil-labeled mRNA relative to a thiolated external spike-in using qPCR. We

found significant acceleration of degradation for both GAP1 and DIP5 mRNAs (p <

0.001). Points are the mean of triplicate qPCR measurements, error bars are the

propagated SD of transcript and spike-in measurements, and dotted lines are the

log-linear model fit.

We compared the half-lives of rapidly degraded transcripts after the glutamine pulse

with half-life estimates in steady-state conditions determined using RATE-seq (Neymotin

et al. 2014). We found that some transcripts decay significantly faster than expected,

suggesting that their degradation rate is accelerated in response to the glutamine pulse

(Figure 2.1A). Batch culture growth in proline also results in derepression of the NCR

regulon (Godard et al. 2007). To test whether accelerated mRNA decay is specifically

a response to the nitrogen-limited conditions of a chemostat, we added a pulse of glu-

tamine to cells growing in batch cultures containing proline as a sole nitrogen source

and measured genome-wide gene expression (Supplemental Table S7). The half-lives
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of transcripts that exhibit an exponential decrease is similar in chemostat and batch

cultures (Supplemental Figure S7B), and many of the same transcripts show evidence

of accelerated degradation rates in batch cultures (Figure 2.1B and Supplemental Table

S4). Strikingly, the five nitrogen permease genes GAP1, DIP5, MEP2, PUT4, and DAL5

are the most rapidly cleared mRNAs in both the chemostat and batch culture experi-

ments.

To verify that the addition of glutamine stimulates accelerated degradation of spe-

cific NCR transcripts, we performed pulse-chase experiments using the metabolic label

4-thiouracil (4-tU). After several generations of batch culture growth in proline medium

in the presence of 4-tU to allow complete labeling of mRNAs, we added unlabeled uracil

to the culture. We allowed the chase to occur for 13 min and then added either glu-

tamine or water (mock) to the cells. We purified labeled transcripts and analyzed GAP1

and DIP5mRNAs using quantitative PCR (qPCR) and normalization to external spike-ins.

Consistent with our genome-wide assay, the addition of glutamine results in a clear ac-

celerated degradation of both GAP1 mRNA (Figure 2.1C) and DIP5 mRNA (Figure 2.1D),

confirming that the transition from NCR-derepressed to NCR-repressed conditions re-

sults in the accelerated degradation of some transcripts.

2.4 Discussion

Some mRNAs are rapidly degraded when cells transition from NCR-activating to NCR-

repressing conditions in both chemostats and batch culture. Comparison with mRNA

degradation rates suggests that the degradation of some of these transcripts is accel-

erated. Using in vivo metabolic labeling with 4-tU, we provide additional evidence that

the addition of glutamine to nitrogen-limited cells accelerates the degradation of spe-

cific transcripts. A previous study of the transcriptional response to glucose addition

in carbon-limited chemostats suggested a role for accelerated degradation of mRNAs
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(Kresnowati et al. 2006) , and there is increasing evidence that mRNA stability plays

an important role in regulating gene expression programs (Baumgartner et al. 2011;

Bennett et al. 2008; Puig et al. 2005). Consistent with a posttranscriptional mechanism

underlying the rapid clearing of some NCR transcripts, previous work showed that GAP1

mRNA transiently decreases in abundance during a nitrogen up-shift in the absence of

URE2 (Schure et al. 1998), which is required for NCR repression by sequestering GLN3

in the cytoplasm. Several studies have shown that TORC1 can affect transcript stabil-

ity (Albig and Decker 2001; Munchel et al. 2011). Our results suggest that posttran-

scriptional regulation of mRNA stability may play an important role in remodeling gene

expression in response to changes in environmental nitrogen. Transient stabilization

of the RP and RiBi regulons also could contribute to their rapid increase in expression

(Yin et al. 2003). Defining the role of regulated changes in mRNA stability in dynamic

conditions is an important area for further study.

What is the underlying rationale for rapid induction of RP/RiBi transcripts occurring in

parallel with accelerated degradation of NCR transcripts? We propose that accelerated

degradation of NCR transcripts may allow for reallocation of ribosomes to transcripts

required for growth and proliferation (Kief and Warner 1981; Lee et al. 2011). Our obser-

vations are consistent with a model in which TORC1 orchestrates the balance between

transcripts required for protein production and transcripts required for the acquisition

and assimilation of nitrogen. When nitrogen is abundant, TORC1 activates the expres-

sion of the RP and RiBi regulons while actively repressing the NCR-A and NCR-P regulons.

Conversely, when nitrogen levels are in growth-limiting concentrations, TORC1 activity

decreases, leading to reduced activation of the RP and RiBi regulons and derepression

of the NCR-A and NCR-P regulons. In NCR-derepressing conditions, NCR transcripts,

including GAP1, MEP2, and PUT4, are the most abundant transcripts (Supplemental Ta-

ble S5). When a cell encounters a sudden increase in environmental nitrogen, some
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highly expressed transcripts may be targeted for accelerated degradation to increase

the pool of free ribosomes facilitating rapid translation of newly transcribed RiBi and RP

transcripts, thereby accelerating physiological remodeling of the cell for rapid growth.

2.5 Materials and methods

2.5.0.1 Strains and culturing conditions

We used the prototrophic haploid strain FY4 (MATa), which is isogenic to the S288c ref-

erence strain, for all experiments. We used minimal defined media for all experiments,

using a common base medium for nitrogen limitation, as described previously (Boer

et al. 2010; Brauer et al. 2008). The appropriate concentrations of allantoin, glutamine,

glutamate, urea, ammonium sulfate, proline, and arginine were added from 100 mM

stock. Batch culture experiments were performed in 30◦C shaking incubators using

100-ml cultures. Continuous culturing in chemostats using Sixfors bioreactors (Infors,

Laurel, MD) was performed as described (Boer et al. 2010; Brauer et al. 2008) using a

300-ml working volume. Culture parameters were determined using either a Klett col-

orimeter or a Coulter counter after sonication. For perturbation studies, a single bolus of

proline, glutamine, or a mix of both was added to the chemostat to a final concentration

of 80 or 800 µM nitrogen.

2.5.0.2 RNA analysis

Cell samples for mRNA analysis were preserved by rapid filtration and quick freezing

using liquid nitrogen. We isolated total RNA using hot acid-phenol extraction and sub-

sequently purified RNA samples using RNeasy columns. We performed gene expression

profiling using Agilent (Santa Clara, CA) 60-mer DNA microarrays and Cy3 and Cy5 in-

corporation as previously described (Brauer et al. 2008). We used a common reference

obtained from a sample growing in an ammonium sulfate-limited chemostat at a dilu-
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tion rate of 0.12 hours1 for all hybridization experiments and hybridized labeled cRNA

to Agilent Yeast DNA microarrays for 20 h at 65◦C. We washed arrays and scanned mi-

croarrays using an Agilent two-color scanner and extracted hybridization signals using

Agilent Feature Extractor Software. Supplemental Table S6 gives the entire data set of

processed log2 ratios.

2.5.0.3 Pulse chase

Cells were grown in 600 ml of minimal medium containing 800 µM proline, 500 µM

uracil, and 500 µM 4-thiouracil at 30◦C for 24 h. The culture was divided into two 300-

ml cultures, and uracil was added to a final concentration of 2mM. We acquired 20-ml

samples after the chase using rapid filtration and flash freezing in liquid nitrogen. At 13

min after starting the chase, we added either glutamine to a final concentration of 400

µM or an equal volume of water and acquired additional samples.

After RNA extraction, samples were mixed with an in vitro-transcribed thiolated

spike-in (BAC1200) at a ratio of 1 ng of spike-in to 25 µg of total RNA and reacted

with EZ-Link HPDP-Biotin (ThermoFisher Scientific, Waltham, MA) at 2 mg/ml for 200

min. Reactions were cleaned up by centrifugation and ethanol precipitation and then

conjugated with 180 µl of streptavidin magnetic beads (M0253L; NEB, Ipswich, MA).

Labeled RNA was eluted using 5% β-mercaptoethanol.

Samples were reverse transcribed with Moloney murine leukemia virus reverse tran-

scriptase (NEB) and random hexamer priming. We performed qPCR in technical tripli-

cate on a LightCycler 480 (Roche, Branchburg, NJ) using the following primers:

GAP1 5’-ACGGTATCAAGGGTTTGCCAAG-3’ 5’-GCATAAATGGCAGAGTTAC-3’

DIP5 5’-TGGCGTACATGAATGTGTCTTCA-3’ 5’-GGTGATCCAACTCAAGATTC-3’

BAC1200 5’-CTGGACGACTTCGACTACGG-3’ 5’-ATCAGCCTTTCCTTTCGTCA-3’

Cp values were calculated for each sample and the spike-in and log-linear regression
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performed using the ratio of either GAP1 mRNA or DIP5 mRNA to the spike-in in R.

2.5.0.4 mRNA decay estimation

We estimated rates of mRNA decay for all transcripts using high-temporal resolution

data. We used ratios (yt) of hybridization intensities for each transcript obtained from

two-color DNA microarrays co-hybridized with a common reference. Data were normal-

ized to the initial data point (y0) and then log-transformed. Wemodeled the degradation

rate kdeg of each gene:

ln

(
yt
y0

)
= kdeg × t

where t is the sampling time in minutes. Transcript half-lives were computed as ln(2)
kdeg

.

Accelerated degradation was assessed by fitting the model

ln

(
yt
y0

)
= (ktransient deg + ksteady-state deg)× t

where ksteady−statedeg is the specific degradation rate for transcript i as reported in Ney-

motin et al. 2014. For all linear modeling, we assessed statistical significance of co-

efficients using a t-statistic and determined empirical p-values by permuting data for

each gene 1000 times. The false discovery rate was determined using the qvalue pack-

age in R. Data availability DNA microarray data are available through gene expression

omnibus (GEO) GSE57293.
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3

Measuring the extent of mRNA destabilization and

screening for genetic factors of GAP1 repression

This chapter is similar to an article currently submitted to a journal for review and publi-

cation. It is also posted on biorxiv, titled: "Global analysis of gene expression dynamics

identifies factors required for accelerated mRNA degradation". Authorship of this ar-

ticle is: Darach Miller, Nathan Brandt, and David Gresham. Darach Miller did most

of the benchwork, analysis, and writing. Nathan Brandt did all benchwork to generate

mutants and collect qPCR for Figure 3.30. David Gresham helped with discussions and

co-writing the article. The biorxiv version is at doi.org/10.1101/254920.

The below is adapted for the dissertation, incorporating important text from the sup-

plementary methods into the chapter text. Supplemental tables are available from the

OSF repository linked with this work (https://osf.io/7ybsh/files/), and are repro-

ducible using the Makefile and associated scripts in the git repository distributed with

the paper (http://github.com/darachm/millerBrandtGresham2018).

3.1 Abstract

Cellular responses to changing environments frequently involve rapid reprogramming

of the transcriptome. Regulated changes in mRNA degradation rates can accelerate re-

programming by clearing or stabilizing extant transcripts. Here, we measured mRNA

stability using 4-thiouracil (4tU) labeling in the budding yeast Saccharomyces cere-

visiae during a nitrogen upshift and found that 78 mRNAs are subject to significant
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destabilization. These transcripts include genes involved in Nitrogen Catabolite Repres-

sion (NCR) and carbon metabolism mRNAs, suggesting that mRNA destabilization is

a mechanism for targeted reprogramming. To explore the molecular basis of destabi-

lization, we implemented a SortSeq approach using a pooled deletion collection library

to screen for trans factors that mediate rapid GAP1 mRNA repression. We combined

low-input multiplexed Barcode sequencing with branched-DNA single-molecule mRNA

FISH and Fluorescence-activated cell sorting (BFF) to identify that the Lsm1-7p/Pat1p

complex and general mRNA decay machinery are important for GAP1mRNA clearance.

We also find that the decapping modulator SCD6, translation factor eIF4G2, and the 5’

UTR of GAP1 are important for this repression, suggesting that translational control may

impact the post-transcriptional fate of mRNAs in response to environmental changes.

3.2 Introduction

Regulated changes inmRNA abundance are a primary cellular response to external stim-

uli. Both the rate of synthesis and the rate of degradation determine the steady-state

abundance of a particular mRNA and the kinetics with which abundance changes occur

(Hargrove and Schmidt 1989; Pérez-Ortín et al. 2013). Changes in mRNA degradation

rates fulfill an important mechanistic role in diverse systems, including development

(Alonso 2012; West et al. 2018) and disease (Aghib et al. 1990). In budding yeast, the

rate of mRNA degradation is affected by environmental stresses (Canadell et al. 2015),

cellular growth rate (García-Martínez et al. 2016), and by improvements in nutrient con-

ditions (Scheffler et al. 1998).

Environmental shifts trigger rapid reprogramming of the budding yeast transcrip-

tome in response to stresses and nutritional changes (Conway et al. 2012; Gasch et al.

2000). mRNA degradation rate changes have been shown to play a role in responses

to heat-shock, osmotic stress, pH increases, and oxidative stress (Canadell et al. 2015;
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Castells-Roca et al. 2011; Molina-Navarro et al. 2008; Romero-Santacreu et al. 2009).

In response to these diverse stresses, destabilization of mRNAs encoding ribosomal-

biogenesis gene products and stress-induced mRNA occurs (Canadell et al. 2015). Si-

multaneous increases in both synthesis and degradation rates of some mRNAs may

serve to speed the return to a steady-state following a transient pulse of regulation

(Shalem et al. 2008). Addition of glucose to carbon-limited cells results in both stabiliza-

tion of ribosomal protein mRNAs (Yin et al. 2003) and destabilization of gluconeogenic

transcripts (Cruz et al. 2002; Mercado et al. 1994). Destabilization of transcripts can

have a delayed effect on reducing protein levels compared to up-regulated genes (Lee

et al. 2011). This suggests that accelerated mRNA degradation may serve additional

purposes. For example, clearance of specific mRNAs could increase nucleotide pools

(Kresnowati et al. 2006) or facilitate reallocation of translational capacity (Giordano et

al. 2016; Kief and Warner 1981; Shachrai et al. 2010).

Yeast cells metabolize a wide variety of nitrogen sources, but preferentially assim-

ilate and metabolize specific nitrogen compounds. Transcriptional regulation, known

as nitrogen catabolite repression (NCR) (Magasanik and Kaiser 2002), controls the ex-

pression of mRNAs encoding transporters, metabolic enzymes, and regulatory factors

required for utilization of alternative nitrogen sources. NCR-regulated transcripts are

expressed in the absence of a readily metabolized (preferred) nitrogen sources or in

the presence of growth-limiting concentrations (in the low µM range) of any nitrogen

source (Airoldi et al. 2016; Godard et al. 2007). Regulation of NCR targets is medi-

ated by two activating GATA transcription factors, Gln3p and Gat1p, and two repressing

GATA factors, Dal80p and Gzf3p. GAT1, GZF3, and DAL80 promoters contain GATAA

motifs, and thus transcriptional regulation of NCR targets entails self-regulatory and

cross-regulatory loops. When supplied with a preferred nitrogen source such as glu-

tamine, the NCR-activating transcription factors Gat1p and Gln3p are excluded from the
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nucleus by TORC1-dependent and -independent mechanisms (Beck and Hall 1999; Tate

and Cooper 2013; Tate et al. 2017) and NCR transcripts are strongly repressed. The ac-

tivity of some NCR gene products are also controlled by post-translational mechanisms

(Cooper and Sumrada 1983) such as the General Amino-acid Permease (Gap1p) which

is rapidly inactivated upon a nitrogen upshift via ubiquitination (Merhi and André 2012;

Risinger et al. 2006; Stanbrough and Magasanik 1995). Recently, we have identified an

additional level of regulation of NCR transcripts: cells growing in NCR de-repressing con-

ditions accelerate the degradation of GAP1 mRNA upon addition of glutamine (Airoldi

et al. 2016). Thus, mRNA degradation rate regulation may be an additional mechanism

for clearing NCR-regulated transcripts upon improvements in environmental nitrogen

availability.

Multiple pathways mediate the degradation of mRNAs. The main pathway of mRNA

degradation occurs by deadenylation and decapping prior to 5’ to 3’ exonucleolytic

degradation by Xrn1p; however, transcripts are also degraded 3’ to 5’ via the exosome,

or via activation of co-translational quality control mechanisms (Parker 2012). Deadeny-

lation of mRNAs by the Ccr4-Not complex allows the mRNA to be bound at the 3’ end by

the Lsm1-7p/Pat1p complex, a heptameric ring comprising the SM-like proteins Lsm2-

7p and the cytoplasmic-specific Lsm1p (Sharif and Conti 2013; Tharun et al. 2000),

which then recruits factors for decapping by Dcp2p. Recruitment of the decapping en-

zyme (Coller and Parker 2004) is the rate-limiting step for canonical 5’-3’ degradation.

Therefore Lsm1-7p, Pat1p, and associated factors play a key role (Nissan et al. 2010).

Regulation of mRNA degradation pathways can alter the stability of specific mRNAs.

For example, the RNA-binding protein (RBP) Puf3p recognizes a cis-element in 3’ UTRs

(Olivas and Parker 2000) and affects mRNA degradation rates depending on Puf3p phos-

phorylation status (Lee and Tu 2015). In addition to cis-elements within the transcirpt,

promoters have been shown to mark certain RNA-protein (RNP) complexes to specify
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their post-transcriptional regulation (Braun et al. 2016; Haimovich et al. 2013; Mercado

et al. 1994; Trcek et al. 2011). These mechanisms may be controlled by a variety of

different signalling pathways including Snf1 (Braun et al. 2014; Young et al. 2012), PKA

(Ramachandran et al. 2011), Phk1/2 (Luo et al. 2011), and TORC1 (Talarek et al. 2010).

Thus, regulated changes in mRNA degradation rates includes numerous mechanisms

that collectively tune stability of mRNAs in response to the activity of signalling path-

ways.

Here, we studied the global regulation of mRNA degradation rates upon improv-

ment in environmental nitrogen using 4-thiouracil (4tU) label-chase and RNAseq. We

found that a set of 78 mRNAs are subject to accelerated mRNA degradation, including

many NCR transcripts as well as mRNAs encoding components of carbon metabolism.

To identify the mechanism underlying accelerated mRNA degradation we designed a

high-throughput genetic screen using Barcode-sequencing of a pooled library which was

fractionated using Fluorescence-activated cell sorting of singlemoleculemRNA FISH sig-

nal (BFF). We screened the barcoded yeast deletion collection to test the effect of each

gene deletion on the abundance of GAP1mRNA in NCR de-repressing conditions and its

clearance following the addition of glutamine. We find that the Lsm1-7p/Pat1p complex

and decapping modifiers affect both GAP1 mRNA steady-state mRNA abundance and

its accelerated degradation. This work expands our understanding of mRNA stability

regulation in remodeling the transcriptome during a relief from growth-limitation and

demonstrates a generalizable approach to the study of genetic determinants of mRNA

dynamics.
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3.3 Characterizing transcriptome dynamics upon a nitrogen

upshift

3.3.1 Transcriptional reprogramming precedes physiological remodeling

Cellular responses to environmental signals entail coordinated changes in both gene

expression and cellular physiology. Previously, we studied the steady-state and dy-

namic responses of Saccharomyces cerevisiae (budding yeast) to environmental nitro-

gen (Airoldi et al. 2016), and found that the transcriptome is rapidly reprogrammed fol-

lowing a single pulsed addition of glutamine to nitrogen-limited cells in either a chemo-

stat or batch culture. To study physiological changes in response to a nitrogen upshift,

we measured growth rates of a population of cells. A prototrophic haploid lab strain

(FY4, isogenic to S288c) grows with a 4.5 hour doubling time in batch culture in mini-

mal media containing proline as a sole nitrogen source (Figure 3.1). Upon addition of

400µM glutamine the cells undergo a 2-hour lag period during which no change in pop-

ulation growth rate is detected, but the average cell size continuously increases (∼21%

increase in mean volume Figure 3.1). Following the lag, the population adopts a 2.1 hour

doubling time. By contrast, global gene expression changes are detected within three

minutes of the upshift (Airoldi et al. 2016). Thus, transcriptome remodeling precedes

physiological remodeling in response to a nitrogen upshift.

48



Figure 3.1: The nitrogen upshift of population and cellular growth rate. (Top)
400µM glutamine was added to a culture of yeast cells growing in minimal media con-
taining 800µMproline as a sole nitrogen source. Measurements of culture density across
the upshift are plotted. Dotted lines denote linear regression of the natural log of cell
density against time before the upshift and after the 2 hour lag. (Bottom) Average cell
size. Dotted lines denote the mean cell diameter before the upshift and after the 2 hour
lag.
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Figure 3.2: Dynamics of transcriptome remodeling during a nitrogen upshift, on
a coarse scale. PCA analysis of global mRNA abundance in steady-state chemostats
and following an upshift (Airoldi et al. 2016). Steady-state nitrogen-limited chemostat
cultures maintained at different growth rates (colored circles) primarily vary along prin-
cipal component 2. mRNA abundance changes following a nitrogen-upshift in either a
chemostat (squares) or batch culture (triangles) show similar trajectories and primarily
vary along principal component 1. Grey lines depict the major trajectory of variation for
the steady-state and upshift experiments.

50



Figure 3.3: The coarse long-term transcriptome dynamics of a glutamine up-
shift. Principal components analysis (SVD) of microarray data from Airoldi et al. 2016.
Colored points are from steady-state chemostats grown in nitrogen-limitation with var-
ious nitrogen sources, at different growth rates. Time-series experiments are show in
grey points, connected by lines, and line-type is the type of upshift (in batch or in chemo-
stat).

To evaluate concordance in transcriptome remodeling between chemostat and batch

nitrogen upshifts, and the extent to which they reflect changes in mRNA abundance

observed during systematic steady-state changes in growth rates using chemostats,

we performed principal component analysis on microarray data (Figure 3.2). The first
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two principal components, which account for almost half of the total variation, clearly

separate steady-state and nitrogen upshift cultures. Systematic changes in growth

rate primarily results in a separation of states along the second principal component,

whereas upshift experiments vary along the first principal component. This suggests

that the transcriptome is remodeled through a distinct state. In upshift experiments

in chemostats, the trajectory ultimately returns to the initial steady-state condition as

excess nitrogen is depleted by consumption and dilution (Figure 3.3).

To investigate the functional basis of mRNA abundance changes in the upshift and

steady-state conditions, we computed the correlation of each transcript with the load-

ings on these first two principal components and performed gene-set enrichment anal-

ysis (Supplementary tables). Component 1 is positively correlated with functions like

mRNA processing, transcription from RNA polymerases (I,II,and III), and chromatin or-

ganization, and negatively correlated with cytoskeleton organization, vesicle organiza-

tion, membrane fusion, and cellular respiration. Both steady-state and upshift trajecto-

ries increase with principal component 2, but they diverge along principal component

1. Components 1 and 2 are strongly enriched for terms including ribosome biogenesis,

nucleolus, and tRNA processing, and negatively correlated with vacuole, cell cortex, and

carbohydrate metabolism terms. Together, this analysis suggests that both upshift and

increased steady-state growth rates share upregulation of ribosome-associated com-

ponents, but the reprogramming preceding the upshift in growth reflects an immediate

focus on gene expression machinery instead of structural cellular components. Impor-

tantly, dynamic reprogramming is similar in both the chemostat and batch upshift (Fig-

ure 3.2). As batch cultures are a technically simpler experimental system, we performed

all subsequent experiments using batch culture nitrogen upshifts.
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3.3.2 Global analysis of mRNA stability changes during the nitrogen upshift

Previously, we found that GAP1 and DIP5 mRNAs are destabilized in response to a

nitrogen upshift (Airoldi et al. 2016). We sought to determine if mRNA destabiliza-

tion is specific to NCR transporter mRNAs by measuring global mRNA stability across

the upshift using 4-thiouracil (4tU) labeling and RNA-seq (Munchel et al. 2011; Ney-

motin et al. 2014). As 4tU labeling requires nucleotide transport, which may be al-

tered upon a nitrogen-upshift (Hein et al. 1995), we designed experiments such that

following complete 4tU labeling and metabolism to nucleotides the chase was initi-

ated prior to addition of glutamine or water (mock). We normalized data using in vitro

synthesized thiolated spike-ins by fitting a log-linear model to spike-in counts across

time (Design of Barseq after FACS after FISH experiment), which reduced noise and in-

creased our power to detect stability changes (Supplementary tables). Data and mod-

els for each transcript can be visualized in browser using a Shiny appplication (see

http://shiny.bio.nyu.edu/users/dhm267/ or Availability of data and analysis scripts

).

We modeled the log-transformed normalized signal for each mRNA using linear re-

gression (Supplementary tables). Of 4,859 mRNAs measured we identified 94 that in-

creased in degradation rate and 38 that decreased (FDR < 0.01, using Storey and Tib-

shirani 2003). We generated a model of nucleotide labeling kinetics to assess the effect

of an incomplete label chase on our experimental design ( Normalization of counts into

signal for modeling ), and found that complete transcriptional inhibition alone could

theoretically result in a 17% increase in the apparent degradation rate. In order to elim-

inate the possibility that rapid synthesis changes could affect our estimates, we only

considered destabilization of at least a doubling (100% increase) of apparent degrada-

tion rates between pre-upshift and post-upshift. This conservative cutoff left 78 mRNA

that are significantly destabilized upon a nitrogen upshift.
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The vast majority of transcripts (4,781 of 4,859) do not show individual evidence

for stability changes upon addition of glutamine (e.g. HTA1, Figure 3.4). The median

pre-upshift half-life is 6.92 minutes and the median half-life following the upshift is 6.32

minutes (Table 3.1) suggesting that there is not a global change inmRNA stability. Global

stability estimates are considerably lower than previous estimates in richmedium (Miller

et al. 2011; Munchel et al. 2011; Neymotin et al. 2014), which may reflect the different

nutrient conditions used in our study. The 78 transcripts significantly destabilized upon

the glutamine-upshift includemRNAs encoding NCR transportersGAP1, DAL5, andMEP2

(blue label, Figure 3.4), the pyruvate metabolism enzymes PYK2 and PYC1 (orange la-

bel), and trehalose synthase subunits TPS1 and TPS2 (yellow label). Destabilized mRNA

tend to be more stable before the upshift (Figure 3.5), (median half-life of 9.46 minutes)

and exhibit a median 3.06-fold increase in degradation rates (median half-life of 3.02

minutes following the upshift).

Table 3.1: Summary of mRNA stability, median values
Pre-shift Post-shift Change in Fold-change

specific half-life specific half-life specific specific
rate rate rate rate
(min−1) (min) (min−1) (min) (min−1)

All transcripts 0.100 6.92 0.110 6.32 0.00865 1.08
Destabilized
(n=78)

0.0732 9.46 0.229 3.02 0.158 3.06

Unchanged
(n=4781)

0.101 6.89 0.108 6.40 0.00728 1.07
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Figure 3.4: 4tU label-chase RNA sequencing measures mRNA stability changes
following a nitrogen upshift. 4tU-labeled mRNA from each gene was measured
over time, before and after the addition (vertical dotted line) of glutamine (nitrogen-
upshift) or water (mock). Linear regression models were fit to the data with a rate
before the upshift (solid line) and a rate after glutamine addition (dashed line). HTA1
is not significantly destabilized, whereas mRNAs encoding NCR-regulated transporters
(GAP1, DAL5, MEP2) or pyruvate (PYK2, PYC2) and trehalose (TPS1, TPS2) metabolism
enzymes are significantly destabilized.

We tested for functional enrichment among the set of 78 destabilized mRNAs and
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found that they are strongly enriched for NCR transcripts (16 of 78, p < 10−11). Al-

most half of the destabilized transcripts are annotated as ESR-up genes (Figure 3.7),

on the basis of their rapid induction during the environmental stress response (Gasch

et al. 2000). These 78 destabilized mRNA are enriched (FDR < 0.05) for GO terms

and KEGG pathways (Supplementary tables) including glycolysis/gluconeogenesis (6

genes), carbohydrate metabolic process (24), trehalose-phosphatase activity (3), pyru-

vate metabolic process (6), and secondary active transmembrane transport (8, a subset

of the enriched 11 ion transmembrane transport genes). Thus destabilized mRNA upon

a nitrogen upshift regulates, but is not restricted to, NCR-regulated mRNA and reflects

broader metabolic changes in the cell.

To investigate the extent to which mRNA stability changes contribute to transcrip-

tome reprogramming, we compared degradation rates to abundance changes following

the upshift (Airoldi et al. 2016, Figure 3.5). Changes in mRNA degradation rates and

mRNA abundance change rates are anti-correlated (Pearson’s r = -0.598, p-value <

10−15, Figure 3.6), consistent with stability changes impacting mRNA abundance dy-

namics. However, they are not entirely co-incident, as some destabilized transcripts

do not exhibit decreases in abundance (red points in Figure 3.5, Figure 3.8, and Fig-

ure 3.9). This analysis shows that increases in degradation rates play a significant role

in the rapid reprogramming of the transcriptome upon a glutamine upshift, but that in

some cases they are counteracted by increases in mRNA synthesis rates (Canadell et al.

2015; Shalem et al. 2008).
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Figure 3.5: Global mRNA stability changes following a nitrogen upshift. Com-
parison between the pre-upshift mRNA degradation rate (y-axis) and the post-upshift
mRNA degradation rate (x-axis). Negative values result from noise on the slope esti-
mate. Comparison between changes in mRNA abundance following upshift (Airoldi et al.
2016) (y-axis) and the post-upshift degradation rate (x-axis). Both plots share the same
x-axis. Transcripts that are significantly destabilized are colored red, and shown with
red rug-marks in the marginal histograms.
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Figure 3.6: Comparison between rates of mRNA degradation and abundance
changes. Pre-upshift decay rates (top) don’t explain the abundance change. The
degradation rate changes (middle, difference between pre and post upshift) and the
post-upshift rates (bottom) are anti-correlated with the abundance changes.
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Figure 3.7: Many of the destabilized mRNA are members of the ESR-up regulon.
Comparisons of degradation rates from this study with mRNA abundance change rates
from Airoldi et al. 2016. Destabilized transcripts are colored based on their membership
in the ESR gene set (Gasch et al. 2000), as described in the supplement of Brauer et
al. 2008. Many of the destabilized set are ESR "up" genes, as they are increased in
expression in response to stresses.
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Figure 3.8: Significantly destabilized transcripts are not always strongly re-
pressed. For each, the x-axis is the fit rate of degradation rate post-upshift. On
the y-axis is the mRNA abundance change rate (Airoldi et al. 2016) after the upshift.
These values were modeled to normalized sequencing signal (x-axis) and normalized
microarray ratio (y-axis). The dashed line is a 1:1 line of equality.
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Figure 3.9: Six examples of individual mRNA whose regulation is more complex
than a homo-directional destabilization and synthesis repression. For several
examples of the slowest decreasing (in the microarray fits) transcripts, we plot the mi-
croarray (abundance) and sequencing (decaying labeled abundance) data normalized
to be on the same relative y-axis scale (subtracted t0 y-intercepts of fits). Destabilization
does not necessarily result in a rapid clearance of the mRNA.

Functional coordination of mRNA stability changes suggests a possible role for cis-

element regulation. We analyzed UTRs and coding sequence for enrichment of new
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motifs or known RNA binding protein (RBP) motifs. 3’ UTRs of destabilized transcripts

are depleted of Puf3p binding sites, and we found no enriched sequence motif in the 3’

UTRs. 5’ UTRs are enriched for a GGGG motif, which may be explained by convergence

between mRNA stability changes and transcriptional control by Msn2/4 on the ESR up

genes (Figure 3.7, Canadell et al. 2015; Gasch et al. 2000). 5’ UTRs are also enriched

for binding motifs reported for Hrp1p (Figure 3.10), a canonical member of the nuclear

cleavage factor I complex (Chen and Hyman 1998). However, this protein has been

shown to shuttle to the cytoplasm where it may play a regulatory role (Guisbert et al.

2005; Kebaara et al. 2003; Kessler et al. 1997). On average, destabilized mRNAs are

longer and contain more optimal codons (Figure 3.11, Khong et al. 2017). Together, this

analysis suggests that the mechanism of destabilization may act through cis elements

in the 5’ UTR or biased codon usage. Both of these may affect the density or elongation

kinetics of the process of translation, which may directly interact with components in-

volved in mRNA degradation or indirectly affect the accessibility of the mRNA to these

components in the cytoplasm Huch and Nissan 2017.
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Figure 3.10: Enrichment of Hrp1p motif in 5’ UTRs of destabilized transcripts.
Sequences of destabilized and unaltered mRNAs were analyzed for RBP binding motif
enrichment using the AME program in MEME, then significant hits were confirmed by
using a logistic model predicting destabilization based on motif content per sequence
length. Hrp1p is significantly ( p<0.0001 ) enriched in the 5’ UTRs of destabilized
transcripts. For this plot, motif matches were counted using the GRanges package
(Lawrence et al. 2013) for the 5’ UTRs, 3’ UTRs, and coding sequence of transcripts
using the largest isoforms detected in Pelechano et al. 2014.
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Figure 3.11: The destabilized set is longer and has a higher frequency of optimal
codons than the rest of the transcriptome. Comparisons of destabilized mRNAs
with the rest of the transcriptome. (Left) Destabilized transcripts tend to have longer
CDS lengths ( p-value < 2e-5 by Wilcoxon rank sum test ). (Right) The destabilized
transcripts tend to have a greater fraction of codons that are considered optimal codons
than the non-destabilized transcripts ( p-value < 2e-8 Wilcoxon rank sum test). The
fraction of optimal codons per feature was obtained from the supplement of Khong et
al. 2017 using definitions from Presnyak et al. 2015.

3.3.3 Methods and materials

3.3.3.1 Measurement of growth during upshift

A single colony of FY4 was inoculated in 5mL proline-limited media and grown to ex-

ponential phase, then back diluted in proline-limited media in a baffled flask. Samples

were collected into an eppendorf, sonicated, diluted in isoton solution, and analyzed

with a Coulter Counter Z2 (Beckman Coulter).
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3.3.3.2 Re-analysis of microarray data

Supplemental files from Airoldi et al. 2016 were downloaded, read into localc (an open-

source spreadsheet software), a small Excel-generated auto-correction error was fixed

("Oct-1" -> "OCT1"), and the file saved as a CSV. Microarray intensity ratios were pro-

cessed with pcaMethods to perform a SVD PCA on scaled data.

3.3.3.3 Synthetic RNA spike-in generation

Poly-adenylated RNA molecules were synthesized in vitro using a Promega Riboprobe

SP6 kit (P1420) with 4-thiouridine, as previously described (Neymotin et al. 2014), to

serve as spike-in calibrators for RNAseq normalization across samples. Ampure XP

beads were used to clean up the reaction. Products were quantified using the Qubit HS

RNA assay, and equivalent mass amounts of spike-ins were pooled to create a 8ng/µL

stock containing all four 4-thiouridine-labeled spike-ins.

We also prepared total 4-thiouracil labeled E. coli RNA to use as another spike-in.

We grew strain MG1655 (a gift of Edo Kussell) overnight in 5mL of LB with 20µM of 4-

thiouracil, then outgrew this for 2.5 hours in the presence of 4-thiouracil, then extracted

by boiling the pellet with 1% SDS, 100mM NaCl, and 8mM EDTA for 5 minutes with

intermittent vortexing, before cleaning up with a phenol chloroform extraction. The

product was quantified using qubit and diluted to a 5ng/µL solution of thiolated total E.

coli RNA.

3.3.3.4 Culturing and sampling

FY4 was grown in nitrogen-limitation conditions overnight (26 hours) with a mixture of

50µM:50µM of 4-thiouracil:uracil. The culture was split into two 450ml cultures 5 hours

before the label chase began. During exponential phase growth (∼ 5×106 cells per mL),

uracil from a 400mM DMSO stock was added to a final concentration of 4mM (41-fold ex-
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cess) to chase the label. 30mL samples from the culture were collected by filtration and

flash-freezing within a minute of removal from the flask, and sampling time is recorded

as the time of flash-freezing. After letting the chase proceed for 12.5 minutes, I added

glutamine from 100mM stock (dissolved in water) to a final concentration of 400µM to

one flask, or an equal volume of water to the control flask.

Timepoints were chosen to sample five times before the intervention, but timepoints

actually used are the times that the sample was dropped into liquid nitrogen for fixation.

For mock treatment (water at 13 minutes), this was 3.85, 6.02, 7.92, 9.90, 11.8, 15.1,

17.0, 18.8, 20.8, 22.9, 26.1, and 50.5 minutes. For nitrogen upshift (glutamine at 12.5

minutes), this was 3.30, 5.32, 7.65, 9.47, 11.3, 14.4, 16.4, 18.2, 20.0, 23.8, 28.8, and

49.1 minutes.

3.3.3.5 RNA Extraction

Since equal volume (30mL) of culture was taken for each sample, an equal volume of

synthetic spike-ins was added to each RNA extraction reaction (hot acid-phenolmethod).

The extraction yielded at least 3.3 µg of RNA per 107 cells.

3.3.3.6 Biotinlyation and fractionation

The total RNA (yeast and spike-ins, mixed) was reacted by adding a total of 20µg MTSEA-

biotin diluted in DMF to 200µL of HEPES buffered total RNA solution, and incubating

for 2 hours. Biotinylated total RNA was fractionated with streptavidin bead pulldown,

using 200µL of NEB (S1420S) streptavidin beads. These were bound for 20 minute

incubation, then pulled down and solution discarded, then washed four times with bead

buffer, three times at room-temperature and once at 65C. Labeled mRNA was eluted

using beta-mercaptoethanol, twice, then precipitated.
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3.3.3.7 rRNA depletion

Fractionated RNA was depleted of rRNA using the RiboZero kit (Illumina RZY1324) ac-

cording to manufacturer instructions, except that for every reaction of 2µg input RNA,

we used half-reactions (half of every supplied reagent). Final RNA was ethanol precip-

itated, as above. Agilent Tapestation measurements of the RNA size histograms con-

firmed that virtually all of the rRNA was removed, and later computation analysis found

very few rRNA reads in the sequencing results.

3.3.3.8 Preparing sequencing libraries

RNA samples were converted into Illumina sequencing libraries using a strand-specific

(UNG) protocol. Briefly, 1st strand cDNA was synthesized using a SuperScript III kit

(Invitrogen), primed with random hexamers. RNA was fragmented by 98C hybridization

for 1 minute in 4.17mM MgCl2, then actinomycin and the SuperScriptIII enzyme were

added after annealing. This was incubated to extend first strand in a series of increasing

temperature steps over the course of an hour. This reaction was ethanol precipitated

and resuspended for a second-strand reaction that incorporated dUTP in the place of

dTTP, using a cocktail of DNA PolI, Ecoli ligase, and RNAseH. This was reacted at 16C for

2 hours, then cleaned up on MinElute nucleic acid purification columns (Qiagen 28004).

This product was eluted, end-repaired using T4 DNA polymerase and PNK, then cleaned

up on MinElute columns. This product was eluted, A-tailed with Klenow (exo-), then

cleaned up on MinElute columns.

This product, fresh from A-tailing, was ligated with "TrUMISeq" adapters made by

a former graduate student in the lab (Hong and Gresham 2017). These are TruSeq

adapters, but the sample index has been incorporated as the first six bases sequenced

from the sequencing priming site and a final T exists to help with ligation. In place of the

sample index (interior to the adapter), a degenerate sequence is incorporated during
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synthesis. These adapters, theoretically, mark each unique ligation event with a DNA

barcode sampled from a degenerate pool of 46 = 4096 different barcodes. This greatly

reduces the chance that two molecules that appear to be PCR duplicates (false double-

counting by virtue of the amplification scheme) are actually considered to be duplicates

in the analysis. For a more in-depth discussion of UMIs, please see Designing an analysis

pipeline to filter dimers and extract UMIs from indeterminate locations.

These ligations were all of the A-tailed product with 20nM annealed adapter, each

reaction with a different sample index. These were reacted using Quick Ligase (NEB),

reacted at 22C for 15 minutes before immediate clean-up with Ampure XP beads (Beck-

manCoulter). These were selected twice on beads to remove small adapters. To amplify

libraries and select the strand-specificity, I prepared a master-mix of NEB Phusion buffer

with primers DGO366 and DGO367, reacted this with UNG (Thermo EN0361) to digest

the dUTP containing strand, then added NEB Phusion polymerase and PCR amplified

for 18 cycles. These reactions were cleaned up using a MinElute column, then diluted

and concentration estimated using qPCR on a Roche 480 (using KAPA Library Quant Kit

Illumina REF 07960281001), and submitted as a 1nM pool to the NYU GenCore system

for sequencing on a NextSeq using the 75bp format in High-Output mode.

3.3.4 4tU label-chase sequencing analysis and modeling

3.3.4.1 Quantifying sequencing reads

Following base-calling and demultiplexing by NYU GenCore, the sequencing reads were

quantified using the following pipeline:

1. Raw reads were trimmed using cutadapt (Martin 2011)

2. Trimmed reads were aligned using tophat2 (Kim et al. 2013) to a reference genome

that included the yeast reference genome (assembly R64), the Ecoli genome (as-

sembly GCF_000005845.2), and the four synthetic in-vitro transcribed spike-ins
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(termed BES and available in the data.zip archive of the OSF archive associated

with this paper). This was done with parameters optimized against in silico data

generated by Flux Simulator http://sammeth.net/confluence/display/SIM/Home

from this reference genome, in replicates.

3. Reads with mapping quality above 20 and with at least 50 matched bases with

samtools (Li et al. 2009) were processed with umi_tools (Smith et al. 2017) in

“dir” mode to de-duplicate possible PCR duplicates.

4. The demultiplexed .bam file was processed with the htseq-count (Anders et al.

2015) script to generate counts files per gene feature (according to the GFF file in

the data/BES directory).

3.3.4.2 Normalization of counts into signal for modeling

In order to accurately estimate degradation rates, I must accurately estimate labeled

mRNA abundance within each timepoint. This is achieved by normalizing the signal

of the mRNA (counts) to the signal of a spiked-in reference transcript pool (the four

spike-ins added during extraction).

The simplest normalization is to divide each feature counts by the sum of the counts

of all the spike-ins (personal communication, Daniel Tranchina). However, the low RNA

abundances of several samples in this experiment had poor quantification of the spike-

in which required me to remove outlier measurements to prevent systematically noisy

data from disrupting the quantification.

I decided to smooth the normalization across the samples, as we expect the propor-

tion of counts that are the spike-ins to increase over time. This assumes that the whole

transcriptome decays with exponential kinetics (Petersen et al. 1976).

In the sequencing data, we clearly see that the proportion of counts that are the

spike-ins increases with time. Figure 3.12. We modeled this increase using the lm func-
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tion to linearly regress this in natural-log-space. We see that the residuals are randomly

distributed around the fit across time for both treatments Figure 3.12. Using an ANCOVA

(aov/lm), I found the effect of treatment was associated with a p-value < 0.301 and the

p-value associated with time estimated as “1”, so it does not appear that the residuals

particularly depend on time or treatment.

Figure 3.12: The proportion of spike-in counts increase over the course of the
experiment. The observed proportion of counts that are synthetic spike-ins is each
point. The line is a regression fit to both treatment datasets.

How do the normalizations compare on a per-gene basis? 3.13 compares this.
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Figure 3.13: Several examples of alternative normalization strategies. The
results of the two strategies are shown on the left (direct normalization) and on the right
(model-based). For several example genes, we see that the model-based smoothing
reduces the noise.

The direct normalization of each gene in each timepoint combines the noise of both

the measured gene and the measured spike-ins. By smoothing across timepoints, given

our expectation of whole-transcriptome exponential decay dynamics, we can deliver a

more reliable estimate for each gene feature. Thus more observations can be reliably

analyzed without single sample spike-in errors systematically skewing the fits across all
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features.

We also tried to spike-in labeled E. coli total RNA; however, we found that those

counts were low, noisy, and did not behave as expected from previous work (Neymotin

et al. 2014). We hypothesize that this was due to lower addition of E. coli total RNA

than synthetic spike-ins, combined with noise associated with amplifying a random sub-

sample of a more complex spike-in pool of total E. coli RNA. Each sub-sample may

have very different GC-content, and thus may be amplified to a different degree. Thus,

we normalized all yeast mRNA to the synthetic spike-ins as previously demonstrated.

Sampling from a complex spike-in library may be an important consideration for their

use in normalization, and may warrant further technical experimentation.

3.3.4.3 Model of transcript dynamics as a function of dynamics and

labeling parameters

To analyze this data, I fit a model of labeled transcript dynamics. I used this model to

analyze the dataset for expected label-chase dynamics, and also to exclude effects that

may result from a confounding of new synthesis with changes in degradation rates.

mt is the labeled mRNA at time t. It changes according to the equation:

dmt

dt
= Lks − kdmt

where L is the fraction of new mRNA that is labeled and pulled down, ks is the rate of

synthesis, and kd is the rate of degradation. Our experimental design is to changeL from

an initial fraction of transcripts that are pulled down by a 4tU-incorporation-dependent

mechanism of Lo (old) to a new fraction Ln (new). Note that I use the notation as a

superscript, so that I can also share that notation with the synthesis rates as ko
s and

degradation rates as ko
d.

I assume that the culture begins at a steady state of Lo k
o
s

kod
, from solving the above

equation. I assume this because I grow the cells for 24 hours in conditions of labeling,
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and they are well below saturating conditions. Solving the above differential equations

with the assumption that everything changes once, which is a simplifying assumption

but supported by previous studies of transcript stability changes during shifts (Pérez-

Ortín et al. 2013), I expect that mt should behave as,

mt = Lok
o
s

ko
d

e−knd t + Lnk
n
s

kn
d

(1− e−knd t)

Nicely, the solution is similar to what I would expect intuitively - extant transcripts decay

(left), and nascent transcripts approach the new equilibrium (right). The equilibriums

are set by all parameters, but the change between them is dictated by the new degra-

dation rate operative during the transition.

In the case were either Lo or Ln is 0, then the transcript behaves just as one side of

the equation. With the label-chase, I are trying to get Ln as low as is possible without

perturbing the system being measured by killing the cell. To analyze this dataset for

potential changes in transcript stability, I approximated this by fitting a linear regression

model to the normalized signal. I explore the sufficiency of this model later in this

document using simulations. This model was fit using the lm function in R, with the

formula

log( NormalizedSignal ) ~ Minutes + Minutes:Treated + 1

where “NormalizedSignal” is the signal of the gene feature normalized as described

in the previous section, “Minutes” is minutes relative to the glutamine (or water) addi-

tion, Minutes:Treated” is an additional slope of the observations after glutamine addi-

tion, and “+ 1” denotes to fit a single intercept for the model (data are centered around

the moment of treatment, t0 is the addition of glutamine or water). From this fit, I took

the p-values associated with the t-statistic of the additional slope fit to the glutamine

treated samples, then adjusted the p-values using the qvalue package from BioCon-
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ductor using default settings. I chose to use a FDR cut-off of less than 0.01 for this

analysis.

3.3.4.4 Estimating possible effects of synthesis changes on labeled

abundance

In our experimental design I initially grow the cells in a 50µM :50µM mix of uracil and

4-thiouracil, so I will set as a labeling ratio Lo of 1 for simplicity. I add 4,000 µM uracil to

begin the chase, so this is a shift to a Ln of 50µM
4100µM

/ 50µM
100µM

, or 1
41
. Since I am not reducing

this number to zero, there is still residual labeling incorporated into nascent transcrip-

tion. 1
41
is a small number, but is still not zero and should not be neglected. Thus, there

is a potential that residual label could confound our estimate of degradation rates. This

is an inherent tradeoff in a label-chase design (Pérez-Ortín et al. 2013), especially since

the low RNA content of the cells and low cell density in these nitrogen limited condi-

tions make necessary the use of a more efficient pull-down reagent (MTSEA-biotin). This

could be circumvented by comparing abundance and synthesis measurements, but the

uracil transporter responding to glutamine in the media makes this technically difficult

with 4tU incorporation. Comparing abundance and mRNA synthesis by other means is

feasible, but introduces a compounding of errors from both methods. Thus performing

one direct assay is preferable for precision, and the drawbacks described here are un-

avoidable with current technology (although progress is being made (Chan et al. 2017)).

Therefore, I used simulations to investigate how varying the labelling parameter

changes the expected dynamics if we also vary the synthesis parameter. Figure 3.14

(left) shows a plot of the modeled labeled transcript abundance, with no change in syn-

thesis parameter. How does this estimate of change in degradation look if we decrease

the ks? For example, the NCR regulon is expected to be shut-off at the synthesis level

quickly upon glutamine addition, so how would that swift repression affect the apparent

change in labeled mRNA dynamics? Figure 3.14 (right) shows a plot of the modeled la-
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beled transcript abundance, with a kd of 0.1 (similar to the median rate of degradation

Figure 3.5) and an instantaneous shutoff of transcript synthesis.

Figure 3.14: Simulation of labeled transcript dynamics shows a slight effect
from synthesis changes on a label-chase with recycling. The timepoints along
the bottom are the exact timepoints used in the actual label-chase RNA sequencing
experiment. (Left) is with no change in synthesis. (Right) is with a complete halt in
synthesis. We see a 13.3% decrease in the slope of change in labeled abundance over
time.

The effect of reduced synthesis on apparent slope change of the labeled RNA here is

a 13.3% increase in the rate. I conclude that there’s a slight effect from synthesis rate

changes. For transcripts that are putatively stabilized, the effect is much larger (∼60%),

likely because of the delay in pertubation until 13 minutes after the label chase begins.

What does this mean for our estimates of destabilization? What effect sizes are esti-

mated, and how do they compare to this effect size? Figure 3.15 shows the distribution

of the fold changes in stability:
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Figure 3.15: Distribution of all fit changed rates versus effect size thresholds
from modeling. Histogram of the fold-changes in rate of labeled transcript clearance
upon glutamine treatment, determined as significant by adjusting the parametric (t-
statistic of slope) with a multiple-hypothesis correction (qvalue package Storey et al.
2015). The blue line denotes a 13.3% increase in the rate of clearance, the red line
denotes a doubling of the rate. Some transcripts appear stabilized (left of 0), most are
destabilized, many are destabilized more than the red cutoff.

I see that all of the significant changes are in great excess to that blue line. I choose

a strict cut-off of a 100% increase, a doubling, of apparent degradation rate to call a

feature destabilized (right of the red line). Since I cannot place an upper bound on the

synthesis rates after a glutamine upshift, I cannot definitively say that the potentially

stabilized transcripts (left of 0) are stabilized without additional experiments. Could

these fits just be on the right side of the blue line by chance? Given that the t-statistics

(ratio of effect size over standard error) for the fits of ones over this line are a median of

-5.66, I’m not going to have fits within several standard errors of crossing that threshold

by a reasonably expected error.

I conclude that the RNA from 78 gene features are degraded more quickly than can

be reasonably explained by labelling carry-over, and are thus accelerated in degrada-

tion upon the nitrogen upshift. Stability changes upon the nitrogen upshift generally

exhibited the expected relationship with rates of abundance change ( anti-correlation,
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R2 =-0.376 ). However, I caution that this data is not suitable for direct interpretation

with regards to the fraction of transcriptome reprogramming attributable to degrada-

tion rate changes, as an unknown fraction of the correlation could be explained by

large changes in synthesis rate systematically confounded into the degradation rate

estimate. I encourage the interested reader to go to http://shiny.biology.nyu.edu/

users/dhm267 to explore examples of the data under both normalizations and for a range

of features.

3.3.4.5 Cis element analysis

To detect if de novo or known cis elements were associated with destabilization upon a

nitrogen upshift, I used a variety of bioinformatic methods. For each transcript, I used

a GFF file to extract the coding sequence of each annotated mRNA and four different

definitions of its untranslated regions — 200bp upstream of the start codon or down-

stream of the stop codon, the largest detected isoform in TIF-seq from (Pelechano et

al. 2014), or the most distal detected gPAR-CliP sites in exponential-phase or nitrogen-

limited growth in (Freeberg et al. 2013). A more rigorous definition using 5’ and 3’ end

sequencing methods in this particular condition would be necessary for best exploring

cis-element enrichment with certainty.

To find putative cis-elements, I used DECOD (Huggins et al. 2011), FIRE (Elemento

et al. 2007), TEISER (Goodarzi et al. 2012), and the #ATS pipeline (Li et al. 2010), I also

scanned for RBP binding sites from CISBP-RNA (Ray et al. 2013) using AME from the

MEME suite (McLeay and Bailey 2010).

The enrichment for the Hrp1p motif is described in Figure 3.10. It is worth noting that

this is the core-element of Hrp1p (also known as Nab4p) described in Chen and Hyman

1998; Guisbert et al. 2005, but is mistakenly recorded in the CISBP-RNA database as

being the motif for Npl3p. Guisbert et al. 2005 did not find a motif for Npl3p.
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3.4 Estimating GAP1 mRNA for every mutant in a pool

3.4.1 A genome-wide screen for trans-factors regulating GAP1 mRNA

repression

We sought to identify trans-factors mediating accelerated mRNA degradation in re-

sponse to a nitrogen upshift. We selected GAP1 as representative of transcript desta-

bilization, as it is abundant in nitrogen-limiting conditions and is rapidly cleared upon

addition of glutamine (3.24-fold increase in degradation rate, Figure 3.16, Supplemen-

tary tables). Previous approaches to high-throughput genetics of transcriptional activ-

ity have used protein expression reporters (Neklesa and Davis 2009; Sliva et al. 2016)

or automation of qPCR (Worley et al. 2016). However, for our purposes, we required

direct measurement of GAP1 mRNA changes on a rapid timescale. We decided to fo-

cus on a single mRNA readout to explore the efficacy of this approach. While multiple

readouts is theoretically more informative, the practicality of expanding the SortSeq

paradigm to another marker poses technical challenges beyond our current capabilities

(moving from 4 bins to 16 bins dilutes the library greatly, available sorter does 4 bins

maximum). Therefore, we applied single molecule fluorescent in situ hybridization (sm-

FISH) to quantify native GAP1 transcripts in yeast cells in the pooled prototrophic yeast

deletion collection (VanderSluis et al. 2014). Using fluorescence activated cell sorting

(FACS) and Barseq (Giaever and Nislow 2014; Robinson et al. 2014; Smith et al. 2009),

we aimed to quantify and model the distribution of GAP1mRNA in each mutant (Kinney

et al. 2010; Peterman and Levine 2016).
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Figure 3.16: GAP1 mRNA dynamics by qPCR normalized to a spike-in shows the
rapid clearance of GAP1 mRNA. GAP1 mRNA following upshift measured using RT-
qPCR, relative to an external spike-in mRNA standard. The dashed line is fit to points
after 2 minutes.

We found that individually labeled probes tiled across GAP1 mRNA (Raj et al. 2008)

were insufficiently bright for GAP1 mRNA quantification using flow cytometry (data not

shown), likely due to the small cell size of nitrogen-limited cells and the low transcript

numbers in yeast cells compared to mammalian cells (Klemm et al. 2014). Therefore,

we used branched DNA probes (Quantigene), which serve to amplify the FISH signal

(Hanley et al. 2013). We developed a fixation and permeabilization protocol (Design

of Barseq after FACS after FISH experiment) that enabled detection of the distribution

of GAP1 mRNA in steady-state nitrogen-limited conditions and its repression following

the upshift (Figure 3.18). In control experiments, we found that the signal is eliminated

in a GAP1 deletion or by omitting the targeting probe (Figure 3.18 and Figure 3.17). To

validate sorting, we sorted a sample of cells into quartiles and used microscopy to count

fluorescent foci per cell (Figure 3.19) . We found that increased flow cytometry signal is

associated with an increase in the number of foci in the cells (Figure 3.20, R2 = 0.607,
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p < 10−11 ).

Figure 3.17: Both the GAP1 delete and omission of the targeting probe removes
signal of GAP1 FISH. Wild-type or gap1∆ cells were grown in proline-media, which
induces expression of GAP1. As seen in the positive control, there is heterogeneity in
the induction. This is likely due to technical issues, namely over fixation. Importantly,
gap1∆ does not have any positive signal.

Figure 3.18: GAP1 mRNA dynamics measured by flow cytometry. Flow cytome-
try of wild-type yeast in nitrogen-limited conditions and following an upshift. The ver-
tical grey lines indicate FACS gate boundaries used for cell sorting, for Figure 3.19 mi-
croscopy.
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Figure 3.19: Example microscopy of cells sorted by GAP1 mRNA. Representative
cells from each bin sorted from the experiment in Figure 3.18. Alexa647 signal is imaged
with a Cy5 filter set.

Figure 3.20: Quantification of microscopy of cells sorted by GAP1 mRNA. Cells
sorted from Figure 3.18 were manually scored in z-stacks for Alexa647 foci. Each black
dot represents the total for a single cell. The mean number of foci per cell in each bin
is displayed as a red point.

Previous SortSeq studies of the yeast deletion collection have used outgrowth to

generate sufficient material for Barseq (Sliva et al. 2016). However, formaldehyde fixa-

tion precludes outgrowth. We found that below approximately 106 templates, the Barseq

reaction produces primer dimers that outcompete the intended PCR product (Design of
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Barseq after FACS after FISH experiment). Therefore, we re-designed the PCR reaction

(Robinson et al. 2014; Smith et al. 2009) to be robust for very low sample inputs (Design

of Barseq after FACS after FISH experiment). Our protocol incorporates a 6-bp unique

molecular identifier (UMI) into the first round of extension to identify PCR duplicates,

and uses 3’-phosphorylated oligonucleotides and a strand-displacing polymerase (Vent

exo-) to block primer dimer formation and off-target amplification. Because strain bar-

codes are of variable lengths, we developed a bioinformatic pipeline to extract barcodes

and UMIs using pairwise alignment to invariant flanking sequences. Based on in silico

benchmarks, this approach was robust to systematic and simulated random errors that

can confound analysis of the yeast deletion barcodes (Availability of data and analysis

scripts, Design of Barseq after FACS after FISH experiment).

We refer to this experimental approach as BFF (Barseq after FACS after FISH). We

used BFF to estimate GAP1 mRNA abundance for every mutant in the haploid pro-

totrophic deletion collection (VanderSluis et al. 2014) in nitrogen-limiting conditions

and 10 minutes following the upshift. This approach facilitates identification of mutants

with defects in mRNA regulation at both the transcriptional and post-transcriptional

level without altering GAP1 mRNA cis-elements that may affect its regulation. More-

over, this design enables identification of factors that regulate both the steady-state

abundance of GAP1 mRNA and its transcriptional repression following an upshift. We

analyzed the deletion pool in biological triplicate (Figure 3.23). We found that UMIs ap-

proached saturation at a slower rate than expected for random sampling, consistent

with PCR amplification bias (Figure 3.35), and therefore we adopted the correction of

Fu et al. 2011 (dicussed in depth later). After filtering, we calculated a pseudo-events

metric that approximates the number of each mutant sorted into each bin. Principal

components analysis shows that the samples are separated primarily by FACS bin within

each condition and biological replicates are clustered indicating that our approach re-
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producibly captures the variation of GAP1mRNA flow cytometry signal across the library

(Figure 3.21).

Figure 3.21: Principal components analysis of the abundance estimates for
samples captures variation along GAP1 abundance. Each letter is the point,
with the letter denoting the biological replicate and dashed lines connecting the tech-
nical replicates of each sample. Each color is a type of sample, from low to high gates
(with black denoting the input samples before sort). (Top) The first two prinicpal com-
ponents show the separation of gates by signal intensity, and reflects that the lower
gates on the upshifted samples were both sampling from the same negative population
(blue and red samples on far right panel, lowest two bins post-upshift in Figure 3.23).
(Bottom) A similar pattern in principal components 3 and 4, although this highlights
that bin 1 is the most distinct before the shift and bin 4 is most distinct after the shift.
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3.4.2 Estimating GAP1 mRNA abundance for individual mutants

We estimated the distribution of GAP1 mRNA for each mutant by modeling pseudo-

events in each quartile as a log-normal distribution using likelihood maximization (Fig-

ure 3.22). Frommodel fits we estimated themeanGAP1 abundance for eachmutant and

found that the distribution of means estimated for 3,230 strains (Supplementary tables,

Figure 3.23) recapitulates the overall distribution of flow cytometry signal (Figure 3.23).

To validate our approach we first examined strains for which we expected to have a

specific phenotype and compared their mean GAP1 abundance to the distribution of

GAP1 abundances for the entire population (Figure 3.24).

Figure 3.22: Data and models for several individual sample genes from the
BFF modeling. Measurements for individual genes before and after the upshift. Black
dashed lines indicate maximum-likelihood fits of a log-normal to pseudo-events for each
mutant. Each color is a biological replicate.
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Figure 3.23: Flow cytometry of the GAP1 mRNA distribution across all mutants,
and global distribution of GAP1 mRNA abundance estimates. (Top) Flow cy-
tometry analysis of GAP1 mRNA abundance in the prototrophic deletion collection be-
fore and after the upshift. The vertical gray lines denote FACS gates used. Biological
replicates are indicated by color. (Bottom) Distribution of mean modeled GAP1 mRNA
levels for each mutant. The broad trends of changes in GAP1 abundance are captured,
as well as some of the differences between replicates (replicate A is slightly lower than
B in both timepoints, replicate C had half as many sorted events and is thus noiser in
estimates).
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Figure 3.24: Individual BFF estimates of GAP1 mRNA abundance for mutants
known to play a role in GAP1 regulation. The mean GAP1 mRNA abundance esti-
mated for individual mutants before and after the upshift are shown as points connected
by a line, colored according to the type of gene. For reference, the background violin
plot shows the distribution of all 3,230 mutants fit.

We found that the wildtype genotype (his3∆, complemented by a S. pombe HIS5

gene in library construction) has a GAP1 abundance estimate that is centrally located in

the distribution both before and following the upshift. The gap1∆ genotype is a negative

control and we estimate that it is at the extreme low end of the distribution before and

following the upshift. dal80∆ is a direct transcriptional repressor of NCR transcripts and

we found that this strain is defective in repression of GAP1 before and after the upshift.

Counter-intuitively, deletion of GAT1, a transcriptional activator of GAP1, appears to
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have higher steady-state abundance of GAP1mRNA. However, increased abundance of

GAP1mRNA in a gat1∆ background has previously been reported (Scherens et al. 2006)

and is thought to result from the complex interplay of NCR transcription factors on their

own expression levels. Data and models for each mutant strain can be visualized in

browser using a Shiny application (see http://shiny.bio.nyu.edu/users/dhm267/ or

Availability of data and analysis scripts).

Figure 3.25: Mutants of negative regulators of gluconeogenesis or sulfate as-
similation are associated with defects in GAP1 expression. Mutants deleted for
genes involved in sulfate assimilation (left) or negative regulation of gluconeogenesis
(right) are associated with higher GAP1 expresion before (left) or after (right) the
upshift, by GSEA analysis of GO-terms (p-value < 0.05).

To identify new cellular processes that regulate GAP1 mRNA abundance, we used

gene-set enrichment analysis (Supplementary tables). Following the upshift we found

that mutants with high GAP1 abundance before the upshift are enriched for mutants

in sulfate assimilation, and mutants that maintain high GAP1 mRNA abundance are en-

riched for negative regulation of gluconeogenesis (Figure 3.25). However, the strongest

enrichment for high GAP1 abundance was components of the Lsm1-7p/Pat1p complex

(Figure 3.28). Mutants in the TORC1 signalling pathway were not enriched, but, I did
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find that a tco89∆ mutant has greatly increased GAP1 mRNA abundance before and

after the upshift (Figure 3.26), consistent with the repressive role of TORC1 on the NCR

regulon. To compare GAP1 abundance before and after the upshift for each mutant, we

regressed the post-upshift mean GAP1 abundance against the pre-upshift mean GAP1

abundance for each genotype (Figure 3.27).

Figure 3.26: tco89∆ and xrn1∆ show defects in GAP1 mRNA regulation in the
BFF assay. Data and fits for several mutants. xrn1∆ mutant (left) is lowly abundant
in the library and is only observed in the highest bin of GAP1 signal, consistent with the
role of Xrn1p as a global exonuclease. tco89∆ is the only detected member that would
abrogate TORC1 activity. This mutant (right) has elevated GAP1mRNA before and after
the upshift, consistent with the role of TORC1 in repressing the NCR regulon.
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Figure 3.27: The pre-upshift mean has a significant but slight relationship in
predicting the post-upshift mean. Scatter plot of the estimatedGAP1 abundances,
with marginal histograms along top and right. Blue vertical line on top histogram is a
cut-off of GAP1 mRNA induction for this analysis, and is one standard deviation below
the mean of the wild-type strain. The red linear regression line is fit to all points above
this threshold, in which expression was detected before the upshift.

We used the residuals for each strain to identify mutants that clear GAP1 mRNA

with kinetics slower than expected by this model. We found that the Lsm1-7p/Pat1p

complex is again strongly enriched for slower than expected GAP1 mRNA clearance

(Supplementary tables). Specifically the lsm1∆, lsm6∆, and pat1∆ strains are highly

elevated in GAP1 abundance before the upshift and strongly impaired in the repression

of GAP1 mRNA after the upshift (Figure 3.28).
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Figure 3.28: Disrupting the Lsm1-7p/Pat1p complex impairs clearance of GAP1
mRNA. In the background is the distribution of fit GAP1mRNA mean abundance levels
for all mutants in the pool. Indicated by colored points and lines are the means for
individual knockout strains, as labeled.

3.4.3 Testing the roles of decapping modulators and associated

components

As these factors are associated with processing-body dynamics, we tested if microscopically-

observable processing-bodies form or disassociate during the upshift, using microscopy
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of Dcp2-GFP. We did not observe qualitative changes in Dcp2-GFP distribution (Fig-

ure 3.29), and thus the upshift does not result in a microscopically visible changes in

processing-body foci as seen in other stresses. This is consistent with previous investi-

gations of amino-acid limitation stress (Hoyle et al. 2007) and suggests that the defects

in GAP1 mRNA clearance result from their roles in decapping or associated processes.

Figure 3.29: Processing-body dynamics are not associated with the nitrogen
upshift, by Dcp2p-GFP microscopy. A strain harboring a copy of Dcp2p-GFP ex-
pressed from a plasmid was grown in conditions of exponential phase in YPD or 10
minutes of starvation in water (first row). Starvation in water is a common condition
known to result in the strong formation of processing-body foci of Dcp2-GFP, and is
thus a positive control. The bottom row shows microscopy during the upshift. We do
not see either formation or dissolution of Dcp2-GFP foci resembling p-bodies during the
nitrogen upshift.

To confirm the role of the Lsm1-7p/Pat1p complex in clearing GAP1mRNA during the

nitrogen upshift we measured GAP1 mRNA repression using qPCR normalized to HTA1,

which is not subject to destabilization upon the upshift (Figure 3.4). We also tested mu-

tants that were not detected using BFF, or were only detected in the highest GAP1 bin

and therefore not suitable for modeling (e.g. xrn1∆ Figure 3.26). Using this assay we

found that the main 5’-3’ exonuclease xrn1∆ and mRNA deadenylase complex (ccr4∆
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and pop2∆) are impaired in GAP1 repression (Figure 3.30). We found that qPCR con-

firms results from BFF. We confirmed that the accelerated degradation of GAP1 mRNA

is impaired in lsm1∆ and lsm6∆ (Figure 3.30). We also tested scd6∆ and edc3∆, two

modifiers of the decapping or processing-body assembly functions associated with this

complex, and found two distinct phenotypes (Figure 3.30). edc3∆ has similar abun-

dance as wild-type before the upshift, but is cleared much more slowly. scd6∆ has a

greatly reduced GAP1 abundance before the upshift but is impaired in GAP1 clearance.

tif4632∆, a deletion of the eIF4G2 known to interact with Scd6p (Rajyaguru et al. 2012),

has a similar phenotype.
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Figure 3.30: Disrupting core pathways of mRNA degradation, decapping modu-
lators, or the 5’ UTR impairs the clearance of GAP1 mRNA, by qPCR Points are
the ratio of GAP1mRNA to HTA1mRNA before and 10 minutes after a glutamine upshift,
in biological triplicates. Lines are a log-linear regression fit. Points are dodged horizon-
tally for clarity, but this is not used for modeling. Wild-type is FY4. (Top Left) xrn1∆,
ccr4∆, pop2∆ are all slowed in clearance (p-values < 0.004). (Top Right) lsm1∆ and
lsm6∆ are slowed in clearance (p-values < 0.0132 and 0.0299, respectively). (To Left)
edc3∆ is slowed in clearance (p-value < 10−4). scd6∆ and tif4632∆ are slowed in clear-
ance (p-values < 10−5) and have lower mRNA abundance before the upshift (p-values <
0.003). (Top Right) A deletion of 150bp immediately downstream of GAP1 stop codon
has no significant effect, but a deletion of 100bp immediately upstream of the start
codon has slower clearance (p-value < 10−4) and lower level of GAP1/HTA1 before the
upshift (p-value < 0.0015). During strain construction, a deletion of 152bp 5’ of the
start codon was also generated, and expresses a similar phenotype ( p-value < 10−5

clearance defect, p-value < 0.0061 ).

Identification of an initiation factor subunit with defects in GAP1 mRNA clearance

suggests that translation control may impact stability changes. Therefore we deleted
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sequence of the 5’ UTR and 3’ UTR of GAP1, specifically 100bp and 152bp upstream

of the start codon (approximate 5’ UTR) or the 100bp downstream of the stop codon

(approximate 3’ UTR). Whereas the 3’ UTR deletion does not have an effect, the 5’

UTR deletion exhibits the phenotype of reduced GAP1 mRNA before the upshift and a

reduced rate of transcript clearance following the upshift (Figure 3.30). We observed a

similar phenotype with a different deletion of 152bp upstream of the GAP1 start codon

(Figure 3.30). This indicates that cis-elements responsible for the rapid clearance of

GAP1 are unlikely to be located in the 3’ UTR, and instead may be exerting an effect at

the 5’ end of the mRNA.

3.4.4 Methods and materials

3.4.4.1 Strains

Strains with deletions 5’ of the start codon and 3’ of the stop codon were generated

by the "delitto-perfeto" method (Storici and Resnick 2006), by inserting the pCORE-

Kp53 casette at either the 5’ or 3’ end of the coding sequence, then transforming

with a short oligo product spanning the deletion junction and counter-selecting against

the casette with Gal induction of p53 from within the cassette. These strains were

generated and confirmed by Sanger sequencing, and traces are available in direc-

tory data/qPCRfollowup/ within the data zip archive (Availability of data and analysis

scripts).

3.4.4.2 qPCR

Each strain was grown from single colonies. Samples were collected before, during the

first ten minutes of the nitrogen upshift (Figure 3.16), or at ten minutes after the up-

shift (Figure 3.30). For the experiments described in Figure 3.30, all work was done in

biological replicates. Each 10mL sample was collected by vacuum filtration, and RNA
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extracted using the hot-acid phenol technique. For Figure 3.16 only, at the beginning of

this extraction incubation I added 10µL of a 0.1ng/µL in-vitro synthesized spike-in mRNA

BAC1200 (as generated for the label-chase RNAseq (Synthetic RNA spike-in generation,

but without 4-thiouridine). RNA was treated with DNAse RQ1 (Promega) according to

manufacturer instructions, cleaned and precipitated. All samples were reverse tran-

scribed. For Figure 3.16 2µg RNA was primed with 2.08ng/µL random hexamers (Invitro-

gen) and 2.5mM total dNTPs (Promega), while for Figure 3.30 1µg RNA was primed with

5.6mM Oligo(dT)18 primers (Fermentas) and 0.56mM total dNTPs (Promega). These

mixtures were reverse transcribed with M-MulvRT (NEB) according to manufacturer’s

instructions, then diluted 1/8 with hyclone water and used as direct template in 10µL

reactions with SybrGreen I Roche qPCR master-mix (Roche). These were measured on

a Roche Lightcycler 480. For Figure 3.16, I used primers DGO230,DGO232 to quantify

GAP1 and DGO605,DGO606 to quantify the synthetic spike-in BAC1200. For Figure 3.30,

Nathan Brandt used primers DGO229, DGO231 to quantify GAP1 and DGO233, DGO236

to quantify HTA1. See Table 3.3 for sequences. These were run on a Roche480 Lightcy-

cler, with a max-second derivative estimate of the cycles-threshold (the Cp value output

by analysis) used for analysis by scripts included in the git repo (Availability of data and

analysis scripts). Linear regression of the log-transformed values was used to quantify

the dynamics and assess significance of changes in mRNA abundance levels or rates of

change.

3.4.4.3 Microscopy of Dcp2-GFP

To look for processing-body dynamics in response to a nitrogen upshift, I used strain

DGY525, which is FY3 containing plasmid pRP1315 (gift from Roy Parker). Samples were

collected before and following a nitrogen upshift (4, 10, 12, 19, or 25 minutes later),

from exponential growth in YPD, or 10 minutes after resuspending YPD-grown cells in DI

water. All samples were collected by brief centrifugation (1minute) then resuspension in
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PBS buffered 4% PFA for aspiratingmost supernatant, then centrifugation for 20 seconds

and aspirating all media. Each pellet was immediately resuspended in 4% PFA (diluted

from EMS 16% PFA ampule RT15710) with 1x PBS for 15 minutes on bench, then spun

at 10,000g for 1 minute, aspirated, then washed once and resuspended with 1x PBS.

Samples were kept on ice, then put onto a coverslip for imaging on a DeltaVision scope.

Raw images available in the microscopy zip archive (Availability of data and analysis

scripts).

3.4.5 Methods and materials of Barseq after FACS after FISH experiment

3.4.5.1 Culturing and sampling

An aliquot of the prototrophic deletion collection (VanderSluis et al. 2014) was thawed

and diluted, with approximately 78million cells added to 500mL of proline-limitedmedia

in a 1L baffled flask. This was shaken at 30◦C overnight, then split into three flasks (A,

B, and C). After three hours (at mid-exponential) we collected samples of 30mL culture

by filtration and flash-freezing. The collection times for each sample were A: 10 minutes

and 38 seconds, B: 10 minutes and 12 seconds C: 10 minutes and 17 seconds.

3.4.5.2 Fixation and permeabilization

Frozen samples of the pool were fixed with formaldehyde (4% PFA diluted in PBS, 2

hours room-temperature) and digested with lyticase (in BufferB with VRC 37C 1 hour).

Microscopy monitoring of the reaction showed the classic greying of the cells under

phase contrast microscopy to a dark grey, but did not digest to ghosts and fragments.

Critically, 1/5th volume 2.5M glycine was added to quench the fixation before pelleting

and washing the cells with centrifugation at 1200g room temperature. An experiment

where quenching did not take place resulted in smaller fixed cells that were less acces-

sible to the FISH hybridization. After washing three times with Buffer B (Pringle et al.
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1991) these were permeabilized with ethanol at 4C overnight.

3.4.5.3 Hybridization

The samples were processedwith a Quantigene Flow RNA kit purchased in March of 2015

(product code 15710), and designed for GAP1 mRNA in Saccharomyces cerevisiae. The

probe sequences are proprietary. This procedure is largely as described by the manu-

facturer, with some critical modifications. The incubator used was calibrated to 40◦C

using a Traceable 4004 Type-K thermometer, with the probe inserted into an eppendorf

tube through a hole and sealed with parafilm, and inserted into the aluminum heatblock

in the air incubator as used for incubating samples. The ethanol-permeabilized samples

were pelleted by centrifuging 1200g for 5 minutes room temperature, then washed with

"Solution D" from the kit before proceeding with the kit instructions, with the exception

that all reactions were conducted with 1/4 volume. For each wash, the complete super-

natant was discarded, and cells resuspended in wash buffer to 25µL (to replicate the

"about 100µL residual" in the instructions). Upon final wash, these were incubated for

5 minutes with DAPI to counter-stain.

3.4.5.4 Flow cytometry and FACS

Samples were sonicated, then run through a BD FACSAria II by a NYU GenCore tech-

nician. Cells were gated for singlets and DAPI content (estimated 1N or more), then

sorted based on emission area from a 660/20nm filter with a 633nm laser activation

into four gates within each timepoint, across replicates. Importantly, the sorting gates

were set with a GUI interface until they approximated splitting the libraries into quartiles

for the six samples. These were sorted using PBS sheath fluid at room-temperature, into

poly-propylene FACS tubes, then stored at -20◦C.

Note that we later in analysis add a fixed number to all observations and gates in

linear scale in order to get into positive values.
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3.4.5.5 Cell collection and DNA extraction

For each gate, cells were collected in eppendorfs via laborious repeated gentle cen-

trifugation steps and genomic DNA extracted by NaCl reverse-crosslinking at 65◦ for

16 hours, inspired by Klemm et al. 2014, with subsequent proteinase K and RNase A

digestions. DNA was extracted from each sample with a very careful phenol:chloroform

extraction, with back-extraction, estimated to yield 1/3rd the theoretical input (by qubit

and estimation), twice as good as by either Zymo columns or Ampure beads. This may

be a result of trying to obtain genomic DNA.

3.4.5.6 Construction of amplicon sequencing libraries for barcode counting

gDNA was amplified in technical triplicates in a heavily modified BarSeq protocol.

A master mix of buffer, BSA, dNTPs, MgSO4, and Vent (exo-) polymerase (NEB) is

made containing three oligos DGO1562, DGO1588, and DGO1589. This is combined

with about 1/3rd of the genomic DNA extracted from the sample, and the reaction is

loaded into individual PCR tubes (the optimization was in individual PCR tubes and 96

well plates did not work, likely due to particularities of the sealing mechanism). 30

reactions were run in each batch of preparation. All 30 reactions were put into a BioRad

T100 thermocycler set for a 30µL reaction.

This was cycled through 4 minutes at 95C to denature, then a single annealing and

extension step. This was then cooled to 37C and immediately ExoI (Thermo) was added

and incubated (with periodic mixing) for twenty minutes. This exonuclease proceeds

from un-annealed 3’ ends.

The exonuclease was then inactivated with a 80C incubation, 5minutes, then DGO1576,

DGO1567, and DGO1519 were added in a master mix containing glycerol to bring the

whole reaction to about 5% glycerol content. This became essential for keeping the

forward primer effective at lower primer concentrations, presumably due to the com-
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putationally predicted hairpin in the 3’ end.

This reaction was cycled 40 times to anneal and extend the product. I do not expect

all the cycles to be productive. Rather, the lower concentrations used (10nM forward

DGO1567) limit the product generation.

To this generated intermediate product, I then addedmore primers, more buffer, and

indexed forward primers. These incorporate a 5bp sample index. This is of insufficient

complexity for error-correction bioinformatically, but should be sufficient to demultiplex

most samples. This was cycled 12 times to extend the product.

All reactions were then frozen, then thawed on ice and pooled into four pools. These

were purified, then one last reaction used the same polymerase to do three rounds of

extension to add on the final Illumina P5 adapter onto the molecule. This was resolved

on a 3% agarose gel, then the only visible bands were purified, quantified using qPCR,

and submitted for sequencing on an Illumina NextSeq.

Based on previous runs, the Genomics Core spiked-in 5% PhiX onto the run, to help

maintain diversity. However, during the run there was a massive failure in Illumina soft-

ware to discern clusters given low base-diversity. This run only yielded approximately

127 million reads (out of 400 million listed yield). Thus, 5% PhiX is too low, and I would

recommend trying ∼25% in future runs.

3.4.6 Design and analysis of Barseq after FACS after FISH experiment

3.4.6.1 Design of Barseq after FACS after FISH experiment

First, we motivate this development, as it departs from previous procedures in a few

ways. The main impetus for this was the generation of primer dimers that form when

the forward universal primer primes off the reverse universal primer. For example, Fig-

ure 3.31 shows a failed experiment that shows dimer formation in the sample lanes (on

right).
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Figure 3.31: An example of a dimer.

200bp

100bp

Ladder
Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6

Here, I show an example of the primer-dimer
formed by indexed versions of the universal deletion-collection barcode primers. Prod-
ucts after presumable addition of Illumina P5 and P7 adapter sequences were run on a
3% TAE agarose gel and stained with Sybr Safe dye. The left-most lane is a NEB 100bp
ladder, with the bottom two bands as 100bp and 200bp. The red is due to overexpo-
sure. The right five bands are from samples prepared with an earlier version of this
protocol. The band approximately 190bp is throught to be the library product, and the
band approximately 160bp is thought to be the inhibitory and unwanted barcode-less
dimer. Lane 3 clearly shows both bands, while lane 6 is all dimer.

Below a critical threshold, this dimer greatly out-competes the desired product and

can result in a loss of amplicon before the amplicon is amplified enough to gel extract

(above figure, lane 6). The dimer is also sequenced via Illumina chemistry (not desired).

By Sanger sequencing we found that it appears to result from a three base truncation of

the forward primer priming perfectly for about 6 bases off the reverse primer. This was

not solved by switching to a polymerase without 3’ exonuclease activity, or by using

HPLC purified primers. Using different reverse primers lead to off-target products.

We saw these dimers before incorporating a UMI step into the protocol. We used

a UMI because we wanted the protocol to be as quantitative as possible, despite the

multiple amplification steps that would introduce randomly sampled noise at each cycle.

The design of this was 6 bp degenerate sequence spaced with fixed bases, in the design

of NCNCNCNTNCN because we estimated this would best block annealing to any 3’ ends of

the primers used. In future work, we would strongly recommend using more degenerate

bases for such a low-complexity library (Fu et al. 2011).

In order to digest the excess un-incorporated UMI primers, addition of a exonucle-

ase is required. ExoI is characterized to be maximally effective at 37◦C, and although

it can have activity at 42◦C for some time (Fei et al. 2015), it will be inactivated. This

low temperature requirement likely exacerbates dimer and off-target product forma-
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tion. The common, but incorrect, one-UMI-one-molecule assumption is based on the

belief that each UMI and each genomic template is used once in the first round. The

exonuclease step must therefore digest all un-extended UMI-containing primers for this

to be true. One control for this is to monitor the primer concentrations using a tech-

nology like HPLC to measure abundance, but a small number is, again, not necessarily

negligible. The proper control is to not use the polymerase to extend the first round,

and instead immediately digest the UMI-containing primers. This is a crucial control,

and on the basis of experiments I did using this setup using dilutions of template, I

estimate that the effect of the exonuclease, in the absence of the first round of exten-

sion, reduced product formation by about 20 fold. However, it was not absent. Thus,

I suspect that the exonuclease digestion only ensures that ≈20/21 UMIs are from the

first round of incorporation. While small, this is not negligible, especially in conditions

where template number changes dramatically (as here it does not, given similar inputs

to extractions). Optimization of this step did not improve upon this efficacy, and in the

lack of commercially available thermostable (and active) exonucleases (Fei et al. 2015),

this background noise must be understood and accepted.

To address this, we optimized the reactions on a dilution series of gDNA from a dif-

ferent experiment with the same knockout library. By balancing MgSO4 and glycerol

concentrations, we got better amplification and then tried to use a “booster” (Ruano

et al. 1989) PCR approach. This gave some improvements in how low we could detect

before saturating the reaction with dimers, but we could not go lower in primer con-

centration and attributed this to the predicted secondary structure in the 3’ end of the

primer amplifying from the outside of the UPTAG barcodes. Adding DMSO helped with

this, but we still had to leave the reaction with plenty of primer as intra-molecular in-

terference from this process would out-compete inter-molecular productive annealing.

We still could not get reliable amplification from < 105 templates (estimated by qubit
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assuming 12.5 picograms gDNA per genome).

The major solution to this problem was the addition of 3’ phosphorylated blocker

oligos. These are not extended by DNA polymerases but are displaced by a strand-

displacing polymerase like Vent exo-. By using this polymerase and blocker combi-

nation, we prevent new 3’ ends from annealing but allow properly annealed primers to

extend through this region. This, in combination with the exonuclease digestion of most

of the reverse primer, prevented dimer formation. This revealed that these universal

priming sequences will amplify from two loci near CIA1 and RDN37. This was identified

by Sanger sequencing gel-extracted bands, so we designed more 20-mers that again

block off-target annealing and found they worked wonderfully. In test experiments, we

believe we got amplicons of the correct size from as low as ∼ 300 targets but have not

sequence verified this.

To simplify the addition of the last 5’ Illumina P5 adpater, we kept this as a separate

reaction. To minimize chimera formation between different samples in this reaction, this

is a 2-step polymerase extension reaction which partially forms the sequencing product

(1/3 of results, theoretically). This is sufficient for qPCR quantification of the library and

Illumina sequencing. Given our gel-extraction clean up and small product size, we do

not expect formation of chimeras on the flow cell.

Figure 3.32 shows a cartoon of the amplicon library-making procedure, up to the gen-

eration of the product before the Illumina P5 addition Figure 3.33. Given the simplicity

of this last reaction (simply adding sequence on the 5’ end), it is omitted.
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Figure 3.32: A schematic of the barcode sequencing strategy.
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ACGCTCTTCCGATCTNNNNNGTCCACGAGGTCTCTNNNNNNNNNNNNNNNNNNNNCGTACGCTGCAGGTCGACNGNANGNGNGNGATGTGACTGGAGTTCAGACATCTCGTATGCCGTCTTCTGCTTG

adaptor
sequence

sample
index
sequence

fixed
sequence

strain barcode

fixed
sequence

UMI

adaptor
sequence

illumina
adaptor sequence

Figure 3.33: The expected amplicon, before adding P5 sequences at the 5’ end.

These were checked with sanger sequencing, for pools 1 and 3, using primers DGO

276 or DGO 1519, with Genewiz sequencing. Representative Sanger sequencing image

of library pool 1, sequenced forward (with DGO 216) is shown in figure 3.34.

Trace colors: red is T, green is A, blue is C, black is G.
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Figure 3.34: Sanger sequencing of the produced library shows the expected
degenerate positions.
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3.4.6.2 Designing an analysis pipeline to filter dimers and extract UMIs

from indeterminate locations

We previously used the one-program solution of BarNone (http://varianceexplained.

org/BarNone/) to rapidly and easily quantify barcode counts from yeast barcode se-

quencing experiments. However, our new amplicon design makes use of UMIs to help

account for the amplicon noise inherent in the BarSeq method, and BarNone does not

account for these. We also wanted to devise a pipeline that would be modular, con-

sisting of multiple well-designed tools that could be modified independently and would

maintain read information along the pipeline to assist in debugging and benchmarking.

1. FASTQ files of the reads are fed into a custom python script called SLAPCHOP.py.

This is named because it Simply Looks At Pair-wise Comparisons to Help Optimize

Parsing (https://github.com/darachm/slapchop). This parallelized script takes

each read, aligns the expected fixed sequences that bracket the informative bar-

codes (using BioPython Cock et al. 2009), decides if the read matches the ex-

pected structure based on a specified criteria, then extracts out the sample in-

dex, strain barcode, and UMI degenerate sequence into appropriate positions in a

FASTQ format. This keeps the filtering and strain barcode identification separate

from the fixed sequences.

2. A simple perl script (pickyDemuxer.pl) demultiplexes the processed FASTQ file

on perfect matches of the 5bp index sequence and generates a demultiplexing

report.

3. The strain barcode regions, padded with flanking sequence to a uniform length of

26bp, from the demultiplexed FASTQ files are aligned using bwa mem (Li 2013) to

the expected barcodes as re-annotated by Smith et al. 2009.
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4. From the resulting bam alignment files, we extract the strain identification and UMI.

Using the UMI-collision / label-saturation concept and equation of Fu et. al. 2011

(PNAS), we adjust the saturated pool to estimate the input of strain genomes into

the library preparation.

This allowed us to recognize and extract barcodes from indeterminate positions in

the amplicon and filter the reads for real, intact amplicons in one step. This extraction

improved our accuracy, for example eliminating spurious alignments of the forward

priming sequence against the barcode of ymr258c∆, a barcode re-annotated with strik-

ing similarity to the fixed priming sequence (Smith et al. 2009).

There are several different ways to use the UMI information to estimate unique input

molecules from a sequencing assay. The naive approach is to assume that every combi-

nation of strain barcode with a certain UMI sequence in a sample is a unique event, and

any repetitions of this are only PCR duplicates. The molecular biology caveats for this

assumption are addressed earlier. However, we only have 46 = 4096 possible UMIs for

∼ 4500 possible strain barcodes, with approximately a million reads per sample. Thus,

due to a short length of UMI we cannot make this assumption, and instead are con-

fronted with a space of UMIs with a fairly high chance of two UMI-strain combinations

being generated by random chance alone.

We refer to this as a UMI-collision (similar concept to a hash collision) or the phe-

nomenon of label saturation. There are multiple ways to deal with this. The simplest is

to simple take each unique UMI, but errors in library amplification could diversify spu-

riously duplicated UMIs. Error-correcting algorithms exist that use graph information to

improve accuracy of this method, but these require that the space of all usable UMIs

is sparse. Another solution is the label saturation correction of Fu et al. 2011. This de-

pends on treating the chance that any UMI-collisions are a random and rare event, thus

modeled as a Poisson distribution, similar to the classic Luria-Delbruck method of mu-
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tation rate estimation. If we have 4096 possible UMIs, and for one strain in one sample

we observe x different UMIs associated, then we estimate that there were z different

original molecules in the sample, where z = 4096(1− e−
x

4096 ) .

Figure 3.35 plots this function, and compares it to actual sequencing data from the

experiment, with and without the error-correcting approach of UMI-tools (Smith et al.

2017). Figure 3.36 plots the distribution of counts per UMI for one mutant (the most

abundant one in the library).

Figure 3.35: A comparison of the unique UMIs versus input UMIs for un-
corrected and error-corrected UMIs. For each sample, each combination of UMIs
and strain barcodes was collected. For each point, the y-axis denotes the unique UMIs
observed for that combination of strain and sample. On the x-axis is the raw counts of
observing that strain barcode in that sample, without error-correction (Left) and with
umi-tools error-correction algorithim on the right (Right). The line denotes the curve
expected just from label saturation with increased re-sampling of a limited pool as it
approaches 4096.
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Figure 3.36: Histograms of UMI observations associated with the YOR202W bar-
code in three samples. In black is the observed data, in red is the expected distribu-
tion if Poisson. We see that there is a long-tail of UMIs with more reads than observed
for that combination of strain and sample.

Comparing these, we see that the unique UMIs detected decreases as a function of

input-reads, as expected. We see that the error-correction algorithim greatly reduces

the reads used, and falls well below this expectation. As shown in Figure 3.36, we see

that for some UMI-strain barcode combinations, we see much more counts per UMI label

than expected by a Poisson distribution. Both label saturation and PCR duplication are

at play to distort the mapping between either raw counts or unique labels and the actual

underlying estimate of input genome targets per strain in each sample. However, since

UMI-tools uses abundance of counts per UMI-cluster to aggregate neighboring UMIs into

the cluster, I believe that the PCR-duplicate UMIs that are overdispersed on the high-

counts-side are scavenging the lower end of the poisson distribution into a small number

of real clusters. This is not surprising given that we are using this tool in a labeling

regime that is wholy inappropriate for what it is trying to do. Thus, I do not use this

tool and instead used the more conservative correction of Fu et al. 2011, Figure 3.35

left. An appropriately complex UMI design would allow a future user to make use of

error-correcting algorithims in this method.
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3.4.6.3 Benchmarking this pipeline

We benchmarked this pipeline against an in silico dataset to determine performance

across a range of mutation rates and read depths similar to what we would expect for

this experiment. We also compared the two UMI correction approaches described in

the previous section, the “UMI-collision correction” and the “number unique” method.

We used a python script makingFakeReads.py to generate several datasets with the

following parameters:

• 16 million reads per FASTQ, split amongst 32 samples

• each strain barcode is sampled from an emipirically observed distribution aver-

aged from the first timepoints of an unpublished dataset, quantified by BarNone

• each amplicon has a poisson number of random single nucleotide mutations to a

different base, based on a given parameter of 0, 1, 2, or 3 lambda of mutations

per amplicon.

• each generated amplicon is added to the file x number of times, where x is an

exponential distribution with mean 5

• 3 “biological” replicate datasets are generated per set of parameters

After quantification, we calculate pearson correlation, spearman correlation, and the

number of mistaken strain identifications. Tolerated mismatches is a parameter set in

BarNone or by the score requirements for alignment in bwa.

As seen in Figure 3.37, it would appear that by pearson correlation, the filtration step

of the bwa alignment allows us to make more robust assignment of strain barcodes. The

spearman correlation tells us that as mutation rate increases, high mismatch tolerance

on the bwa tool is very dangerous for misaligning and can cause large rank changes.
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Figure 3.37: Optimization of mutant quantification methods, looking at simu-
lated data on a whole-lane comparison. Tool quantification was compared to the
in silico ground truth using correlations of Pearson (top) or Spearman (bottom).

How does the UMI-collision correction perform? We see that on the whole, un-
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demultiplexed datasets (16 million reads across ~4000 strains and 4096 possible UMIs)

that the performance is best with the UMI-collision correction Figure 3.38. We see that

just using unique UMI counts in this regime leads to a good reconstruction of the rank or-

der (Spearman), but inaccurate of the magnitude (Pearson) against ground truth. Does

this change with lower read density? Each point is one of 32 demultiplexed samples of

three whole-library replicates, and we see that in this lower read regime, we get similar

performance from both methods Figure 3.39. To avoid biases arising from differences

in abundance between strains, I keep the UMI-collision correction.

Figure 3.38: Optimization of mutant quantification methods, looking at dedu-
plicating methods on whole comparisons. On a whole-sample basis, the error of
the "number unique" quantifier of UMIs is evident, in this saturated regime.
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Figure 3.39: Optimization of mutant quantification methods, looking at dedu-
plicating methods on per-sample comparisons. On a per-multiplexed-sample
basis with less total counts, the error of the "number unique" quantifier of UMIs is less
evident.

BarNone appears to be more robust to mutations, in that it maintains a flatter pro-

file in the higher regimes of mutations. However, bwa starts out higher. Accounting for

duplication, as generated by the exponential distribution described above, greatly im-

proves performance. At an average coverage here of a half-million reads, the difference

between the UMI-collision and unique counts is less than with large coverage. In conclu-

sion, our pipline for analysis is able to use an early filtration step (SLAPCHOP) to improve

strain barcode identification and to extract UMIs that are useful for de-duplicating PCR

duplicates for better estimates of the ground truth.
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3.4.6.4 Modeling GAP1 FISH signal per strain in the pool

In order to use the counts of each mutant in each sample to estimate GAP1 mRNA

abundance per strain, we used a maximum-likelihood modeling approach.

We are interested in the number of cells of a certain strain that went into each bin.

We estimate this as a metric we define as “pseudocounts”, or uik where i is the strain

index, and k is the FACS bin. We call the sequencing counts cijk, where j is the particular

PCR replicate out of J PCR replicates that were successfully sequenced. We assume the

sequencing counts are linearly amplified from the “events” of actual cells being sorted

into each collection tube, and we assume that all of these “events” have equal chance

to be amplified and detected by this sequencing assay. Then we scale this estimate by

the total number of “events” we observed during the FACS procedure going into each

bin ek. We assume that all “events” had equal chances in all bins to get sequenced.

Then we have

uik =

∑
j

cijk∑
i cijk

J

ek∑
k ek

This is intuitively more simple than the notation used here to describe it precisely.

Since we split the library into quartiles for the sequencing, ek∑
k ek

is about one quarter

for each bin. cijk∑
i cijk

is just the proportion of counts in that sample that are that mutant

i.
∑

j

cijk∑
i cijk

J
is simply the average of the proportion of counts, across the PCR replicates.

Thus, uik is essentially the proportion of the original library that is the mutant in that

bin, and
∑

k uik is the total proportion of the library that is that mutant. So then if we

divide uik∑
k uik

, we have an estimate of the proportion of that mutant that went into each

bin, out of all the mutant that was in the experiment.

Once we have this normalized pseudocounts metric within each biological replicate,

thenwe fit a log-normalmodel. We explored a logisticmodel and several mixturemodels

(similar to DNA content flow cytometry with two log-normals and amiddle quasi-uniform
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distribution), and found that the log-normal robustly fit well. The log-normal and logistic

largely agreed on ranking of estimated means, but the likelihood was slightly higher for

the log-normal fits on the whole library, so we used that model.

From this model (fit using mle() in R), we used the fit mean as the estimate for the

GAP1 abundance for that strain in that sample.

3.5 Discussion

Regulated changes in mRNA stability allow cells to rapidly reprogram gene expres-

sion, clearing extant transcripts that are no longer required and potentially reallocating

translational capacity. Pioneering work in budding yeast has shown that mRNA stabil-

ity changes facilitate transcriptome reprogramming in response to changes in nutrient

availability including changes in carbon sources (Scheffler et al. 1998) and iron starva-

tion (Puig et al. 2005). Here, we characterized genome-wide changes in mRNA stability

in response to changes in nitrogen availability and identified factors that mediate the

rapid repression of the destabilized mRNA, GAP1. Our study extends our previous work

characterizing the dynamics of transcriptome changes using chemostat cultures (Airoldi

et al. 2016) and shows that accelerated mRNA degradation targets a specific subset of

the transcriptome in response to changes in nitrogen availability. We developed a novel

approach to identify regulators of mRNA abundance using pooled mutant screens and

find that modulators of decapping activity, and core degradation factors, are required

for accelerated degradation of GAP1 mRNA.

Measuring the stability of the transcriptome requires the ability to separate pre-

existing and newly synthesized transcripts. We modified existing methods to measure

post-transcriptional regulation of the yeast transcriptome in a nitrogen upshift using

4-thiouracil labeling (Miller et al. 2011; Munchel et al. 2011; Neymotin et al. 2014).

These modifications included improved normalization and quantification of extant tran-
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scripts and explicit modeling of labelling dynamics to account for some of the inherent

limitations of metabolic labeling approaches (Pérez-Ortín et al. 2013). Continued devel-

opment of fractionation biochemistry (Duffy et al. 2015) and incorporation of explicit

per-transcript efficiency terms will improve these methods further (Chan et al. 2017).

Our experiments show that the process of physiological and transcriptome repro-

gramming occur on very different timescales in response to a nitrogen upshift. Cellular

physiology is remodeled over the course of two hours to achieve a new growth rate. By

contrast, transcriptome remodeling occurs rapidly and through states that are distinct

from increases in steady-state growth rates. Previous studies have shown that tran-

scriptional activation of the NCR regulon is rapidly repressed upon a nitrogen upshift

(Airoldi et al. 2016). Our results indicate that accelerated degradation of many NCR

transcripts (Godard et al. 2007) contributes to this repression. A three-fold increase

in the degradation rate of GAP1 mRNA provides an additional layer of repressive con-

trol. Importantly, our results show that accelerated degradation is not limited to NCR

transcripts but also targets transcripts enriched in carbon metabolism pathways, par-

ticularly pyruvate metabolism. Conversely, we also detect an apparent reduction in the

degradation rate for some transcripts including MAE1. MAE1 encodes an enzyme re-

sponsible for the conversion of malate to pyruvate, and combined with the accelerated

degradation of PYK2mRNA may reflect an adaptive shunt of carbon skeletons from glu-

tamine to alanine via the TCA cycle (Boles et al. 1998). Recently, Tesnière et al. 2017

described destabilization of carbon metabolism mRNAs after repletion of nitrogen fol-

lowing 16 hours of starvation. We do not detect destabilization of PGK1mRNA and note

that the basal half-life of 6.2 minutes estimated in our study is similar to the accelerated

rate reported by Tesnière et al. 2017.

Destabilized transcripts are enriched for a binding motif of Hrp1p in the 5’ UTR. This

essential component of mRNA cleavage for poly-adenylation in the nucleus has been
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shown to shuttle to the cytoplasm and bind to amino-acid metabolism mRNAs (Guisbert

et al. 2005) and been shown to interact genetically to mediate nonsense-mediated de-

cay (NMD) of a PGK1mRNA harboring a premature stop-codon (González et al. 2000) or

a cis-element spanning the 5’ UTR and first 92 coding bp of PPR1 mRNA (Kebaara et al.

2003). A potential role for these Hrp1p sites warrants further investigation.

BFF identifiedmutants in the Lsm1-7p/Pat1p complex as having elevatedGAP1mRNA

levels both before and after the upshift. This is expected given their central role in mRNA

metabolism, and experiments using GAP1 normalized to HTA1 demonstrate that the ef-

fect before the upshift is likely a global effect (Figure 3.30). However, these mutants

still have a significant defect in clearance of GAP1, and the assay demonstrates that

associated decapping factors EDC and SCD6 have specific effects (Figure 3.30). Given

that the GAP1 mRNA is destabilized during this transition we suspect that these mRNA

degradation factors are directly involved. While we found that the edc3∆ mutant has

defects in clearance of GAP1, we also found that scd6∆, tif4632∆, and deletion of the

5’ UTR of GAP1 impairs clearance (Figure 3.30). This deletion does not include the TATA

box (ending at -179) or GATAA sites (nearest at -237) responsible for NCR GATA-factor

regulation of GAP1 (Stanbrough and Magasanik 1996). This suggests that interactions

of these factors with cis-elements in the 5’ UTRmight be responsible for stabilizingGAP1

mRNA during limitation, although the truncation of the 5’ sequence may be enough to

inhibit translation initiation by virtue of the shorter length (Arribere and Gilbert 2013).

Elements in the 5’ UTR have also been demonstrated to modulate GAL1 mRNA stabil-

ity (Baumgartner et al. 2011) and destabilize SDH2 mRNA upon glucose addition, per-

haps due to the competition between translation initiation and decapping mechanisms

(Cruz et al. 2002). Interestingly, both GAP1 and SDH2 share the feature of a second

start codon downstream of the canonical start (Neymotin et al. 2016) and we have pre-

viously found that mutation of the start codon of GAP1 results in lower steady-state
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mRNA abundances (Neymotin et al. 2016). This suggests a mechanism of degradation

through dynamic changes in translation initiation that triggers decapping of GAP1 and

other mRNA. Future work interrogating this possible interaction of translational status

and mRNA stability during dynamic conditions could also expand our understanding of

the relationship between these two processes.

To our knowledge, this is the first time mRNA abundance has been directly estimated

using a SortSeq approach, although using mRNA FISH and FACS to enrich subpopula-

tions of cells has been previously reported (Hanley et al. 2013; Klemm et al. 2014; Sliva

et al. 2016). This approach could be used with other barcoding mutagenesis technolo-

gies, like transposon-sequencing or Cas9 mediated perturbations, to systematically test

the genetic basis of transcript dynamics. The use of branched-DNA mRNA FISH, or other

methods (Rouhanifard et al. 2017), allows for mRNA abundance estimation without re-

quiring genetic manipulation which makes it suitable for a variety of applications such

as extreme QTL mapping. Furthermore, our methods for library construction should

permit accurate quantification of pooled barcode libraries with small inputs, expanding

the possibilities for flow cytometry markers to fixed-cell assays.

Why is GAP1 subject to multiple layers of gene product repression upon a nitro-

gen upshift, at the level of transcript synthesis, degradation, protein maturation, and

post-translational inactivation? Given the strong fitness cost of inappropriate activity

(Risinger et al. 2006), this overlap could ensure mechanistic redundancy for robust re-

pression in the face of phenotypic or genotypic variation. Alternatively, it could reflect

a systematic need to free ribonucleotides or translational capacity, or result from some

as yet uncharacterized process. Future work aimed at determining the adaptive basis

of accelerated mRNA degradation will serve to illuminate the functional role of post-

transcriptional mRNA abundance regulation.
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3.6 General methods and materials

3.6.0.1 Availability of data and analysis scripts

Computer scripts used for all analyses are available as a git repository on GitHub

(https://github.com/darachm/millerBrandtGresham2018) and data is available as zip

archives on the Open Science Framework (https://osf.io/7ybsh/).

To reproduce the entire analysis, or to access a particular analysis, clone the git

repo. Download the zip data archives from the above OSF link, and put them in-

side this git repo folder (here, millerBrandtGresham2018). At minimum, you should

have the data.zip archive in that directory, although records of all R analyses are in

html_reports.zip and intermediate files are in tmp.zip. Consult the README.md file in

the repository for more instructions and options, including how to unzip intermediate

files and HTML reports generated for every R script which detail the results.

A Shiny application is also available to explore the two main datasets in this paper

more easily, at http://shiny.bio.nyu.edu/users/dhm267/. It is also included in the

OSF as a separate zipped archive for local installation and long-term archiving. To use

the Shiny applications from the zipped archive, download, unzip the archive, and direct

R to run the runApp command to use the directory as a Shiny app. It can thus be used

as an interactive tool for visualization.

3.6.0.2 Supplementary tables

These are available on the Open Science Framework archive https://osf.io/9ct3m/ .

• Gene set enrichment analysis of loadings on principal components one and two.
Figure1_Table_GSEofGOtermsAgainstPCcorrelation.csv

• Raw counts of labeled mRNA quantified by RNAseq in label-chase experiment.
Figure2_Table_RawCountsTableForPulseChase.csv

• Filtered label-chase RNAseq data for modeling, normalized directly within sample.
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Figure2_Table_PulseChaseDataNormalizedDirectAndFiltered.csv

• Filtered label-chase RNAseq data for modeling, normalized by modeling across
samples.
Figure2_Table_PulseChaseDataNormalizedByModel.csv

• Degradation rate modeling results, from data normalized within samples.
Figure2_Table_PulseChaseModelingResultTable_DirectNormalization.csv

• Degradation rate modeling results, from data normalized across samples.
Figure2_Table_PulseChaseModelingResultTable_ModelNormalization.csv

• Enriched GO and KEGG terms within the set of mRNA destabilized upon a nitrogen
upshift, across sample normalization.
Figure2_Table_AcceleratedDegradationTranscripts_EnrichedGOandKEGGterms.csv

• Raw counts of strain barcode quantification within each bin in the BFF experiment,
and gate settings for the observations.
Figure4_Table_BFFcountsAndGateSettingsFACS.csv

• BFF data filtered for modeling.
Figure4_Table_BFFmodelingData.csv

• The parameters of all models fit to the BFF data.
Figure4_Table_BFFallFitModels.csv

• All 3230 models used for identifying strains with defective GAP1 dynamics.
Figure4_Table_BFFfilteredPooledModels.csv

• Gene-set enrichment analysis results using GAP1 estimates.
Figure4_Table_GSEanalysisOfBFFresults.csv

3.6.0.3 Media and upshifts of media

Nitrogen-limited media (abbreviated as "Nlim") is a minimal media supplemented with

various salts, metals, minerals, vitamins, and 2% glucose, as previously described

(Airoldi et al. 2016; Brauer et al. 2008). For proline limitation, Nlim base media was

madewith 800µM L-proline as the sole nitrogen source (NLim-Pro). YPDmedia wasmade

using standard recipes (Amberg et al. 2005). All growth was at 30◦C, in an air-incubated

119



200rpm shaker using baffled flasks with foil caps, or roller drums for overnight cultures

in test tubes. For glutamine upshift experiments, 400µM L-glutamine was added from a

100mM stock solution dissolved in MilliQ double-deionized water and filter sterilized. All

upshift experiments were performed at a cell density between 1 and 5 million cells per

mL, in media where saturation is approximately 30 million cells per mL. For all experi-

ments, a colony was picked from a YPD plate and grown in a 5mL NLimPro pre-culture

overnight at 30◦C, then innoculated into the experimental culture from mid-exponential

phase.

3.6.0.4 Strains

See Table 3.2 for details. The wild-type strain used is FY4, a S288C derivative. The

pooled deletion collection is as published in VanderSluis et al. 2014. For all experi-

ments with single strains, colonies were struck from a -80◦C frozen stock onto YPD (or

YPD+G418 for deletion strains) to isolate single colonies. For pooled experiments we

inoculated directly into NLim media from aliquots of frozen glycerol stocks.

All primers were synthesized by Integrated DNA Technologies (IDT). N refers to a stan-

dard degenerate position. Barseq multiplexing barcode sequences and index numbers

available in the file data/dme209/sampleBarcodesRobinson2014.txt within the data zip

archive (Availability of data and analysis scripts).
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Table 3.2: Yeast strains used in this study

Strain ID Short description Details
DGY1 FY4 Isogenic to S288C, prototrophic, MATa
- Deletion collection pool Haploid (MATa) prototrophic deletion collec-

tion as described in the publication of Van-
derSluis et al. 2014

DGY410 xrn1∆::KanMX ygl173c∆::KanMX from the prototrophic
deletion collection

DGY564 ccr4∆::KanMX yal021c∆::KanMX from the prototrophic
deletion collection

DGY565 pop2∆::KanMX ynr052c∆::KanMX from the prototrophic
deletion collection

DGY547 lsm1∆::KanMX yjl124c∆::KanMX from the prototrophic
deletion collection

DGY571 lsm6∆::KanMX ydr378c∆::KanMX from the prototrophic
deletion collection

DGY545 pat1∆::KanMX ycr077c∆::KanMX from the prototrophic
deletion collection

DGY554 edc3∆::KanMX yel015w∆::KanMX from the prototrophic
deletion collection

DGY552 scd6∆::KanMX ypr129w∆::KanMX from the prototrophic
deletion collection

DGY611 tif4632∆::KanMX ygl049c∆::KanMX from the prototrophic
deletion collection

DGY539 GAP1 5’ UTR delete confirmed by Sanger sequencing to have
152bp deleted 5’ of the start codon

DGY576 GAP1 5’ UTR delete confirmed by Sanger sequencing to have
100bp deleted 5’ of the start codon

DGY577 GAP1 3’ UTR delete confirmed by Sanger sequencing to have
150bp deleted 3’ of the stop codon

DGY525 FY3 + pRP1315 FY3, a ura- auxotroph (ura3-52), trans-
formed with pRP1315 (URA3 marker, ex-
pressing a Dcp2-GFP fusion)
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Table 3.3: Primers used in this study

ID Sequence Description
DGO230 ACGGTATCAAGGGTTTGCCAAG Figure 3 qPCR GAP1

reverse
DGO232 GCATAAATGGCAGAGTTAC Figure 3 qPCR GAP1

forward
DGO229 CTCTACGGATTCACTGGCAGCA Figure 5 qPCR GAP1

reverse
DGO231 TTTGTTCTGTCTTCGTCAC Figure 5 qPCR GAP1

forward
DGO236 TTACCCAATAGCTTGTTCAATT qPCR HTA1 forward
DGO233 GCTGGTAATGCTGCTAGGGATA qPCR HTA1 reverse
DGO605 CTGGACGACTTCGACTACGG qPCR 1200 spike-in

forward
DGO606 ATCAGCCTTTCCTTTCGTCA qPCR 1200 spike-in

reverse
DGO1562 GTCTGAACTCCAGTCACATCNCNCNCNTNCNGTCGACCTGCAGCGTA Degenerate first

round primer
DGO1588 CCATTGGTGAGCAGCGAAGGATTTGGTGGA/3Phos/ First round blocker

oligo
DGO1589 AGAAAAAGCAGCGTAGATGTAGAAGCAAGA/3Phos/ First round blocker

oligo
DGO1567 GATGTCCACGAGGTCTCT Second round outside

primer
DGO1576 CGTACGCTGCAGGTCGAC/3Phos/ Second round blocker

oligo
DGO1519 CAAGCAGAAGACGGCATACGAGATGTCTGAACTCCAGTCAC Second and third

round inside primer
and P7 adapter

Forward
index
primer

ACGCTCTTCCGATCTXXXXXGTCCACGAGGTCTCT Multiplexing primer,
where XXXXX is one
of 120 different bar-
codes (see below).
Table 3.6.0.4.

DGO276 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT Illumina P5 adapter
incorporation primer

DGO366 AATGATACGGCGACCACCGAGATCTACAC RNAseq Illumina li-
brary amplification,
forward

DGO367 CAAGCAGAAGACGGCATACGAGAT RNAseq Illumina li-
brary amplifcation,
reverse
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4

Investigations of physiological remodeling upon a nitrogen

upshift

This chapter describes lines of investigation that were not pursued deeply, but may in-

form future investigations of the physiological remodeling that occurs as yeast resumes

rapid growth.

The study of microbial physiology is a long standing area of investigation, and with

modern systems biology approaches this question of how the physiological composition

of microbes change in order to accomplish the essential project of growth is still the

subject of advances both quantitative and conceptual (Carter et al. 1978; Erickson et

al. 2017; Henrici 1928; Kafri et al. 2016; Kief and Warner 1981; Kjeldgaard et al. 1958;

Metzl-Raz et al. 2017; Schaechter et al. 1958; Scott et al. 2010; Slator 1918; Waldron

1977; Waldron and Lacroute 1975; Wehr and Parks 1969). In recent years, the study of

changes in abundance of specificmRNA factors in the budding yeast has characterized a

phenomenon in which approximately one quarter of the yeast transcriptome scales with

growth rate (Airoldi et al. 2009; Brauer et al. 2008). This phenomenon is characterized

at the level of molecular species, and thus can be compared to changes that occur in

response to stressors, summarized as the Environmental Stress Response (Gasch et al.

2000). In addition, a shared signature of knockout mutants, commonly used to probe

gene function, is that associated with changes in cell-cycle progression distribution due

to growth rate changes (O’Duibhir et al. 2014). Thus the appreciation of the systematic

physiological changes that occur in response to genetic perturbations holds light to
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many biological problems, even if only to identify the domineering and confounding

factor of growth-associated physiological changes.

4.1 Changes in poly-adenylated transcript content per cell

upon changes in growth rates

This section describes work that contributed to a submitted article titled: "Growth Rate-

Dependent Global Amplification of Gene Expression." Authorship of this article is: Niki

Athanasiadou, Benjamin Neymotin, Nathan Brandt, Darach Miller, Daniel Tranchina,

and David Gresham. The biorxiv draft is at doi.org/10.1101/044735

The writing and figures of this chapter are original to this document.

4.1.1 Introduction

We know that the total RNA content of a cell changes upon changes in growth rates

(Waldron and Lacroute 1975). We know that specific mRNA, each a small component

of the cell’s total RNA also change in relative abundance. A less-characterized ques-

tion is if the whole mRNA transcriptome changes and if this has a significant effect on

the regulatory role of absolute or relative changes in mRNA abundance. Transcriptomic

measurements are usually normalized to relative measures, and is thus based (some-

times explicitly (Love et al. 2014)) on the assumption that the total transcriptome does

not change in abundance. However, we now know of cases of where this assumption is

violated (Nie et al. 2012).

Spike-in normalized RNA sequencing can estimate absolute mRNA abundance per

cell, but has been criticized before for being "too noisy" and instead computational

methods of "removing unwanted variation" were used (Risso et al. 2014). Led by Rodoniki

Athanasiadou, our group pursued a more thorough approach to this design by normal-

izing RNA sequencing data using the ERCC spike-in set (Jiang et al. 2011), using pre-
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liminary sequencing runs to first determine the appropriate amount of spike-ins neces-

sary for accurate sequencing. Then, yeast were grown in systematically varied nutrient

limitations of growth, then RNA sequencing using a known quantity of the exogenous

spike-ins was used to normalize the measurements to absolute mRNA per cell.

I sought to complement this work by orthogonally estimating the size of the whole

yeast transcriptome. To do this, I adapted the screening strategy of Amberg et al. 1992

to flow cytometry. Essentially, this utilized a poly-deoxythymidine oligo singly labeled

with a fluorophore. This was hybridized in with the fixed and permeabilized yeast cell,

and the resulting fluorescence after washing is taken to be a proxy for the number of

hybridized poly-dT probes, presumably hybridized to a poly-adenosine sequence, and

thus mRNA.

Another motivation of this was to serve as a fixation-digestion control for methods

involving single-gene mRNA FISH. We had patterns of mRNA FISH hybridization signal

that appeared bimodal (Figure 3.17). This could be a technical issue of incomplete

permeabilization due to over-fixing, or a biological phenomenon. To distinguish the two

would take two-color FISH, with a positive control (Andersen et al. 2014). Since nitrogen-

limitation causes a severe restriction of the total transcriptome content, we don’t have

an obvious pick for a uniformly expressed positive control. However, most of the mRNA

should be poly-adenylated, so FISH against that sequence should be present in all cells,

and in high-copy. While I did not integrate this into the single gene mRNA FISH as an

internal control, I did use it to optimize fixation/permeabilization conditions.

4.1.2 The assay design

The assay uses a similar fixation permeabilization method as the single-gene mRNA

FISH assay, then an overnight hybridization against a poly-dT probe, then flow cytome-

try.

The yeast cells are sampled via vacuum filtration onto nylon filters, then the filters
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are quickly flash-frozen in liquid nitrogen. These are resuspended in 0.75x PBS buffered

4% PFA (from ampules from EMS), the cells vortexed off the filter, then the filter dis-

carded. The cell suspension in the fixative is incubated for hours at RT to complete

fixation, with the assumption that rapid fixation halts RNA metabolism in the cell and

long-term fixation stabilizes the fixed components into a configuration that can sur-

vive digestion and permeabilization. The fix is critically quenched using 2.5M glycine,

then collected by centrifugation and washed with PBS. The cells are digested for one

hour at 37C using lyticase and beta-mercaptoethanol in 1.2M sorbitol buffered by potas-

sium phosphate at about 7.4 pH, with 20mM vanadyl ribonucleoside complex to inhibit

RNAses. This is washed and further permeabilized with 70% ethanol overnight, then is

resuspened using hybridization buffer (10% dextran sulfate w/v, 2x SSC final, 100ug/ml

ecoli tRNA, 250mg/ml salmon sperm DNA) plus 100nM of a (dT)50+V oligo 5’-labeled

with with Alexa 488, as ordered from IDT. This is incubated for 14+ hours on a 37C roller

drum, then washed with 2x SSC several times before resuspending in PBS and flowing

through an Accurri flow cytometer. Poly(A) content signal was determined by the signal

area on the 514/20nm detector.

To test this procedure, I used RNAseA treated cells as a negative control. Figure 4.1

shows the RNAseA-treated controls for two samples, where the treatment abrogates the

signal for the vast majority of the cells in the sample.

To optimize this design, I varied formamide from 0% to 50%, and probe concentra-

tions from 10nM to 1µM. I found that 100nM and 0% formamide saturated the signal of

YPD-grown cells without largely increasing the signal on the RNAseA-treated cells. This

assay takes approximately 4 hours of work spread over 3 days. More detailed protocol

is maintained by the Gresham laboratory.
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4.1.3 Nutrient limitation and transcriptome size

Yeast growing in YPD complete a division approximately every 1.5 hours (0.45 spe-

cific growth rate), while proline-limited media (NLimPro) only supports division approx-

imately every 4.5 hours (.15 specific growth rate). Using this poly-dT FISH method,

we see differences in the total poly-adenylated mRNA signal between the different me-

dia conditions (Figure 4.1). The distributions are significantly different (KS test and

Wilcoxon, p-value < 2.2× 10−16). We know that fast growing cells (YPD) have more RNA

per cell, so it appears that part of this difference is contributed by a global scaling of

the mRNA content as well. The fold-changes in the mean and median of the YPD-grown

cells versus the proline-limited cells were 3.34 and 3.68, respectively.

127



Figure 4.1: Changes in whole cell polyA content in YPD or nitrogen-limitation.
Wild-type yeast grown in proline-limited media (left) or YPD rich media (right) were
assayed in exponential growth for poly-A content. Included are RNAsed controls treated
with RNAseA, to show negative samples. The plot is cropped from 0 to 105 arbitrary units
of polyA signal to show the center of the distributions. The distributions from different
media have different means by KS or Wilcoxon tests, with unreasonably small p-values.

To investigate the dynamics of changes in poly-A abundance between different growth

conditions, I grew cells in proline-limited media overnight to reach a steady-state of

growth, then collected samples during a nitrogen-upshift. I assayed the poly-A content

of the cells using the above assay (Figure 4.2). I found that the total poly-A content took

about two hours to increase to the new steady-state of a larger transcriptome, a similar

timescale as the changes in cell size and lag in population growth rate (Figure 3.1). The

final steady-state differences were of a fold-change of 2.16 and 1.93 for the mean and
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median poly-A content, consistent with the change between specific growth rates of

0.15 and 0.35 being lower than the difference with YPD (0.45 specific growth rate).

Figure 4.2: Changes in polyA content upon a nitrogen upshift. Wild-type yeast
were grown in proline-limited media, then glutamine was added at time 0 minutes.
Samples were assayed for polyA content using the poly-dT assay.

Previously, others in the lab (as described at the beginning of this section) had used

ERCC-normalized RNA sequencing to assay the absolute abundance of mRNA in yeast

grown at systematically varied growth rates (0.12, 0.2, 0.3 specific growth rate) in

chemostats. In a repeat experiment of this, I took samples from chemostats limited

by nitrogen or carbon at these growth rates, and processed them to assay the distribu-

tion of poly-A content of the cells. Figure 4.3 shows the distributions and the relationship

between the distribution means and the estimates from SPARQ (the spike-in normalized

RNAseqmethod). We see that the poly-dTmethod also captures the scaling of the whole

yeast transcriptome across different growth rates, and correlates well with the spike-in

normalized method.
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Figure 4.3: Measuring polyA content across systematically varied growth rates
in chemostats, and comparison to a spike-in normalized RNA sequencing
method. (Left) PolyA content was estimated for cultures grown in two nutrient limita-
tions at three different dilution (growth) rates. (Right) Comparing these measurements
to SPARQ (the spike-in normalized RNAseq method) shows that two methods are well
correlated (Pearson’s r=0.95, cor.test p-value = 0.003684, dashed-line shows linear
regression through all points), although the poly-dT method remains uncalibrated.

4.1.4 Conclusion and future directions

This assay appears to detect changes in the scaling of the yeast mRNA content be-

tween different growth rates. It is consistent with spike-in normalized RNAseq (random

hexamer-primed) estimates of the total mRNA content. As a flow cytometry assay this

has the potential to be used as a marker for high-throughput investigations of the ge-

netics of transcriptome size changes (or regulation), using methods as described in

Design of Barseq after FACS after FISH experiment. This method offers a conveniently

high-throughput assay for total transcriptome size, and as such is one more tool that

microbial physiologists can use to probe the functional changes that occur as organisms

systemically adapt to their environments and growth programs.

However, more work remains to use the assay to reliably inform on these changes
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without incorporating an orthogonal measure. Changes in polyA tail length could hypo-

thetically affect hybridization, and a distribution shifting such that more of the functional

mRNA have a tail length less than minimum tail length requisite for hybridization would

produce a similar graded effect. Hybridization of this probe to synthetic mRNA cross-

linked to a nylon substrate would allow quantitative testing of this in similar conditions

as the hybridization occurs, provided a method for manufacturing accurately generated

poly-A tail lengths exists.

Future investigations of mRNA content per cell will illuminate the role or significance

of total mRNA abundance versus relativemRNA abundance in gene regulation and phys-

iological adjustments to changing environments. Adjustment is apparent during a ni-

trogen upshift: what causes it, and is it adaptive?

4.2 Screening for genes important for remodeling physiology

for growth

4.2.1 Introduction

With changing physiology in response to growth rate changes, many molecular and

functional phenotypes change. One of these is the resistance to stress. It has been

long known that slow growing cells are more resistant to stressors (Elliott and Futcher

1993; Lu et al. 2009; Sherman and Albus 1923). Yeast appears to have adapted to its

ecological niche by adopting a boom/bust, feast or famine approach to quickly growing

during favorable conditions at the expense of stress resistance. Resistance to stress

seems to offer "cross-protection", and the anti-correlation of growth rate and stress

resistance suggests that the two processes might be opposed in mechanisms to achieve

these objectives. The dimension of coordinated cellular growth may be a simple axis

that explains much of the variation in gene expression and phenotypic differences in

budding yeast (Brauer et al. 2008; Lu et al. 2009).
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One approach to identify the characteristics required for yeast to achieve a faster

growth rate is to monitor the regulated changes that occur upon the upshift. We could

infer that since the most logical response to a stress is to express this adaptation, then

the gene expression increasing upon a stress must be adaptive (Gould and Lewontin

1979). This has been demonstrated to be a false assumption, at least for the case

of heatshocks, as the genes whose expression increases do not overlap well with the

genes important for resistance (Gibney et al. 2013). The later functional genetic mea-

surement is possible to do in high-throughput, as the yeast community has access to

a yeast deletion collection and high-throughput means of assaying genetic effects on

the quantitative phenotype of continued existence. Thus, an assay of the functional

consequences is a more direct approach to understand these processes.

The nitrogen upshift enriches for differences in growth rate, by growth. Subtle effects

can be magnified over time, for example a 1% growth rate defect over 7 hours would

be magnified to an abundance change of at least 20%. However, the phenotype I am

interested in is in the completion of remodeling for rapid growth, so I ammost interested

in the duration of the lag between nitrogen addition and increased growth. Thus, the

compounding of growth rate effect does not apply. One approach would be to repeat

the upshift many times on the same batch of cells, but this greatly confounds the fitness

between various growth stages and does not offer the reproducibility of cells being in a

particular physiological status — nitrogen-limitation can take hours to reach a steady-

state of signalling (Tate and Cooper 2013), and the life history of an individual cell could

have physiological consequences.

After practicing the Feynmen method with a scientific advisor in California (Acknowl-

edgements), and given the opportunity to work with a talented young scientist named

Stephen Nyarko, we decided to pursue this question by using the correlated phenotypes

of growth and susceptibility to stress. The logic is that if we are interested in isolating
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mutants that are defective in increasing their growth rate upon a nitrogen upshift, and

an increase in growth is associated with a susceptibility to stress, then a somewhat-

lethal stress should enrich for mutants defective in susceptibility to the stress — ie

defective in rapidly increasing growth rate. Upon further reading, we found that the

group of Johan Theiveilen had used a similar approach to isolate mutants defective for

increasing growth upon repletion of glucose, and had identified new critical components

of the PKA pathway, CYR1 and GPR1 (Van Dijck et al. 2000). Thus encouraged, we in-

tended to use the anti-correlation of growth and stress resistance to isolate mutants

defective in resuming growth rapidly.

4.2.2 Results

We first determined if the heatshock resistance of the wild-type FY4 yeast changed dur-

ing a nitrogen upshift. I grew cells in proline-limited media (approximately 4.5 hour

doubling time), then added glutamine to induce the nitrogen upshift. For each sample,

cells were subject to a 52C heatshock for 30 minutes by the addition of pre-warmed

media, or for negative control were simply kept at room temperature. The processed

samples were arrayed in a 96 well plate, then pinned onto YPD, grown at 30C for ap-

proximately 40 hours, and imaged (Figure 4.4).
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Figure 4.4: Glutamine upshift causes a lost in heatshock-resistance. Wild-type
(FY4) cells were subject to nitrogen-limitation, then a nitrogen upshift with 400µM glu-
tamine. Cultures were heatshocked at 52C for 30 minutes, or at roomtemperature (neg-
ative). 5-fold serial dilutions were plated on YPD plates.

Thus, the glutamine upshift triggers a loss in resistance to the heatshock. We then

devised a screen, wherein a barcoded and pooled yeast deletion collection is grown

in conditions of nitrogen-limitation then upshifted. Samples were taking before or af-

ter 120 minutes after the glutamine upshift, heatshocked or not (negatives), then out-

grown to enrich for living mutants. These libraries were sequenced using an amplicon-

sequencing procedure to quantify the mutants in the resulting library.

Direct measurement of mutant abundance is preferred, but we used outgrowth of

the heatshocked population, counting on the severe selection of a heatshock to appro-

priately select. We did this in six biological replicates in order to generate robust signal.

These were extracted with standard Hoffman-Winston DNA preparations, then amplified

using the same primers and protocol as described in (Robinson et al. 2014). These were

sequenced along with other samples on an Illumina MiSeq run.

Barcode sequencing, like other molecule-counting applications of sequencing like

RNAseq, is presented to the researcher as a relative measurement in integer quantities.

One of the first steps in reading this data in is to look at the distribution of counts per

strain barcode identified Figure 4.5. We see that our heatshock and outgrowth has a
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much more profound distribution of effects. For which genes is this significant?

Numerous statistical approaches exist to normalize the data for accurate detection

of differential abundance. One flexible and robust method is using the voom statistical

pre-processing step with limma. This calculates the expected noise contributed by low

integer count observation, but has the advantage of converting the measurement to a

"counts per million" relative metric for normalization. It also has useful visualizations

for characterizing the distribution of signal across complex experimental designs.

One other observation in Figure 4.5 is that the histograms show a log-normal distri-

bution of high counts, then a long tail downwards. Then, there appears to be a low dis-

tribution of single digit counts which enter the distribution from around zero Figure 4.6.

These are believed to occur from spurious amplicon products or software misalignment

counting barcodes that do not exist. To characterize this further, I used limma/voom to

generate plots of variance against abundance for different thresholds of cutoffs based

on total counts across the entire library Figure 4.7. I found that a threshold of 30 counts

in total across the library was sufficient to remove these effects.

Figure 4.5: Histogram of mutant counts, within each sample. Histograms of
counts, for each mutant in each sample. Three histograms show the occurrences of
these observations for the library before the upshift (top), 2 hours after adding glu-
tamine (middle), and after the heatshock and outgrowth (bottom). The wider spreading
is a good indication of complex selection of large effects occurring in the library.
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Figure 4.6: Histogram of mutant counts, summed across samples. Histograms
of counts, for each mutant, summed across all samples in the three treatments: before
the upshift (top), 2 hours after adding glutamine (middle), and after the heatshock and
outgrowth (bottom). We see that most features are log normally distributed, but some
appear to be noisy counts near zero, due to unknown factors.

Figure 4.7: Diagnostic limma/voom plots show the effects of low-count barcodes
in confounding the noise model. Each plot shows each gene average abundance (x-
axis) against its residual variation (y-axis), with a line smoothing the relationship as ex-
pected by limma modeling. The threshold of minimum total counts per feature is shown
for each plot in the grey bar. We see that thresholding above 30 counts (right) gives us
the expected relationship, while not thresholding (left) demonstrates how lowly abun-
dance counts behave aberrantly with artificially reduced variance that may confound
statistical analyses of barcode sequencing data (limma uses the model fit as the line).

I used this tool’s flexible general linear modeling interface to ask how our treatment

enriched for particular mutants. We saw no significant effects from a glutamine up-

shift, confirming the intuition that this is such a subtle effect of momentary fitness that

it becomes hard to detect without amplification. Testing for the effect of changes in
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abundance based on a glutamine treatment before the heatshock, we find that four

deletion strains significantly (multiple-hypothesis adjusted p-values < 0.05) increase in

abundance specifically after glutamine treatment, and 41 are decreased in abundance.

Of the four genes increased in abundance (suggesting a failure to resume rapid

growth), SLA1 and CAP2 are involved in actin binding and dynamics. SLA1 is involved

in assembly of the cortical actin cytoskeleton (Holtzman et al. 1993), while CAP2 is

an actin barbed-end capping protein that localizes to cortical actin patches (Amatruda

et al. 1990). This suggests that these mutants specifically are involved in remodeling

the cortical exoskeleton in a way that makes cells more susceptible to heatshock, or

that these mutants are defective in increases in stress-resistance associated with slow

growth rates. SXM1 over-expression rescues mutants defective in mRNA export from

the nucleus (Seedorf and Silver 1997), suggesting that it may play a role in mRNA export

itself and that mRNA export may regulate some important downstream factor associ-

ated with increasing growth. MAE1 encodes a malate dehydrogenase. This reaction

takes malate, a citric-acid cycle metabolite, and converts it to pyruvate (Boles et al.

1998). Pyruvate is an essential substrate for the biogenesis of the carbon structures

of alanine, valine, and other amino-acids. Carbon-skeletons of glutamine can enter the

citric-acid cycle from a point between the entry of pyruvate, and shunt from malate to

pyruvate via MAE1. Considering the enrichment of pyruvate metabolism mRNA identi-

fied as destabilized in the 4tU label-chase work in subsection 3.3.2, and that the same

experiment showed either a stabilization or dramatic synthesis up-regulation of MAE1

mRNA upon the nitrogen upshift, one prediction might be that Mae1p provides a shunt

by which yeast re-directs the excess of carbon skeletons from glutamine deamination

through the citric-acid cycle to provide substrates for alanine biosynthesis. This may be

adaptive.

To explore this, I regenerated amae1∆mutant using a KanMX knockout cassette am-
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plified from the yeast deletion collection, confirming incorporation by PCR. I subjected

this mutant to a glutamine upshift, and saw an increase in the lag-phase duration (Fig-

ure 4.8) compared to wild-type (Figure 3.1). I sought to test if this was specifically due to

disruption of the malate to pyruvate shunt for the effect of alanine metabolism, and so

repeated the experiment but added 200µM alanine, 200µM pyruvate, or water (mock)

to the cell culture at the same time as glutamine. I did not see a significant effect on

the growth rate increase (Figure 4.8). Thus, disruption of this gene may not result in

slower upshift in growth by virtue of blocking this metabolic pathway, but instead the

metabolic state of the cell before the upshift may not be well prepared to resume rapid

growth.
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Figure 4.8: Amae1∆mutant is slower in a glutamine upshift, but this is not res-
cued by supplementation with alanine or pyruvate. Amae1∆ strain was subject
to a glutamine upshift. (Top) Themutant alone appears to show a slight defect in the lag
phase (approximately 3 hours compared to approximately 2 hours Figure 3.1). (Middle
and bottom) The mutant had glutamine or glutamine and either alanine (middle) or
pyruvate (bottom) added, with two cultures per treatment. Neither showed a significant
effect in reducing lag phase or increasing growth rate.
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4.2.3 Conclusion

We found mutants knocked out for several non-essential genes changed their relative

susceptibility upon heatshock treatment, suggesting that their resistance does not de-

crease as much as wild-type upon the re-addition of a nitrogen source with adding glu-

tamine. Thesemutants could be involved in either the increase in stress resistance upon

slow growth conditions, or the decrease in stress resistance upon increase in growth. For

the factors of the actin cytoskeleton, this points towards a hypothesis that the increase

in stress resistance results from specifically the cortical actin network, and would be

testable by determining when these mutants are more or less resistant to stress than

the wild-type. For MAE1, I found that there appears to be a longer lag phase, but this is

not rescued by addition of pyruvate or alanine. This suggests that the deletion of this

gene puts the cell in a metabolic configuration less capable of rapidly increasing growth

rate upon glutamine addition.
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5

Conclusion

Upon repletion of nitrogen, Saccharomyces cerevisiae resumes rapid growth. This in-

volves physiological remodeling as discussed in chapter 4. Rapid transcriptional repro-

gramming also occurs to repress mRNA of genes newly unneeded in the replete nitrogen

condition, especially NCR-regulated transporters as seen in chapter 2 and chapter 3. In

efforts to determine the genetic basis of the rapid clearance of GAP1 mRNA in partic-

ular, I found that decapping modulators play a role in these dynamics, as discussed in

chapter 3.

5.1 Summary

Here, I summarize these findings and speculate on future directions that this work could

contribute to.

5.1.1 mRNA destabilization hastens functional reprogramming

The five fastest decreasing mRNA in the transcriptome upon the nitrogen upshift are

NCR transporter mRNAs (Figure 2.1). Using principal components analysis, we find that

the changes in mRNA abundances across the transcriptome during the upshift are in

some ways distinct from simply a switch from a slow-growing gene expression state

to a fast-growing gene expression state (Figure 3.3). Instead, there is an enrichment

in promotion of RNA production and processing, and a repression of cytoskeleton and

membrane organization (Figure 3.3.1).

mRNA degradation rate control is known to play a role in other environmental tran-
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sitions, so I used a 4-thiouracil label-chase experiment with RNAseq to characterize the

stability and changes of stability of individual mRNA in the yeast transcriptome (Fig-

ure 3.4). To avoid problems of nitrogen-regulation of the uracil transporter necessary

for labeling changes, I used an interrupted chase design. To smooth technical noise

inherent in the normalization of sequencing data to low amounts of spike-ins, I used

a normalization that models the change of the whole yeast transcriptome. This pre-

vents particularly noisy measurements of spike-ins from being interpreted as changes

inmRNA dynamics (subsubsection 3.3.4.2). To address the potential confounding of syn-

thesis rate changes with measures of destabilization, I used modeling to characterize

the expected error and threshold our calls of significance on the effect size (subsubsec-

tion 3.3.4.2). These methods may assist the future application of the 4tU label-chase

approach to studying extant mRNA stability across dynamic conditions.

Using these methods, I estimated mRNA degradation rates for the yeast transcrip-

tome and found a median half-life of 6.92 minutes (Table 3.1). This is less than previous

estimates in rich media, suggesting that mRNA may be less stable during these con-

ditions of limitation of nitrogen-quality in batch growth conditions. This may reflect an

evolved preference for flexibility in nitrogen allocation over the energy costs of turning

over mRNA frequently. Upon the upshift, I found that degradation rates and changes

in mRNA abundance are, as expected, anti-correlated but not entirely co-directional in

their effect (Figure 3.6,Figure 3.8).

I found that 78 mRNA are destabilized upon the upshift, with enrichment for NCR

mRNA as well as mRNA encoding factors of carbonmetabolism and vacuole components

(Figure 3.3.2). Amongst these, GAP1 is subject to an approximately three-fold increase

in degradation rates. Thus, mRNA destabilization plays a role in the regulation of this

canonical NCR-regulated mRNA, in addition to the previously known regulation at layers

of mRNA synthesis and post-translational control.
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5.1.2 Decapping is important for GAP1 clearance

I aimed to determine the genetic factors of this swift clearance, and so combined mRNA

FISH with FACS and sequencing to estimate GAP1mRNA for mutants in a barcoded pool.

Development of this method required several technical advances in optimizing in situ

hybridization methods, developing a robust method for barcode sequencing in the face

of seemingly inescapable dimer formation (subsubsection 3.4.6.1), and implementing

a modeling analysis to estimate mutants distributions across bins of GAP1 abundance

(Figure 3.22).

Using this method, I determined that factors of the Lsm1-7p/Pat1p complex were im-

portant for wild-type GAP1 expression dynamics (Figure 3.28). Importantly, the modula-

tors EDC3 and SCD6 had defects that did not appear to generally affect the whole tran-

scriptome, unlike with defects in LSM1 and LSM6 (Figure 3.30). Fortunately, more anal-

yses of related genes had been completed by Nathan Brandt, and a re-analysis of this

data revealed that the Scd6p-interacting eIF4G2/Tif4632p had a similar defect. Nathan

Brandt had also characterized the effects of truncations of sequence upstream of the

GAP1 start codon or downstream of the GAP1 stop codon, and re-analysis showed that

the 5’ UTR truncations had a very similar phenotype as deletions of SCD6 or TIF4632.

These similarities suggest a connection between translation initiation and mRNA sta-

bility during steady-state and dynamic conditions that may inform our general under-

standing of the competition of these processes.

5.1.3 Physiological changes that occur during nitrogen upshift

Combining a fluorescent poly-dT probe assay (Amberg et al. 1992) with flow cytometry,

I was able to orthogonally confirm the phenomenon of mRNA transcriptome scaling in

different nutrient environments (Figure 4.3) and measure the dynamics of this transition

(Figure 4.2). Given the compatibility of this assay with the SortSeq approach described
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in chapter 3, this could be used to efficiently probe the genetic factors of transcriptome

scaling dynamics in response to changing environments. Understanding this process in

yeast may inform the study of how c-Myc signalling affects (or effects) this process (Nie

et al. 2012).

It is well known that stress-resistance decreases with an increasing growth rate,

and we demonstrated this is true for a nitrogen-upshift as well (Figure 4.4). We used

this property to enrich a mutant library for defects in increased susceptibility upon a

nitrogen upshift, and found an enrichment of two components that regulate the cortical

actin cytoskeleton. Future studies of these, and the two other identified mutants, may

reveal growth-rate regulation of the cortical actin cytoskeleton involvement in yeast

stress-resistance, and a potential of Mae1p to connect nitrogen and carbon metabolism.

5.2 Suggested future directions

I would like to expand on these findings to suggest future directions of inquiry.

5.2.1 An efficient method for estimating mRNA abundance in barcoded

mutant pools

Much of what we know about mRNA degradation has relied on genetics, but perturb-

ing an exquisitely homeostatic system, like a living cell, can result in indirect effects as

systems of regulatory feedback percolates the signal through the network. Thus in this

work, the use of knockout mutants is the use of an indeterminately perturbed system.

Additionally, the laborious individual creation and maintenance of a collection of mu-

tants can introduce potential artifacts of suppressor and passenger mutations (Kwan et

al. 2016; Markowitz et al. 2017). The development of new methods for making mutant

pools with high internal replication and minimal strain-handling selection offers a new

paradigm of yeast genetics that avoids or minimizes some of these drawbacks (Smith
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et al. 2016). The methods described here for doing SortSeq can be adapted to any

DNA-barcode-based sequencing assay of pooled mutants.

With the integration of single-cell RNA sequencing with RNA-guided Cas9 genetic-

editing (Dixit et al. 2016; Hill et al. 2018), this approach of mRNA SortSeq may no

longer be absolutely necessary for doing high-throughput genetics for mRNA markers.

However, this method works now with common lab reagents and equipment, and only

requires quantifying the mutants across bins— not quantifying all mRNA for all mu-

tants. For questions regarding a small number of transcripts, the depth of replicates

and timepoints possible with a SortSeq design may be advantageous. Additionally, the

recalcitrance of budding yeast for single-cell molecular analysis is still technically chal-

lenging (Gasch et al. 2017). Scaling this BFF assay up to more cells input and a greater

investment in FACS sorting (Boer et al. 2017) has the potential to estimate mRNA dy-

namics across multiple timepoints for all barcodedmutants in a library. However, single-

cell RNA sequencing is advantaged in its global perspective and will presumably scale

with methodological developments to increase cell throughput (thus replicating mea-

sures per genotype) and sequencing throughput. The efficiency of the pooled SortSeq

approach could also be used to limit the search space of more precise but resource-

intensive automated assays (Worley et al. 2016), and thus a hybrid approach could be

used to efficiently increase throughput of measured transcript dynamics. SortSeq for

estimatingmRNA abundance, or other steps of gene expression, may be a useful orthog-

onal tool complementing other approaches with its potential for scaling measurements

across timepoints, conditions, variants, and replicates.

5.2.2 All metabolism is connected

We often reduce phenomena to simple models in order to create a more powerful gen-

erality, but sometimes a powerful categorization can be too far (Lazebnik 2002). In

the label-chase experiment, I found that mRNA encoding factors of carbon metabolism
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(namely pyruvate metabolism, and the isoenzymes PYK2 and HXK1) were destabilized.

In the genetic screen (BFF), we found that mutants in negative regulation of gluco-

neogenesis were enriched in mutants with high GAP1 mRNA estimated after the shift

(Figure 3.25), suggesting defects in repression. The core of nitrogen metabolism (glu-

tamate and glutamine) are intimately connected with the citric acid cycle via alpha-

ketoglutarate, and the roles of these metabolites or their rates of inter-conversion have

been proposed to play roles in signalling changes in growth (Fayyad-Kazan et al. 2016).

Thus, continued study of the metabolic networks during perturbations (like a glutamine

upshift) may reveal an unappreciated cross-talk amongst sub-networks that are cur-

rently considered as distinct. This may reveal contingent or adaptive regulation of di-

verse signalling pathways from secondary metabolite read-outs that are distal from the

experimenter’s intended input. Here, glutamine is considered as a nitrogen-source but

delivers to the cell two nitrogen atoms and a carbon skeleton that can be delivered into

the citric-acid cycle. Thus, a systematic view of metabolism during this transitions may

reveal that the effects of a glutamine upshift may be more broad than just nitrogen

metabolism and regulation, and may inform our more specific interpretation of these

perturbation experiments.

5.2.3 pH as a possible cause of mRNA destabilization

Addition of a preferred nitrogen source triggers a destabilization for several mRNA. A

similar phenomenon of mRNA destabilization is observed during the re-addition of glu-

cose to cultures limited for growth by carbon availability (Braun et al. 2016). The mech-

anisms by which this occurs appear to be diverse, although they tend to occur via the

canonical 5’-decapping mechanism. How might these two transitions be similar?

Yeast acidify their media via the action of the ATP-dependent proton export pump

PMA1, regulating their cytoplasmic pH at approximately pH 7 (or ∼3000 protons in total

Orij et al. 2011). The General Amino-Acid Permease 1 (GAP1) and other transporters
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use this proton-gradient to symport amino-acids into the cell (Grenson 1992). The re-

addition of amino acids is expected to depolarize this gradient, and GAP1 mutants who

are defective in the inactivation of Gap1p upon refeeding have a growth defect (Risinger

et al. 2006), suggesting that the process of active transport is what contributes to the

defect in cellular metabolism and growth. Glucose upshifts result in a rapid but tran-

sient reduction in pH (Kresnowati et al. 2008), thought to result from a sudden increase

in proton-release during the early steps of glycolysis (Orij et al. 2011). Similarly, the

catabolism of glutamine into alpha-ketoglutarate and free ammonium ions should pro-

duce one proton per glutamine (Magasanik and Kaiser 2002), in addition to the proton

from symport of one glutamine.

Both of these upshifts are likely to decrease cytoplasmic pH. This could affect mRNA

stability via effects through signalling pathways like Ras/PKA, which is known to affect

the signalling of this pathway through cAMP (Orij et al. 2011). Recently it has been

shown that the proton-influx from nutrient uptake via symport mechanisms is impli-

cated in directly causing the spike in TORC1 activity normally attributed to the nutrient

source (Saliba et al. 2018). The GAAC pathway via the Gcn2p kinase has been shown

to respond and be important for responding to acidification (Hueso et al. 2012). Single

or combinations of these pathways may signal to alter mRNA degradation rates.

Alternatively, changing pH can have strong biophysical effects on protein-protein in-

teractions and folding that may perturb mRNA degradation metabolism. Pab1 has been

recently shown to have a pH-dependent tendency to condense in response to stressors,

a process that affects its function likely through Ccr4-dependent deadenylation (Riback

et al. 2017; Yao et al. 2007). Additionally, the condensation of mRNA processing-bodies

is correlated with impacts on the pace of mRNA degradation metabolism in the yeast

cytoplasm (Huch and Nissan 2017; Rao and Parker 2017). Thus large changes in the

pH may directly perturb the molecular interactions that effect the processes of mRNA
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degradation.

pH changes as directly impacting the molecular processes that are sensitive to

changes in post-translational modifications and localization would be a mechanism

to explain the general phenomenon of mRNA stability changes during environmental

changes (Canadell et al. 2015; Pérez-Ortín et al. 2013). The role of metabolism or

proton-symporters in causing this would explain some of the generality of the phe-

nomenon that has been described as "transceptors" in the work of Theiveilen.

Future work to define the extent and impact of this phenomenon would make a

significant impact on our understanding of cytoplasmic processes and the determinants

of mRNA degradation metabolism. Precisely defining the changes in cytoplasmic pH on

the seconds timescale during these environmental changes would define the timescales

of interest. Metabolic label-chase experiments withmutants allow a genome-wide assay

of functional impact. Live-cell microscopy in micro (or milli) fludics devices would allow

the integration of these datasets to test if molecular-condensation events may play a

role, a hypothesis that could be explored mechanistically with biochemical in vitro work.

5.2.4 Possible mechanisms of GAP1 clearance

GAP1 mRNA is now an example of mRNA destabilized upon a nutrient upshift. What

effects this regulation? I identified several candidate factors, here I speculate on the

implications of one group of factors.

Scd6p interaction with eIF4G1 has been primarily studied, but here we see a similar

phenotype with eIF4G2 (eIF4G1 was not tested). These are homologs with very similar

functionality (Clarkson et al. 2010), although eIF4G1 is expressed higher during normal

laboratory growth conditions, ie rich media. eIF4G2 has been shown to be more highly

expressed and localized to processing-bodies during conditions of nutrient limitations,

and this is suggested to specify the storage of mRNA in anticipation of resuming rapid

growth (Brengues and Parker 2007). This initiation factor may help to globally (or specif-
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ically) reduce the initiation frequency, thus reducing the fraction of ribosomes consum-

ing tRNA under conditions of low amino-acid, and thus low charged-tRNA, availability

(Figure 5.1) This would help ensure an adequate supply of charged-tRNAs for elongation

of engaged ribosomes. Differential regulation of translation initiation could explain the

observation of sub-maximal usage of extant ribosomes in initiation-limited regimes of

cellular growth (Kafri et al. 2016; Metzl-Raz et al. 2017). Continued studies of the role of

Scd6p in specifying ribosome loading in diverse environmental conditions could reveal

a mechanism to effect these adaptive changes in translation. Additionally, a system-

atic study of the GAP1 5’ UTR could reveal cis-elements necessary for this regulation.

In particular, the study of the rapid changes that occur during the nitrogen upshift may

shed light on their role during steady-state growth.
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Figure 5.1: Hypothetical adaptive role for slowed translation under low amino-
acid conditions Low tRNA charging could limit translation elongation rates, and this
could result in ribosome collisions that have been proposed to trigger quality control
mechanisms. Limiting translation initiation in an elongation-limited regime would pre-
vent such collisions and conserve the tRNA pool to allow engaged ribosomes to finish
elongation.

The translation and degradation of mRNA are intimately coupled processes which

compete for the same substrate, the mRNA. Very recently, imaging studies have chal-

lenged the 5’-3’ closed loop model of mRNA (Adivarahan et al. 2017), and demonstrated

a strong effect of the translational status of ribosomal loading in separating the 5’ and

3’ ends of a single mRNA. Degradation is mediated by connections between 3’ and 5’

ends, with the Lsm1-7p/Pat1p complex strongly promoting the decapping of mRNA req-

uisite for degradation in the main pathway of mRNA degradation. One explanation of

the interaction between the degradation and translation initiation machinery has been

proposed as the competition for the 5’ m7G cap. The interaction of translation initia-
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tion factor eIFG2 and decapping modulator Scd6p in affecting the degradation of GAP1

suggests and interaction with ribosome loading status. One explanation that connects

these processes could be that the presence of elongating ribosomes separates the 5’

and 3’ ends of the mRNA, similar to the cohesin-dependent loop extrusion model cur-

rently used by some to explain chromatin-organization (Figure 5.2). This would directly

explain the connection between translation status and degradation for individual mRNA

as a simple function of 3’-associated decapping factors stochastically interacting with

the 5’ end of the mRNA tether.
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Figure 5.2: Hypothetical mechanism by which translation initiation and elonga-
tion inhibit mRNA degradation — ribosome extrusion. In the crowded cytoplasm,
mRNA are not likely to resemble straight lines. The tethering of the 5’ to the 3’ end by
the mRNA molecule would be expected to drive interaction of the two RNP subcom-
plexes. Some evidence points toward ribosomal elongation as a process by which the
two halves are separated, and would be a simple explanation for the observation that in-
hibiting either elongation or initiation appears to affect mRNA degradation rates, given
that the assembly of the decapping complex with the assistance of the 3’ Lsm1-7p/Pat1p
complex appears to important for decapping.
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