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ABSTRACT

The expression level of a gene in the form of RNA is determined by its
rates of synthesis and degradation. Together, these two processes determine
the overall abundance of a transcript and through these processes, a cell can
respond to changes in environmental conditions. While many investigations
have focused on how particular changes to environment affect overall RNA
levels, few have determined the underlying mechanism governing those
changes. In the absence of kinetic analyses of mRNA degradation, it is
impossible to fully understand gene regulation at its most basic level.
Therefore, it is imperative to uncouple the processes of synthesis and
degradation in any analysis in order to realize the complex working of cellular
responses.

In this dissertation, [ have investigated how a cell regulates gene
expression post-transcriptionally. In chapter 1, I describe the importance of
post-transcriptional gene regulation, and review the current understanding of
degradation pathways and cellular processes that may affect RNA degradation.
In chapter 2, I describe the development and application of a method, RATE-
seq, which enables simultaneous measurement of RNA synthesis and
degradation rates genome-wide. Using these data, as well as other genome-
wide datasets of gene specific parameters, I explore the potential factors

responsible for that variation in Chapter 3. In Chapter 4, I analyze the role of
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cellular growth rate in rates of RNA synthesis and degradation. Finally, in
Chapter 5, I give a perspective on future studies of interest in post-
transcriptional gene regulation and specifically mRNA degradation. Together,
these studies describe determinants of degradation rates for different mRNA
transcripts and they suggest areas of interest for future studies of mRNA

kinetics.
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CHAPTER 1: INTRODUCTION

1.1: Post-transcriptional control of gene expression

In response to extracellular signals, a cell must regulate the expression
of thousands of genes. The DNA of a gene is first transcribed into RNA, and the
RNA is then processed and translated into protein. Each of these steps is
subject to extensive regulation and there is extensive complexity at each of
these different stages. Although transcription is the first step in gene
expression, it is a relatively rare and slow event (Pelechano et al. 2010),
suggesting that rapid responses to environmental signals require additional
levels of regulation. Indeed, some responses occur so rapidly that they can
only be explained by post-transcriptional regulatory mechanisms (Elkon et al.
2010). Consequently, an understanding of gene expression regulation
requires an understanding of how mRNA is post-transcriptionally regulated.

Once an mRNA is processed into its mature state, it enters the
cytoplasm where it is translated, stored in a translationally repressed state, or
degraded (Figure 1.1). If the mRNA is to be translated, it is first bound by
different translation initiation factors which bring the 5’ and 3’ ends of the
message in close proximity. The 40S ribosomal subunit finds the mRNA cap
and scans the transcript for a start codon (Figure 1.2). Once found, the large
60S subunit binds and the fully formed ribosome proceeds to translate the
message (Lodish et al. 2008). Because the two ends of the message are

physically connected when in such conformation, ribosomes that have

1



5'cap
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA
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Active Translation

Figure 1.1: The state of an mRNA when in the cytoplasm
Once a mature mRNA leaves the nucleus, it can be translated by ribosomes
(left), repressed in subcellular locations (middle), or degraded (right).

40S small subunit

AAAAAAAAAAAAAAAA (/
4 .

60S large subunit
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cap

AAAAAAAAAAAAAAAA pOlyA Tail

Figure 1.2: Translation of mRNA

The mRNA transcript is translated once the fully formed ribosome is
assembled at the first start codon. For simplicity, the translation initiation
factors and the resulting polypeptides are omitted.



completed translation can rapidly find the cap and initiate translation anew.
When not in such conformation the mRNA can either be stored in a
translationally repressed manner or degraded.

Translational repression and storage of mRNA is a key step in many
biological processes. In the early developing embryo, maternally loaded
transcripts are initially in oocyte processing bodies where they lack a polyA
tail and they are translationally repressed (Wilt 1973). Following fertilization,
the mRNA is polyadenylated, ribosomes bind, and the transcripts engage in
active translation. The conversion of these maternal transcripts to a
translationally active state is imperative since the early zygote is
transcriptionally silent (Stitzel and Seydoux 2007) and all initial protein
products are a result of these transcripts (Schier 2007). In addition, the
morphogen gradient that establishes the polarity and body structure of the
organism depends on translational repression of certain mRNAs in space and
time (Lodish et al. 2008). In the absence of translational repression, the
developing embryo is compromised. Translational repression is common in
many organisms, often with mRNA stored in cytoplasmic granules referred to
as processing bodies (p-bodies) (Brengues et al. 2005). mRNAs stored in p-
bodies can re-enter the translational pool for at least a subset of the
transcriptome (Arribere et al. 2011). P-bodies are dynamic structures, that
appear or disappear, depending on a variety of extracellular conditions
(Teixeira et al. 2005). They are also the location of many components of the
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degradation machinery (Sheth and Parker 2003), consistent with the
observation that the first steps in mRNA decay involve translational
repression (Coller and Parker 2005; 2004). Although translational repression
may lead to an eventual return to translation, in most cases it is thought to be
the first step in degradation of the transcript.

Ultimately, whether an mRNA is translationally active or repressed, it is
degraded. Once degraded, the transcript can only be replaced through new
transcriptional events, which are rare and costly. The cell must therefore
carefully control initiation of the irreversible step of degrading a particular
mRNA. How the cell makes such a critical decision for different species of
mRNA is the focus of this thesis.

1.2: The factors controlling mRNA degradation

The degradation pathways of mRNA have been established based on
individual transcript studies primarily in Saccharomyces cerevisiae (Figure
1.3). Most eukaryotic mRNAs contain both a cap and polyA tail that assist in
preventing mRNA degradation (Furuichi et al. 1977; Coller et al. 1998). When
targeted for degradation, an mRNA is first deadenylated (Muhlrad and Parker
1992) by the CCR4 deadenylase (Tucker et al. 2001), decapped by the
DCP1/DCP2 decapping enzymes (Stevens 1980a; Beelman et al. 1996), and
then degraded in the 5’23’ direction by the XRN1 exonuclease (Larimer et al.

1992) to 5’ mononucleotides (Stevens 1980b). In a second degradation
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Figure 1.3: The degradation pathways of normal mRNA

Following deadenylation by CCR4, the transcript is either decapped by
DCP1/DCP2 and then degraded by XRN1 in the 5’23’ direction, or it is
degraded in the 3'>5’ direction by the exosome.



pathway, the exosomal complex degrades mRNA in the 3’5’ direction
(Mitchell et al. 1997; Anderson and Parker 1998; Schmid and Jensen 2008).
Interestingly, 5’3’ degradation machinery is localized in the same
concentrated p-bodies where mRNAs are translationally repressed. Because
p-body size and number vary as a function of environmental conditions
(Teixeira et al. 2005), this suggests the overall translational status and
degradation status of the pool of mRNA changes as well. Degradation
pathways do not appear to be redundant, and there are differences in
specificity of mRNA transcripts targeted (Parker 2012; Sun et al. 2012; 2013;
Houalla et al. 2006; He et al. 2003). The pathways and players in mRNA
degradation are now well characterized and described in exquisite detail
(Parker 2012).

Studies of individual transcripts have shown that rates of mRNA
degradation differ between transcripts (Harpold et al. 1981; Herrick et al.
1990), but the determinants of this variation were initially unclear. Early
studies of RNA decay suggested that translation plays a role in the rate at
which transcripts degrade (Singer and Penman 1972; Graves et al. 1987;
Wisdom and Lee 1991; Stimac et al. 1984). Subsequent work has shown that
the primary sequence of the mRNA transcript plays a major role in its
degradation kinetics. These sequence determinants can be found in the coding
region (Caponigro et al. 1993), as well as the 3’ and 5’ untranslated regions
(UTR) (Shaw and Kamen 1986; Muhlrad and Parker 1992; Gupta et al. 2014).
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More recently, promoter elements have been shown to effect mRNA decay
rates (Bregman et al. 2011; Trcek et al. 2011). In addition, RNA binding
proteins (Olivas and Parker 2000; Grigull et al. 2004; Chen et al. 2001; Coller
et al. 1998) as well as signaling pathways involved in response to extracellular
conditions (Albig and Decker 2001), appear to impact the degradation kinetics
of different transcripts. These observations suggest mRNA decay rates are
determined by a combination of many different factors. Although informative,
most of these studies were conducted for individual transcripts. To
understand transcriptome-wide effects of the multiple factors affecting mRNA
degradation, mRNA decay analyses must be performed on a genome-wide
scale.
1.3: Global methods for measurement of mRNA degradation

A number of methods exist for measuring mRNA degradation on a
global scale, but they all rely on the same general principle. Since mRNA
abundance is determined by synthesis and decay, then if synthesis is inhibited,
degradation can be measured by tracking the decrease in transcript
abundance with time. By inhibiting RNA polymersase II (RNA Pol II), mRNA
synthesis can be halted. Most early analyses of RNA degradation used
chemical inhibitors of different steps of transcription, including thiolutin
(Tipper 1973), which inhibits transcription initiation and a-amanitin, and
Actinomycin (Schindler and Davies 1975) which inhibit transcription

elongation. A major advance in transcriptional inhibition was introduced with
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temperature sensitive alleles of RNA Pol II (Nonet et al. 1987). The inhibition
of transcription using these different methods enabled the direct
measurement of mRNA decay for individual transcripts (Herrick et al. 1990)
and when combined with microarray technology, on the genome-wide scale as
well (Wang et al. 2002; Grigull et al. 2004; Shalem et al. 2008).

While these analyses were extremely informative, one major issue is
the relevance of the data to physiological conditions. When transcription is
inhibited, cells rapidly die (Nonet et al. 1987). Therefore, the results may not
accurately reflect what is actually occurring in living cells. One of the methods,
thiolutin, has actually been shown to effects the degradation machinery itself,
systematically overestimating the stability of transcripts (Pelechano and
Pérez-Ortin 2008). Temperature sensitive alleles require a shift to a higher
temperature, which inevitably results in changes to mRNA folding, which is
thought to affect degradation (Muhlrad and Parker 1992). Interestingly, one
study found that each method of transcriptional inhibition affects subsets of
genes differently (Grigull et al. 2004). This suggests that the method used for
transcriptional inhibition plays a major role in the resulting estimates of
mRNA decay rates. Clearly a different method, which does not affect cellular
physiology, is much desired.

An alternative method to transcriptional inhibition is the
discrimination of newly synthesized transcripts through use of labeled RNA
precursors, usually uracil or uridine. In the case of uracil, certain cell types
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can salvage extracellular uracil from the environment and rapidly convert it
into uridine monophosphate in a single step (Figure 1.4). Such enzymes exist
in protozoa (Cleary et al. 2005), fungi (Kern et al. 1990), and plants (Mainguet
et al. 2009). In higher level organisms, similar conversions are feasible using
uridine, which is transported into the cell and then phosphorylated to uridine
monophosphate. Early kinetic studies used radiolabled uracil and uridine for
analysis of decay rates of mRNA pools and specific transcripts (Greenberg
1972; Wiegers et al. 1975; Harpold et al. 1981; Kim and Warner 1983). By
estimating the specific activity of the RNA, it is possible to determine how the
abundance of labeled transcripts changes with time. While useful for studying
individual transcripts, radiolabeling of transcripts cannot be used on a genome
wide scale.

Analysis of transcriptome-wide mRNA degradation rates requires an
alternative to radiolabeled uracil that enables fractionation of new from
existing transcripts. The uracil analogue 4-thiouracil (4tU) offers such an
approach. Following addition of 4tU, the number of labeled transcripts
increases with time as with radiolabeled uracil. The thiolated transcripts can
subsequently be conjugated to a molecule that will form a disulfide bond with
the thiolated nucleotide. Inclusion of a biotin in this molecule allows for
separation with streptavidin magnetic beads. Such an approach with either

4tU or 4-thiouridine (4sU) has been utilized in a variety of organisms and cell
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Figure 1.4: The use of labeled nucleotides for metabolic labeling of mRNA
When provided uracil in the media, yeast cells will convert the uracil
nucleobase into uridine monophosphate (UMP)(left) via the Uracil
phosphoribosyl transferase (UPRT) enzyme. The UMP will then be converted
into Uridine diphosphate (UDP) and uridine triphosphate (UTP). If a labeled
nucleotide such as thiouracil is provided in the media, then the labeled
nucleotide will be incorporated into newly synthesized mRNA transcripts

(right).
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types (Cleary et al. 2005; Dolken et al. 2008; Rabani et al. 2011; Munchel et al.
2011). Use of metabolic labeling of RNA transcripts enables uncoupling of
synthesis from degradation. When carefully controlled, the effect on cellular
physiology is minimal. In combination with high throughput sequencing, RNA
degradation can be quantitatively measured, enabling a global picture of
mRNA degradation rates.

1.4: The effect of cellular growth rate on transcriptome dynamics

The abundance of an mRNA species varies with environmental
conditions (Gasch et al. 2000). However, changes in environmental conditions
frequently lead to concomitant changes in cellular growth rate. A critical
question regarding mRNA kinetics is the role of cellular growth rate in
transcriptome dynamics.

To investigate the role of growth rate on transcriptome dynamics, the
rate at which cells grow needs to be modulated. Growth rate control in batch
cultures is performed by use of different molecular forms of essential
nutrients. For example, glucose and galactose as carbon sources support
growth rates that differ by a factor of two (Tyson et al. 1979). Although
growth rate has been controlled, the secondary effects of the different
nutrients on metabolism and physiology confound interpretation of results.
Therefore, a different method for the control of growth rate is desirable.

The chemostat is a system in which growth rate is controlled in defined
environments (Hoskisson and Hobbs 2005; Ziv et al. 2013a). The chemostat
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Figure 1.5: The use of chemostat cultures to control growth rate

In the chemostat, fresh media is diluted into growing cultures of cells. The
growth rate is then controlled via the dilution rate. When the culture is diluted
at a high rate, then the cells maintain a fast growth rate. When the culture is
diluted at a slow rate, then the cells maintain a slow growth rate. Figure is
taken from (Ziv et al. 2013a).
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provides a constant supply of new media, while expelling old media and cells
(Figure 1.5). By controlling the rate at which the new media is supplied,
different steady state growth rates are attained using the same media
composition. Previous studies using the chemostat have shown that a large
fraction of the transcriptome is regulated in a growth rate dependent manner
(Regenberg et al. 2006; Castrillo et al. 2007; Brauer et al. 2008). In fact,
irrespective of the nutrient limitation used to control cell growth, more than a
quarter of the yeast transcriptome is up or downregulated as a simple linear
function of growth rate (Brauer et al. 2008).

Despite the importance of regulated cell growth and its effect on gene
expression programs, little is known about how variation in RNA synthesis
and degradation are modulated as a function of growth rate. Studies in
bacteria of several individual transcripts showed that mRNA stability changes
when doubling time is modulated using different sources of carbon (Nilsson et
al. 1984). However, because transcription was inhibited in this study by
chemical inhibition, cells are not actually growing when degradation rates
were measured. In addition, growth rate regulated using different molecular
forms of carbon cannot discriminate effects of nutrient versus effects of
growth rate. Control of growth rates using chemostats provides the ideal
system for addressing the critical question of how mRNA kinetics change as a
function of growth rate.

1.5: Determinants of variation in mRNA degradation rates
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The expression level of a gene in the form of RNA is determined by its
rates of synthesis and degradation. Together, these two processes determine
the overall abundance of a transcript and through these processes, a cell can
respond to changes in environmental conditions. While many investigations
have focused on how particular changes to environment affect overall RNA
levels, few have determined the underlying mechanism governing those
changes. In the absence of kinetic analyses of mRNA degradation, it is
impossible to fully understand gene regulation at its most basic level.
Therefore, it is imperative to uncouple the processes of synthesis and
degradation in any analysis in order to realize the complex working of cellular
responses.

In this dissertation, [ have investigated how a cell regulates gene
expression post-transcriptionally. In chapter 1, I described the importance of
post-transcriptional gene regulation, and reviewed the current understanding
of degradation pathways and cellular processes that may affect RNA
degradation. In chapter 2, I describe the development and application of a
method, RATE-seq, which enables simultaneous measurement of RNA
synthesis and degradation rates genome-wide. Using these data, as well as
other genome-wide datasets of gene specific parameters, | explore the
potential factors responsible for that variation in Chapter 3. In Chapter 4, I
analyze the role of growth rate in rates of RNA synthesis and degradation.
Finally, in Chapter 5, I give a perspective on future studies of interest in post-
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transcriptional gene regulation and specifically mRNA degradation. Together,
these studies describe determinants of degradation rates for different mRNA
transcripts and they suggest areas of interest for future studies of mRNA

kinetics.
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CHAPTER 2: DETERMINATION OF IN-VIVO RNA KINETICS
USING RATE-SEQ

This chapter was published in the journal RNA as:

Neymotin B, Athanasiadou R, Gresham D. 2014. Determination of in vivo RNA
kinetics using RATE-seq. RNA 20: 1645-1652.

Supplemental tables of genome-wide measurements are available on the RNA
website

2.1: Abstract

The abundance of a transcript is determined by its rate of synthesis and
its rate of degradation; however, global methods for quantifying RNA
abundance cannot distinguish variation in these two processes. Here, we
introduce RNA approach to equilibrium sequencing (RATE-seq), which uses in
vivo metabolic labeling of RNA and approach to equilibrium kinetics, to
determine absolute RNA degradation and synthesis rates. RATE-seq does not
disturb cellular physiology, uses straightforward normalization with
exogenous spike-ins, and can be readily adapted for studies in most organisms.
We demonstrate the use of RATE-seq to estimate genome-wide kinetic
parameters for coding and noncoding transcripts in Saccharomyces cerevisiae.
2.2: Introduction

Remodeling of gene expression is critical for a broad range of biological
processes from the cell division cycle and embryo development (Schier 2007)

to cellular responses to extracellular signals (Gasch et al. 2000). Regulation of
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transcript abundance is controlled by the combined action of transcript
synthesis and transcript degradation. Although the regulation of transcript
synthesis has historically been the primary focus of investigation, there is
accumulating evidence that RNA degradation plays an important role in
dynamic biological processes (Elkon et al. 2010). A comprehensive
understanding of the regulation of gene expression programs, and the
development of mathematical models that explain the dynamics of gene
expression, requires the accurate estimation of absolute rates of both RNA
synthesis and RNA degradation in vivo.

A variety of high-throughput methods have been introduced with the
goal of estimating in vivo rates of either RNA synthesis or degradation.
Genomic run on assays (Garcia-Martinez et al. 2004) provide a means of
estimating mRNA synthesis rates; however, these methods require isolation of
nuclei or permeabilization of cells, which likely compromises the physiology of
cells. Until recently, mRNA decay rates have been estimated using
transcriptional inhibition (Wang et al. 2002; Grigull et al. 2004; Shalem et al.
2008) using either temperature-sensitive alleles of RNA polymerase II or
chemical inhibition of transcript production. While these methods succeed in
inhibiting transcript synthesis, they typically result in a stress response or
cellular death (Nonet et al. 1987) resulting in the estimation of mRNA decay

rates that may have little physiological relevance.
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Recently, methods using in vivo metabolic labeling of mRNAs (Cleary et
al. 2005; Dolken et al. 2008) have been introduced using either the nucleobase
4-thiouracil (4tU) or nucleoside 4-thiouridine (4sU), which introduce a
reactive thiol group into RNAs. Following RNA purification, the presence of a
thiol group in RNAs enables conjugation to N-[6-(Biotinamido)hexyl]-3'-(2'-
pyridyldithio)-propionamide (biotin-HPDP) and subsequent fractionation
using streptavidin-coated magnetic beads. Genome-wide estimation of in vivo
kinetic parameters using metabolic labeling of RNA with 4tU has been
reported using different experimental designs. Pulse-chase labeling with 4tU
(Munchel et al. 2011) represents a promising approach to estimating mRNA
degradation rates. However, internal recycling of labeled nucleotides (Puckett
et al. 1975; Nikolov and Dabeva 1985) may result in an incomplete chase
thereby confounding the estimation of mRNA degradation rates. Alternatively,
comparative Dynamic Transcriptome Analysis (cDTA) (Sun et al. 2012)(an
updated version of Dynamic Transcriptome Analysis [DTA]) (Miller et al.
2011)estimates rates of mRNA degradation by determining the ratio of labeled
to total RNA using hybridization to a DNA microarray at a single time point
following addition of 4tU. However, cDTA requires the manufacture of
customized dual species DNA microarrays to normalize hybridization signals,
and relies on a single time-point after labeling, which may not accurately
capture kinetic parameters. Indeed, the use of different individual time points
has a significant effect on the estimated degradation rates for at least a subset
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of transcripts (Dolken et al. 2008), which is likely the case for similar
approaches using RNA-seq (e.g., (Schwanhdusser et al. 2011)).

Here, we report a general method for accurate measurement of
absolute RNA kinetic parameters in vivo. We use approach to equilibrium
labeling (Greenberg 1972), which minimizes exposure of cells to 4tU and is not
affected by nucleotide recycling. We undertook a series of rigorous controls to
optimize each step of the RATE-seq method. By using strand-specific
sequencing (Parkhomchuk et al. 2009) in combination with ribosomal
depletion, we measured rates of decay for a variety of different types of RNA,
including noncoding RNA and snRNA. We developed a normalization method
using multiple spike-in RNAs that also enables identification and correction for
technical artifacts. To account for the nature of the data (i.e., overdispersed
count data in which the variance is greater than the mean) in model fitting we
used a weighted nonlinear regression to estimate parameters. We used RATE-
seq to define the regulatory landscape of steady-state transcript levels, defined
as a function of the underlying kinetic parameters genome-wide, and find that
many transcripts in budding yeast have similar steady-state levels but differ
greatly in their rates of production and degradation. RATE-seq can be readily
implemented in any organism, making it a generally applicable method for
characterizing the steady-state in vivo kinetics of RNA with unprecedented
resolution.

2.3: Results
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2.3.1: Thiouracil labeling follows approach to equilibrium kinetics

The rate of change in RNA abundance (d[RNA]/dt) can be modeled as a
function of a constant rate of synthesis (k) and a degradation rate proportional
to RNA abundance (a[RNA]) using the relationship d[RNA]/dt = k-a[RNA]. If a
labeled nucleotide is added to the culture the concentration of labeled
transcript will increase with time to an equilibrium value at a rate solely
determined by the transcript's degradation rate constant (arna) and the cells’
division rate constant (otgrowth) (i.€., ¢ = ARNA + Qgrowth). Approach to equilibrium
labeling, using radiolabeling, was developed over 40 yr ago to estimate the
rate of total mRNA turnover (Greenberg 1972) and was subsequently used to
study individual transcripts using transcript-specific probes (Harpold et al.
1981; Kim and Warner 1983). To apply approach to equilibrium labeling on a
genome-wide scale we developed a method using 4tU-labeling and RNA-seq
(Figure 2.1A). Our method relies on the presence of an endogenous copy of
uracil phosphoribosyltransferase (UPRT) in Saccharomyces cerevisiae
(encoded by FUR1), which converts 4tU into 4-thiouridine monophosphate
allowing its incorporation in RNA. For the purpose of normalizing RNA-seq
libraries from different time points following labeling, we added a constant
quantity of three different in vitro-transcribed thiolated transcripts
(Supplemental Table 2.51) to isolated RNA prior to fractionation. As
deadenylated transcripts can persist in the cytoplasm or be readenylated in
some species (Wilt 1973), we used rRNA depletion rather than poly(A)
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fractionation. The lack of poly(A) selection step also enables the analysis of
both coding and noncoding transcripts.

We first tested the efficiency of 4tU incorporation in S. cerevisiae and its
physiological consequences. Consistent with previous reports (Munchel et al.
2011) we find that yeast cells take up 4tU provided in the growth medium and
incorporate it into RNA (Supplemental Fig. 2.S1). However, we find that cells
lacking a functional uridine monophosphate biosynthetic pathway (i.e., ura3-)
cannot grow when supplemented with 4tU alone (Supplemental Fig. 2.52),
suggesting that highly thiolated transcripts are not tolerated by the cell. As we
found comparable 4tU incorporation in a ura3- strain and prototrophic strain
(Supplemental Fig. 2.S1) we performed all subsequent experiments in a
prototrophic strain. Over the timescale and concentrations of 4tU used for
RATE-seq we detect no effect on cell growth (Supplemental Fig. 2.S3),
although prolonged exposure and higher concentrations appear to have slight
effects (Supplemental Fig. 2.54). We confirmed that the concentration of 4tU
used for RATE-seq does not affect global gene expression (Supplemental Fig.
2.S5). Using a dot blot and colorimetric assay (Materials and Methods), we
find that the pool of newly synthesized mRNA approaches equilibrium
consistent with a model of constant synthesis and exponential degradation
(Figure 2.1B). Consistent with expectation, the equilibrium value of labeled

RNA differs with different concentrations of 4tU, but the kinetics of the
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Figure 2.1: RATE-seq enables in vivo measurement of RNA Kinetics
(a) Overview of approach to equilibrium labeling and analysis using RATE-seq.
The increase in labeled transcript with time Y(t) modeled using the

relationship ¥ (1) =Y, (1- ¢~ trn w1710y where Yeq is the abundance of

labeled transcript at steady state, arna is the transcript's degradation rate
constant, agroweh is the growth rate constant of the culture, ¢t is the time after
addition of label, and ¢t is a time delay between the addition of label and the
time at which labeled transcripts can be detected. Red arrows indicate points
at which the RNA samples are recovered following addition of 4tU. (b)
Incorporation of 4tU conforms to approach to equilbrium kinetics. An
equivalent quantity of biotinylated polyadenylated RNA from timepoints
following addition of 4tU was bound to a membrane and visualized using
streptavidin alkaline phosphatase and chemifluorescence. Values are shown
along with the model fit.
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approach to equilibrium is unaffected (Supplemental Fig. 2.S6). As with
radiolabeling experiments in mammalian cells (Greenberg 1972), the mRNA
fraction approaches equilibrium faster than total RNA (Supplemental Fig.
2.87), which reflects the relative stability of rRNA compared with mRNA.
2.3.2: Measurement of RNA degradation rates transcriptome-wide

We performed RATE-seq using replicate yeast populations growing in a
defined rich medium during log phase. Following RNA-seq analysis, the
relative counts (Supplemental Tables 2.52, 2.S3) of spike-ins are observed to
decrease with time and concomitantly, the proportion of counts mapping to
the transcriptome increases (Figure 2.2A). We found that the use of multiple
spike-ins facilitated identification of technical biases potentially introduced
during library preparation (Supplemental Fig. 2.S8). The correlation of per
transcript counts between replicates at the same time point is high (Spearman
p = 0.98; Supplemental Fig. 2.S9). To normalize transcript counts
(Supplemental Table 2.54) we first determined the ratio of counts for each
transcript to each spike-in, scaled each ratio, and then multiplied by the mean
count of all spike-ins across all experiments to preserve the scale of the data
(Materials and Methods). We studied the mean-variance relationship at each
time point and found that the data are overdispersed (Supplemental Fig.
2.510). Therefore, to estimate the degradation rate constant for individual
transcripts we performed a nonlinear weighted regression using normalized
counts from the combined data set (Figure 2.2B) (Materials and Methods). We
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determined confidence intervals for the estimated decay constant for each
transcript using bootstrapped values from each time-point (Materials and
Methods).

Using RATE-seq we determined degradation rate constants, and
corresponding half-lives, with 95% confidence intervals (CI) for 5308 mRNAs
(Supplemental Table 2.S5). Most transcripts are rapidly degraded, with a mean
and median half-life of 15 and 10 min, respectively (Figure 2.2C). Thus, RATE-
seq analysis estimates RNA half-lives that are shorter than most previous
global estimates (Wang et al. 2002; Grigull et al. 2004; Miller et al. 2011;
Munchel et al. 2011). Using bootstrapped values we find that for the majority
of transcripts the estimated degradation rates have confidence intervals of
+20% (Supplemental Table 2.S5). A previous study (Wang et al. 2002)showed
that transcripts encoding functionally related gene products have similar
decay rates. We find that genes within the same Gene Ontology (GO) terms
also have similar decay rates (Supplemental Table 2.56) although the
agreement between the estimated rates from the two studies is poor.
Functional categories representing the most rapidly degraded transcripts
include “Helicase activity” and “Regulation of cell cycle” whereas categories
representing the most stable transcripts include “Cytoplasmic translation” and
“Ribosome” (Figure 2.3A).

In addition to variation in mRNA degradation rates we find evidence for
variation in rates of noncoding transcripts including small nuclear RNA
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Figure 2.2: Global RNA Kkinetics determined using RATE-seq

(a) The relative fraction of reads mapping to the transcriptome increases with
time whereas the fraction of reads mapping to each spike in decreases. (b)
Representative example of RATE-seq data for a rapidly degraded gene (CTK1,
purple) and a slowly degraded gene (GIM4, red). 95% CI for the estimated
degradation rate constant are indicated by dashed lines. (c¢) The distribution of
half-lives for all coding transcripts with the mean (red line) and median (blue
line) half-life indicated.
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(snRNA) and long noncoding RNAs (IncRNA) (Figure 2.3B). The population
snRNAs appear to be more stable than coding transcripts (Figure 2.3B) and
have similar half-lives, suggesting that the post-synthesis fate of snRNAs is
coordinately regulated.

We compared mRNA half-lives estimated using RATE-seq to previously
reported estimates in Saccharomyces cerevisiae (Supplemental Fig. 2.S11). As
noted in previous reports (Miller et al. 2011; Munchel et al. 2011), the
agreement among mRNA half-lives using different methods is poor.
Surprisingly, RATE-seq estimates correlate poorly with those reported using
pulse-chase labeling with 4tU (Munchel et al. 2011). Our method has a number
of differences that may account for this including the absence of poly(A)
selection, the use of multiple spike-ins for normalization, and the use of
untransformed data for nonlinear model fitting, which avoids errors
introduced by linear transformation of data. In addition, mathematical
modeling suggests that nucleotide recycling may slow the observed chase
resulting in a systematic underestimation of mRNA decay rates (Supplemental
Fig. 2.512). Our estimates are most similar to results obtained using DTA
(Miller et al. 2011), which may reflect the fact that both methods isolate newly
synthesized transcripts following label addition. Importantly, consistent with
both existing in vivo labeling methods in budding yeast (Miller et al. 2011;
Munchel et al. 2011), we find that the half-lives for ribosomal protein-coding
genes is greater than the median half-life of all mRNAs (Supplemental Fig.
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2.813). In contrast, in all studies using transcriptional inhibition ribosomal
protein-coding transcripts are found to degrade as rapidly as the
transcriptome average, which may reflect a stress response to the profound
impact on cell physiology caused by these methods.
2.3.3: The landscape of regulated transcript abundance

At steady state, transcript abundance levels are constant (i.e.,
d[RNA]/dt = 0) and transcript synthesis and degradation are related by the
expression k = a[RNA]. Therefore, the rate of transcript production can be
estimated using the degradation rate constant and the steady-state abundance
of the transcript. As only a fraction of transcripts are labeled with 4tU (Figure
2.1A), RATE-seq does not quantify RNA abundance. Therefore, we used
published estimates of absolute transcript abundance from quantitative
sequencing data (Lipson et al. 2009) to estimate rates of mRNA synthesis in
steady-state conditions (Supplemental Table 2.S5). Our estimates of mRNA
synthesis rates are in good agreement with previous estimates using Genomic-
Run-On (GRO) assays (Supplemental Fig. 2.S14;(Pelechano et al. 2010)) with a
linear correlation coefficient of r = 0.5. A source of discrepancy between the
two data sets may be that our study estimates the rate of production of mature
transcripts, whereas GRO estimates nascent transcription rates.

The combinatorial effect of variation in synthesis and degradation rates

defines the landscape of regulated transcript abundance (Figure 2.3C). Within
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Figure 2.3: Coordinated regulation of mRNA abundance levels

(a) Decay rates for sets of functionally related genes defined by GO term
categories are non-randomly distributed. (b) RATE-seq can be used to
estimate the Kkinetics of snRNAs (e.g. snR48 (pink circles)) and IncRNAs (e.g.
ICR1 (blue triangles)). The boxplot (inset) displays the half-lives for snRNA
and all other transcripts. (c¢) The global relationship between transcript
synthesis and degradation in S. cerevisiae. The abundance of each mRNA is
categorized into quartiles (first quartile: 0.001-1.58 mRNAs/cell (cyan),
second quartile: 1.6-2.8 mRNAs/cell (blue), third quartile: 2.8-4.8 mRNAs/cell
(green), fourth quartile: 4.8-66 mRNAs/cell (red)).
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this landscape it is clear that classes of transcripts defined by rapid synthesis
and degradation have equivalent steady-state levels to classes of transcripts
that are comparatively slowly synthesized and degraded. Understanding the
sources and consequences of these different kinetics is central to
understanding gene expression regulation.

2.4: Discussion

The abundance of a transcript is determined by both its rate of
synthesis and its rate of degradation. To fully characterize the regulation of
mRNA levels these rates must be uncoupled. Moreover, studying transcripts
under their native control is critical as transcript stability may depend on cis-
acting factors that associate with promoter regions (Bregman et al. 2011;
Trcek etal. 2011).

RATE-seq is an efficient and general means of estimating
transcriptome-wide absolute rates of RNA synthesis and degradation in
steady-state conditions. In contrast to existing methods, it does not interfere
with the cell's physiology, provides enhanced accuracy, obviates the potential
impact of nucleotide recycling, and can be applied to a variety of types of
transcripts on a genome-wide basis. In principle, incorporation of 4tU is
feasible in all organisms using either endogenous or heterologous expression
of UPRT (Cleary et al. 2005). Alternatively, 4sU can be used in organisms
without endogenous nucleotide salvage pathways (Dolken et al. 2008).
Therefore, we expect that RATE-seq will be of great utility for investigating the
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relationship between RNA synthesis and degradation in a variety of genotypes
and organismes.
2.5: Materials and methods
2.5.1: Strains and growth conditions

Experiments were performed using either FY4 (MATa) or FY3 (MATa
ura3-52), which are isogenic to S288C. All RATE-seq analyses were performed
using the prototrophic strain FY4 in which a single colony was inoculated into
an overnight culture in synthetic complete medium containing 500 pM uracil.
The saturated overnight culture was back-diluted 1:50 into fresh medium of
the same composition. Log phase cells were treated with 4tU to a final
concentration of 500 pM. Cells were collected at multiple time points over the
course of 100 min by vacuum filtration onto nitrocellulose filters and
immediately frozen in liquid nitrogen.
2.5.2: Synthesis of polyadenylated thiolated spike-in RNAs

To generate three RNA spike-ins with similar GC content to S. cerevisiae
mRNAs, we cloned three different regions of the Bacillus subtilis genome. The
three spike-ins (spike-inzoo, spike-inggo, spike-ini200) have a GC content of 0.42
and lengths of 700, 900, and 1200 bases, respectively. Three regions of the B.
subtilis genome were PCR amplified and cloned into the pSP64 poly(A) in vitro
transcription vector (Promega). Plasmids were linearized using EcoRI

restriction and run off transcription performed as recommended by the
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manufacturer with the addition of thiolated UTP:UTP at a ratio of 2:1 in the
reaction. Spike-in RNA was subsequently treated with DNAse and purified.
2.5.3: RNA extraction

RNA was purified from cells using a hot acid phenol/chloroform
extraction. Briefly, 750 pL of lysis buffer (10 mM EDTA, 10 mM Tris, 0.5%SDS)
was added to each sample and vortexed. An equal volume of acid phenol was
then added to the sample and vortexed. Samples were incubated for 1 h at
65°C with occasional vortexing. Filters were removed and samples were
placed on ice for 10 min. After centrifugation, the aqueous phase was
transferred to Phase Lock Gel (PLG) tubes and an equal volume of chloroform
added. The aqueous phase was collected and RNA was precipitated using two
volumes of 95% ethanol and 0.1 volume of 3 M Sodium Acetate. RNA pellets
were washed with 70% ethanol twice and dried at room temperature for half
an hour and resuspended in RNAse free water.
2.5.4: RNA biotinylation and streptavidin pull down

For biotinylation reactions 100 pg of total RNA was added to a solution
of 10 mM Tris-HCI (pH 7.4), and 1 mM EDTA. Biotin-HPDP (1 mg/mL) was
added to a final concentration of 2 pg for each 1 pg of RNA (Supplemental Fig.
2.815A). In addition, the three spike-in RNAs were pooled and 12 ng of the
mixture added to the reaction mixture containing 100 pg of RNA sample. The
reaction was allowed to proceed for 3 h in the dark, after which reactants were
removed using chloroform extraction. RNA pellets were precipitated with 1
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volume of isopropanol and 1/10 volume of 5 M NaCl. RNA pellets were washed
once with 75% ethanol and resuspended in RNase-free water.

The biotinylated RNA was fractionated from unlabeled RNA using
streptavidin magnetic beads (NEB) (Supplemental Fig. 2.S15B). Pull downs
were performed essentially as previously described (Zeiner et al. 2008). Beads
were washed four times and then transcripts were cleaved from magnetic
beads using 3-mercaptoethanol (5%). RNA was precipitated with 1 volume
isopropanol, 1/10 volume NaCl, and 3 ug of glycogen (Supplemental Fig.
2.5150Q).

2.5.5: Dot blot analysis

For isolation of poly(A) RNA from total RNA, Oligo d(T)25 magnetic
beads (New England Biosciences) were used in combination with a 12-tube
magnetic rack. Beads were washed once in a binding buffer/wash buffer (20
mM Tris-HCI at pH 7.5, 500 mM LiCl, 1 mM EDTA) similar to manufacturer
recommendations except that DTT was left out of the buffer, as this would
cleave the RNA conjugated to biotin-HPDP. At least 40 pg of total RNA was
added to 200 pL of beads. Samples were washed in 1x binding buffer, then 1x
low-salt buffer, and eluted from beads in TE buffer following incubation for 3
min at 50°C.

For each sample, 200 ng of mRNA was blotted onto a Zeta-Probe nylon
membrane (BioRad) using a BioRad DotBlot. The RNA was cross-linked using a
UV cross-linker. The blot was blocked using blocking buffer (PBS, 10% SDS, 1
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mM EDTA) for 20 min. Samples were then probed with Streptavidin Alkaline
phosphatase in blocking solution (1:1000). The membrane was washed in PBS
at decreasing concentrations of SDS (10%, 1%, 0.1%) for 10 min each. Spots
were visualized using ECF substrate (GE Healthcare), visualized on a Typhoon
FLA 9500, and analyzed using ImageQuant software.
2.5.6: Depletion of ribosomal RNA

Following fractionation of thiolated transcripts, 100 ng was depleted of
18S and 25S ribosomal transcripts. Two rounds of ribosomal depletion were
performed using LNA probes provided in the Ribominus kit (Invitrogen). RNA
was then precipitated using 2 volumes ethanol, 1/10 volume 3 M sodium
acetate, and glycogen. Pellets were resuspended in 6 pL of RNAse free water.
2.5.7: Library preparation for Illumina sequencing

First strand synthesis of rRNA-depleted RNA was performed using the
Super Script III kit (Life Technologies) and random priming using random
hexamers. Second-strand synthesis was performed with dUTP in place of dTTP
to enable strand-specific sequencing (Parkhomchuk et al. 2009). Samples were
end repaired, A-tailed, and ligated to NEXTflex DNA Barcodes for multiplex
sequencing. Adapter dimers were removed using AMPure beads (Agencourt).
Samples were then treated with UNG and amplified using 10 cycles of PCR
prior to sequencing. Samples were sequenced using an [llumina 2000 single-
end 50-bp run.
2.5.8: Sequence alignment
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[lumina sequencing reads were first filtered for rRNA sequences by
aligning to the ribosomal DNA of the yeast genome using Bowtie with default
settings. All remaining reads were then aligned to the rest of the yeast genome
and the three spike-in sequences using Bowtie2 (Langmead et al. 2009). After
converting SAM files to BAM files, reads were filtered based on quality scores
of 20 or higher. The resulting BAM files were then used to calculate total
counts per transcript using the featureCounts function of the Subread package
in R, using the argument for strand specific counting. Each library had
between 5 and 13 million reads mapping to non-rRNA transcripts.

2.5.9: Data normalization

We performed RATE-seq using two biological replicates, with time points k
=3,5,7, 11, 13 and 25 minutes following label addition for replicate 1, and time
points k =5, 7,9, 13, 20, 25, 30 and 100 minutes following label addition for
replicate 2. To normalize data within each time series we employed the following
normalization scheme:

1) We first computed a ratio, 4, between the read count M, for each gene i in
replicate j at time point k£ and the read count S for each spike-in # in replicate j at
time point k:

A M., /S

e = M 1S, where n=1,2,3 for each of the three spike-ins and j=1 or 2

depending on the replicate
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2) We then computed a scaling factor, S, for each spike-in by calculating the
average ratio between each spike-in and a reference spike-in across all K time

points within a replicate j:

k=K,
B, =( ;Snjk/sn=ljk)/1(j

3) To normalize the data within a replicate, j we multiplied the ratio, 4 for each
gene by the scaling factor:

Cne = Aiic” B,

4) To return the data to the original scale we then multiplied the normalized ratio
for each gene by the average spike-in count across all K time points from both

replicates:
j=2 j=2
Ninjk = ijk' (Esnjk/EKj)
j=1 j=1

We excluded all data from a time-point if a spike-in was deviant in its expected
behavior. Thus, each time point has between 2-6 values depending on whether the
time point was replicated and whether any data were removed.
2.5.10: Model fitting

The approach to equilibrium method assumes transcript decay follows first
order kinetics and transcript synthesis follows zeroth order kinetics. This leads to
the following two equations:

1.Y

unlabeled

—at
- Ysse

2' Yss = Yunlabeled + Ylabeled H
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where Y, naperea 18 the abundance of unlabeled transcript, Yjgpereq 1s the abundance of
labeled transcript, Y, is the total abundance of a transcript at time t, and « is the
transcript's degradation rate constant. The approach to equilibrium equation is then
obtained by substitution of equation 1 for the value of Yynjabeled in €quation 2 and
solving for Yiuperea leadingto Y., =Y, (1-€™)

Based on this equation, we modeled the abundance of labeled transcript for each

mRNA as Y (1) =Y, (1- ¢~ @t 1710y ywhere Y(2) is the amount of the labeled

transcript at time ¢, Y, is the abundance of labeled transcript at steady state, agyy is
the transcript's degradation rate constant, g is the growth rate constant of the
culture, ¢ is the time after addition of label, and #, is a time delay between the
addition of label and the time at which labeled transcripts can be detected.

To calculate the degradation rate constant for each transcript, we performed
non-linear regression, estimating both a (the summation of azy4 and g oum) and Ye,.
To account for biological variation, we combined the data from both replicates to
generate a single parameter estimate for azy4 and Y.,. Because the variance of the
RATE-seq data increases with increasing time we used weighted least squares
regression with weights of 1/Y, which avoids undue influence of later time points
on the model fit, using the gn/s function in the n/me package in R. To minimize the
parameters that we needed to estimate we set the time delay parameter, #; equal to 2
minutes since labeled transcripts were pulled down as early as 3 minutes after
addition of 4tU. As the doubling time of the culture is 100 minutes, g ou 1S €qual

to 0.0069. Transcript half-lives were calculated as In(2)/(a-0.0069).
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We calculated 95% confidence intervals of the estimated degradation rate
constant by randomly sampling with replacement the equivalent number of points
from normalized data for each mRNA 1000 times. When resampling fails to
sample timepoints towards the latter part of the curve we found that the non-linear
regression frequently failed to converge. Therefore, we used bootstrapped values
to estimate only a keeping Y., the same for all iterations.

The data and model fit for each gene can be visualized using the available R
script rateSeqFit. R using the function curve.generator().

2.5.11: Assessment of labeling efficiency and bias

We estimated the amount of 4tU labeling using a colorimetric Dot Blot
analysis of labeled RNA and a synthesized oligonucleotide containing a 5’
biotin label. A standard curve was generated by diluting known quantities of
the labeled oligonucleotide and used to estimate the number of labels in an
RNA sample of known mass. Assuming an average transcript length of 1200
nucleotides we estimate that approximately one out of 500 uracil is labeled
after 35 min of labeling under our conditions.

To test whether 4tU is preferentially incorporated, we performed a
DNA microarray analysis of 4tU labeled RNA compared with the
unfractionated sample (Supplemental Fig. 2.516). Consistent with previous
observations (Miller et al. 2009), there is a slight dependency of label
incorporation on length. Thus, RNA-seq analysis of 4tU labeled transcripts is

expected to result in increased counts for longer transcripts as a result of both
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increased labeling efficiency and the larger target size of longer transcripts
(Supplemental Fig. 2.S17). This labeling bias affects the steady-state
equilibrium value for each transcript (Supplemental Fig. 2.S18). However, this
bias does not affect the estimate of the decay rate as there is no relationship
between the counts of labeled transcripts at any time point and our estimate of
the decay rate constant (Supplemental Fig. 2.519).
2.5.12: Estimation of mRNA synthesis rates

To estimate the synthesis rate for each transcript we assumed that the
rate of change in mRNA (dRNA/dt) at steady-state is equal to zero and
therefore used the relationship k =a[mRNA]. We also assumed 60,000
mRNA/cell (Zenklusen et al. 2008). Confidence intervals for mRNA synthesis
rates were calculated using the 95% CI values determined for agrna.
2.5.13: Gene enrichment analysis

Gene enrichment analysis was performed as in (Gresham et al. 2010).
Non-random distribution of decay rates for each GO SLIM category as
compared with the genes not in the category were identified using the
Wilcoxon-Mann-Whitney test in R.
2.5.14: R functions and packages

All analyses were performed using R (Team) and several open source
packages. The functions featureCounts of the Subread package and gnls of the
nlme package were used for data analysis of nonlinear regression. The
following functions and packages, in addition to base functions in R and
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custom written functions were used for presentation of figures: subplot of the
TeachingDemos package, axis.break of Plotrix, and heatscatter of LSD.

2.5.15: Accession codes

Sequencing data are available through the Sequence Read Archive under
BioProject ID PRJNA236614.
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2.6 Supplemental Figures:
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Figure 2.S1: Thiouracil is taken up by prototrophic and auxotrophic cells
with equal efficiencies

The absorbance spectra of equivalent amounts of RNA purified from a ura3-
and prototrophic strain grown in the presence of uracil and either the
presence or absence of 4tU. 4tU has maximal absorption at 327nm resulting in
a unique peak of absorbance in RNA labeled with 4tU (top inset). 2ug of the
same total RNA sample from an auxotrophic cell grown in the (i) absence and
(ii) presence of 4tU was compared to the same amount of RNA isolated from a
prototrophic strain grown in the (iii) absence and (iv) presence of 4tU.
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Figure 2.S2: Thiouracil cannot supplement a uridine monophosphate
auxotroph

Cell densities were determined following 24 hours growth in the presence of
100uM uracil and different concentrations of 4tU. The presence of 4tU has no
visible effect on final culture density for a prototrophic strain (blue diamonds)
or an auxotrophic strain (brown circles). A ura3- strain does not grow when
supplemented with 4tU in the absence of uracil (orange circle).
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Figure 2.S3: Thiouracil has no detectable effect on cell growth for the
duration of labeling

Cells in log phase growth supplemented with 500uM uracil were treated with
500uM 4tU (blue curve) or an equivalent volume of DMSO (red curve). Error
bars correspond to 2 standard errors of the mean (95% confidence interval) of
two biological replicates and at least two technical measurements of each.
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Figure 2.S4: Thiouracil minimaly affects cell growth at higher
concentrations and longer durations of labeling

Cells were grown in 500uM uracil and varying concentrations of 4tU.
Measurement of changes in cell density with time was initiated after at least
two population doublings. The presence of 4tU seems to have a slight effect on
rate of growth with increasing exposure times and higher concentrations.
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Figure 2.S5: Effect of 4tU exposure on steady-state transcript levels

RNA from cells treated with 4tU for an extended period of time was compared
to RNA from cells never exposed to 4tU. Microarray analysis shows that in
both (a) a strain defective in UMP biosynthesis (ura3-) and (b) a prototrophic
strain, the differences in steady state RNA levels are minimal, with 99% of
transcripts having a logz fold change from-1 to 1 (Table S7).
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Figure 2.S6: The extent of 4tU labeling is concentration and time
dependent

The kinetics of the approach to equilibrium is essentially the same for total
RNA grown in the presence of 250uM or 500uM 4tU. The expected difference
in the final steady state level of labeled RNA is the only observed difference.
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Figure 2.S7: Total RNA and mRNA have distinct labeling Kkinetics
Equivalent masses of biotinylated polyadenylated RNA and non-
polyadenylated RNA were bound to a nitrocellulose membrane using a dot
blot and visualized with streptavidin alkaline phosphatase and
chemifluorescence. The signal for each RNA sample was normalized to the
maximal signal following 24 hours of growth. Non-polyadenylated RNA, which
is primarily rRNA, approaches its equilibrium value more slowly than
polyadenylated mRNA.
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Figure 2.S8: Identification of technical biases in library preparation using
multiple spike-ins

In our experiments, we expect the relative abundance of each spike-in to
decrease with time. We also expect that the ratio between spike-ins, which
have been added from the same pool, should be relatively constant across
time. We found that at timepoint t=17 minutes spike-ini200 is deviant from its
expected behavior (shown) as are spike-in7oo and spike-inggo (not shown).
Simultaneously, the ratio between spike-in7oo and spike-in1200 (inset) is
relatively uniform across time, with the exception of t=17 minutes. These two
metrics suggest that technical biases in library preparation have been
introduced in this sample, and the timepoint was excuded from further
analysis.
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Figure 2.S9: Total counts per transcript are highly correlated between
replicates

Total counts per mRNA were compared for replicate experiments at the same
time point (5 minutes) following label addition. The Spearman correlation
between replicates is p=0.98.
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Figure 2.S10: Normalized transcript count data are over-dispersed

The mean-variance relationship for normalized data. The expectation from a
Poisson distribution of equality between transcript mean and variance is
indicated by the red line.
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Figure 2.S11: Comparison of estimated RNA half-lives between our
studies and previous publications
The Pearson correlation between our study and (a) (Wang et al. 2002), (b)

(Grigull et al. 2004), (c) (Shalem et al. 2008), (d) (Miller et al. 2011), and (e)
(Munchel et al. 2011) is indicated. The Pearson correlation between (Wang et
al. 2002) and (f) (Grigull et al. 2004), (g) (Shalem et al. 2008), (h) (Miller et al.
2011), and (i) (Munchel et al. 2011) is indicated.
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Figure 2.S12: The effect of nucleotide recycling on pulse-chase labeling
The population of labeled transcripts can be modeled by the equation dY/dt =
X[ -aY where a is the degradation rate constant, Y is the number of transcripts,
p is the rate of synthesis, and x is a coefficient ranging from 0-1 denoting the
fraction of newly synthesized transcripts that are labeled. If x=1 all new
transcripts are labeled following the chase whereas when x=0 no newly
synthesized transcripts incorporate the label following the chase. In the case
of a pulse-chase experiment one starts with a labeled population of
transcripts. In the scenario of a perfect chase, x=0, and the observed rate of
mRNA degradation (red) is the same as that estimated using approach to
equilibrium (blue curve), which does not depend on synthesis kinetics.
However, if the label is recycled then x>0 and the label will be incorporated
into newly synthesized transcripts following the chase. For example, if x = 0.1,
0.2, or 0.3 the degradation rate is under-estimated by 29% (brown curve),
45% (green curve), and 57% (purple curve) respectively.
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Figure 2.S13: Genome-wide degradation rate estimates for the ribosomal
protein (RP) regulon are most similar based on method

We compared methods using transcriptional shut-off (Wang et al. 2002;
Grigull et al. 2004; Shalem et al. 2008) with methods using 4tU labeling
(Munchel et al. 2011; Miller et al. 2011) including the current study. The study
is indicated by the first author's name. (a) Using transcriptional shut off,
transcripts belonging to RP regulon (pink) are found to have half-lives similar
to the entire transcriptome (blue) whereas (b) all estimates using in vivo
metabolic labeling find that the RP transcripts are long-lived relative to the
rest of the transcriptome.
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Figure 2.S14: Comparison of mRNA synthesis rates estimates using RATE-
seq and GRO

We compared rates of synthesis using RATE-seq with those estimated using
Genomic Run On (Pelechano et al. 2010). The estimates are positively
correlated.
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Figure 2.S15: Optimization of 4tU labeling protocol

Each step of the 4tU labeling procedure was optimized as follows. (a) We
determined that the quantity of biotin-HPDP used for conjugating to 4tU-
labeled RNA was sufficient by using a fixed amount of biotin-HPDP with
differing quantities of 4tU -labeled RNA. There is no decrease in signal with
increasing quantities of RNA using a colorimetric dot blot analysis indicating
that biotin-HPDP is in excess for the range of RNA concentrations used in
RATE-seq. (b) We optimized the quantity of streptavidin-labeled beads to
ensure that the entire labeled fraction is captured. RNA that was not captured
by the streptavidin-labeled beads was assayed for 4tU content using a
colorimetric dot blot assay. We determined that 200ul of beads is sufficient to
capture all labeled RNA. (c) We determined the pull down efficiency of
samples treated with 4tU as compared with untreated cells by quantifying the
total amount of recovered RNA following biotin-HPDP conjugation and
streptavidin beads of a fixed mass of RNA. For an equal quantity of RNA, the
yield of RNA is 100-fold higher for the labeled samples compared with
unlabeled sample in both a ura3- auxotroph and a prototrophic strain.
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Figure 2.516: Labeling bias in 4tU treatment

Comparison of coding sequence length with the relative microarray signal
(logz) (Table S7) from fractionated thiolated RNA compared to the
unfractionated sample indicates that longer transcripts are preferentially
labeled and/or recovered.
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Figure 2.S17: Sequencing read counts are positively correlated with the
amount of uracil in a transcript

The total number of uracils in a transcript is a function of its length. A longer
transcript typically has more counts at each time point during the labeling as a
result of both increased label incorporation and increased transcript length.
The relationship between uracil number in a transcript and RNA-seq counts is
apparent at (a) 5, (b) 13, (c) 25, and (d) 100 minutes after labeling.
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Figure 2.518: Labeling bias affects the equilibrium value for each gene
The steady state equilibrium value (Yeq) estimated by our non-linear modeling
is positively correlated with the total number of sequence counts per
transcript at each time point. The relationship between RNA-seq counts and
Yeq is apparent at (a) 5, (b) 13, (¢) 25, and (d) 100 minutes after labeling.
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Figure 2.519: Labeling bias does not influence the estimated degradation
rate constant

The estimated degradation rate constant (a) is not correlated with the number
of counts for each transcript at any time point during the approach to
equilibrium. There is no relationship between RNA-seq counts and a
detectable after (a) 5, (b) 13, (c) 25, and (d) 100 minutes of labeling.
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CHAPTER 3: GC CONTENT AND TRANSLATIONAL EFFICIENCY
CONTRIBUTE TO VARIATION IN MRNA DEGRADATION RATES

3.1: Abstract

The abundance of a transcript is determined by its rates of synthesis
and degradation. Studies of individual mRNAs have shown that cis and trans
elements affect mRNA decay rates. However, transcriptome-wide studies have
failed to show a strong relationship between mRNA decay rates and any
individual property of mRNA. We investigated the contributions of cis and
trans factors on transcriptome wide decay rate variation in the yeast
Saccharomyces cerevisiae using multiple regression analysis. We find that
many inherent properties of transcripts have a relationship with decay rate
and that multiple regression increases the explanatory power of the variation.
We find that irrespective of dataset or method of measurement, several
predictors, including transcript abundance, ribosome density, and GC content
of the wobble position in a codon are significant predictors of mRNA decay
rate across most datasets. Using conditionally regulated promoters of
individual transcripts, we find that as predicted by the multiple regression
model, decreasing ribosome density by changing the translational start site
destabilizes mRNA for some, but not all transcripts. We postulate that this
depends on the function of the encoded protein. We also experimentally

validate that GC content of the third codon position affects mRNA steady state
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levels as well as decay kinetics for individual transcripts. Our results suggest
that translation efficiency is a primary determinant of degradation rates. We
confirm that mRNA decay is a regulated process governed by multiple
elements in a transcript specific manner.
3.2: Introduction

Remodeling of gene expression programs requires modulation of
synthesis rate, decay rate, or both. Both mRNA synthesis and decay are critical
for cell survival, as termination of either results in rapid cellular death (Nonet
et al. 1987; Anderson and Parker 1998). As such, a thorough understanding of
each process is imperative to fully interpret the mechanism of mRNA
transcript level regulation. Although extensive evaluations on the elements
affecting mRNA synthesis have been conducted and much is known about
transcriptional regulation (reviewed in (Hager et al. 2009)), far less is known
about the cis and trans factors affecting mRNA decay, and the degree to which
those factors affect degradation. A complete understanding of gene regulation
requires identification of the determinants of mRNA degradation expression.

The degradation pathways themselves and components of those
pathways are understood (reviewed in (Parker 2012)) as a result of analyses
of select individual transcripts (Decker and Parker 1993; Muhlrad et al. 1995;
Beelman et al. 1996). Individual transcript studies also proved that mRNA
degrades partially as a function of both factors in cis to the transcript,
including sequence elements in the coding (Parker and Jacobson 1990;
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Wisdom and Lee 1991) and untranslated (Shaw and Kamen 1986; Muhlrad
and Parker 1992) regions, as well as factors in trans, including regulation by
RNA binding proteins (Olivas and Parker 2000; Chen et al. 2001). More
recently, promoter regions have also been implicated in determination of
transcript stability (Bregman et al. 2011; Trcek et al. 2011). However, these
observations are for a select few genes, in particular environments. To obtain
a global picture of determinants of mRNA degradation, one needs study the
trends available in genome wide studies.

Genome wide mRNA decay rates are available across all levels of life
including bacteria (Selinger et al. 2003), plants (Narsai et al. 2007), flies
(Thomsen et al. 2010), mouse (Rabani et al. 2011) and different human cell
lines (Duan et al. 2013). However, no organism is more extensively studied
than the yeast S. cerevisiae. In yeast, genome-wide RNA decay rates have been
measured multiple times using different methods including transcriptional
inhibition (Wang et al. 2002; Grigull et al. 2004; Shalem et al. 2008), genomic-
run-on (Garcia-Martinez et al. 2004), and metabolic labeling (Miller et al.
2011; Munchel et al. 2011; Neymotin et al. 2014). In addition, most of the
knowledge in mRNA decay is from individual transcript studies in yeast.
Finally, there is a rich array of datasets in yeast measuring gene specific
parameters for the entire genome including protein levels (Ghaemmaghami et
al. 2003), protein half-life (Belle et al. 2006), RNA abundance (Lipson et al.
2009), transcription rates (Pelechano et al. 2010), UTR lengths (Nagalakshmi
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et al. 2008), and ribosome density (Ingolia et al. 2009). All of these datasets
were generated in yeast under rich conditions of exponential growth.
Therefore, yeast is the optimal organism for study of determinants of mRNA
decay.

Recently, we introduced RNA Approach to Equilibrium Sequencing
(RATE-seq), a new metabolic labeling method for determination of in-vivo
mRNA synthesis and degradation rates genome-wide (Neymotin et al. 2014).
Unlike previous methods, RATE-seq does not require transcriptional shut-off
and has no effect on cellular physiology. In addition, because our method
tracks the appearance of newly labeled transcripts with time, it does not suffer
the problem associated with a slow chase, as in methods of pulse-chase
labeling. We determine decay rates using non-linear regression of multiple
time points following labeling and therefore are not limited in any problems
associated with use of a single time point to determine kinetic rates. As a
result RATE-seq offers the most accurate representation of physiological
mRNA synthesis and degradation rates.

Collectively, the results of the mRNA decay studies in yeast have shown
three important features within transcriptome wide decay rates. First, there is
variation in the rates at which different transcripts are degraded, some by as
much as an order of magnitude. Second, transcripts for genes involved in
coordinately regulated processes are regulated at the level of mRNA decay
(Wang et al. 2002; Neymotin et al. 2014). Third, no single transcript feature
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has been reported in those publications that can explain a large amount of the
observed variation (Wang et al. 2002; Munchel et al. 2011; Miller etal. 2011).
This suggests that either the responsible factors are masked in genome wide
studies, or a combination of different parameters affect rates of decay each
contributing in degree in a transcript specific manner. By comparing genome
wide rates of decay with any single transcript feature, one is actually
comparing all of the differences between transcripts, including sequence
elements, transcript length, GC content, transcript abundance, and folding
properties. Strong relationships between transcript features and mRNA decay
rates may not be evident simply because every mRNA transcript is inherently
different. To fully address the question of determinants of variation, all
available data about a gene need be utilized simultaneously.

We have analyzed mRNA degradation rates in S. cerevisiae through
multiple regression analysis (Eck and Stephan 2008; Duan et al. 2013) and the
many datasets describing gene specific parameters. To determine the
underlying factors responsible for variation in rates of decay, we model mRNA
degradation rate as a dependent variable on multiple predictors. In so doing,
we address the possibility of a multifactor dependence for mRNA decay. We
find that some predictors are significant within methods of measurement, but
others are significant across methods, suggesting it is not a technical artifact of
the method. We then biologically tested the predictor for individual
transcripts, attempting to keep all other transcript features constant. In so

60



doing, we have addressed the issue of global studies masking underlying
determinants of decay for individual species of mRNA.

Our study shows that irrespective of method of measurement,
ribosome density, the GC content of the wobble position in a codon, and steady
state levels are significant predictors in multiple regression analysis. For
individual transcripts, we show that changing ribosome density affects both
degradation rate and steady state levels in a transcript specific manner. We
also show that altering the GC content of the wobble position affects decay
kinetics, but only to a defined extent. We suggest that translation efficiency
also contributes to mRNA decay kinetics. Taken together, our results indicate
that mRNA decay is determined by multiple factors, many of which are
intimately linked to aspects of translation.

3.3: Results
3.3.1: Multiple regression analysis reveals common predictors across datasets

We performed multiple regression analysis in attempt to explain
variation in mRNA decay rates genome wide. The predictor datasets for
multiple regression were chosen based on factors implicated in regulating
rates of mRNA decay for individual transcripts and are described in Table 3.1
(Table 3.S1). A potential problem with multiple regression is that the
significance of a predictor is calculated assuming all other predictors in the
model are held constant. What may happen, then, is that a predictor is
deemed significant or insignificant only because of other predictors in the
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Table 3.1:

Dataset /

variable number|original units Reference

Coding Length 5850|nucleotides SGD

3'UTR Length 4950|nucleotides SGD/Nagalakshmi et al, 2008
5'UTR Length 4345|nucleotides SGD/Nagalakshmi et al, 2008
5'UTR GC

content 4345|percent SGD/Nagalakshmi et al, 2008
3'UTR GC

content 4911 |percent SGD/Nagalakshmi et al, 2008
Abundance 5488|transcript/million Lipson et al, 2009

Protein per cell 3818|protein/cell Ghaemmaghami et al, 2003
Ribosome

Density 5269|rpkM Ingolia et al, 2009
Transcription

Rate 4346|/molecules/min Pelechano et al, 2010
codGC1 5850|percent SGD

codGC2 5850|percent SGD

WobbleGC 5850|percent SGD

Protein half-life 3164|min Belle et al, 2006

deltaG 5850|kcal/mol SGD/GeneRFold

Codon

Adaptation

Index (CAI) 5850|relative scale CAlI function in R

Protein per Ghaemmaghami et al, 2003 and Lipson et
mRNA 3583|protein/cell/transcript |al, 2009

Munchel 5311imin Munchel et al, 2011

Miller 4407|min Miller et al, 2011

Wang 3967|min Wang et al, 2002

Grigul 2702|min Grigul et al, 2002
Garcia-Martinez 4624|min Garcia-Martinez et al, 2004
Shalem 4639|min Shalem et al, 2008

Neymotin 4802|min Neymotin et al, 2014
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model. Therefore, prior to modeling, we first observed the linear relationship
of each predictor with mRNA decay. We found that the p-value for many of the
predictors—an indication of whether the regression coefficient for that
predictor differs from zero—is significant (Table 3.S2). This suggests a linear
relationship between many of the predictors and decay rate, and also that the
predictors, although not having a strong relationship with decay rate
individually, might play a role in combination with other predictors.

We built multiple regression models to explain variation in mRNA
decay rates. Analysis of the RATE-seq dataset indicates that many aspects of
translation are often predictors of mRNA decay rates (Figure 3.1A). We also
find that the explained variation, as measured by adjusted r-squared is greater
when multiple predictors are included, suggesting decay rates are determined
by a combination of transcript features (“model”). In addition, the amount of
variation explained increases further when functional annotation is added in
the form of Gene Ontology and RNA binding proteins (“model++"). This is
consistent with the observation that transcripts encoding proteins in similar
functional categories degrade with similar kinetics (Wang et al. 2002;
Neymotin et al. 2014). We confirmed similar trends in other decay datasets as
well (Figure 3.S1). Interestingly, we find that methods for measuring RNA
decay that utilize transcriptional inhibition tend to explain far less variation
than less disruptive methods (Figure 3.1B, compare first three datasets to last
four), with RATE-seq explaining the most variation overall. By regressing the
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Figure 3.1: Multiple predictors best describe variation in mRNA decay
(a) Predictors of variation in mRNA decay in the RATE-seq dataset involve
aspects of translation. (b) We determined the adjusted R2 for each dataset
when incorporated into a multiple regression model that includes functional
annotation, RNA binding protein affinity (Hogan et al. 2008), and significant
continuous variable predictors for each dataset. (c) By comparing the
predicted decay rates vs. the measured decay rates, one can readily see the

explanation of variation in decay rates. Data shown is from (Neymotin et al.
2014).
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RATE-seq dataset we explain as much as 50% of the observed variation in
decay rates (Figure 3.1C). Interestingly, irrespective of method of
measurement, several predictors are significant, including steady state mRNA
level, ribosome density, and WobbleGC content (Figure 3.S1). This fact
strongly suggests that these predictors are not artifacts of any particular
method, and they have an effect on rates of mRNA decay.
3.3.2: Ribosome density affects mRNA decay rate in a transcript specific
manner

To determine the effect of ribosome density on mRNA degradation, we
mutated the start codon of two different transcripts from ATG to GTG. This
should disable the small ribosomal subunit from locating an ATG and
recruiting the large subunit for fully formed ribosomes. Such an approach
should reduce the number of ribosomes bound, but not eliminate ribosome
binding in its entirety. In the absence of the normal start codon, downstream
ATG may serve as start codons and translation initiation sites where the 80s
ribosome forms (Figure 3.2A). To control transcription, these genes were
placed under Doxycycline repressible promoters (Gari et al. 1997), which have
little to no effect on cellular physiology, and have no effect on global gene
expression (Wishart et al. 2005). By comparing to a constitutively expressed
housekeeping gene, we are able to affect a single transcript without a global
physiological response to measure degradation rates.
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We tested both a GFP transcript and the GAP1 transcript for defects in
degradation as a function of start codon removal. The GFP transcript encodes
a fluorescent protein with no physiological role in the cell. In contrast, GAP1
encodes an amino acid permease that is necessary for efficient survival in
nitrogen poor conditions. In the absence of a start codon, the steady state
level of GFP is slightly different between the ATG and GTG strains (Figure
3.2B), although this difference is not statistically significant (p=0.0696, two
sample t-test). The kinetics of mRNA decay is also unaffected (Figure 3.2C).
In contrast, we find that mutation of the GAP1 start codon significantly
decreases steady state abundance levels (Figure 3.2D, p= 0.0024, two sample
t-test), and the transcript degrades more rapidly (Figure 3.2E), although both
reach the same final abundance levels. Taken together, our results suggest
that a decrease in ribosome density strongly affects the decay kinetics for the
GAP1 transcript, but has minimal effect on the GFP transcript. Possible
explanations for these conflicting results are described below.

3.3.3: Changing WobbleGC content affects mRNA level and decay kinetics

Our regression model predicts that factors involved in mRNA
translation contribute to observed mRNA decay rates (Figure 3.1A). One
factor is the GC content of the wobble position in a codon (WobbleGC).
WobbleGC affects mRNA levels, and mRNA degradation patterns in E. coli

(Kudla et al. 2009). In addition, WobbleGC affects mRNA levels in mammalian
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Figure 3. 2: The effect of ribosome density on mRNA decay rates
(A) In the presence of the normal start codon, the 40S ribosomal subunit scans
the transcript for a start codon and when it is found, the 60S large subunit is
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recruited to produce a fully formed ribosome (Left). In the absence of the
normal start codon, the 40S ribosomal subunit will pass the original site of
translation initiation and scan until the next start codon. At that point
downstream, the fully formed ribosome may form (Right). Mutation of the
start codon in GFP from ATG to GTG has little effect on the steady state level
(B) and decay kinetics (C) of the transcript. Mutation of the start codon in
GAP1 from ATG to GTG affects the steady state level (D) which is at least in
part due to a change in the initial decay kinetics (E) of the transcript. In (E)
the gray shading indicates bootstrapped 95% confidence intervals.
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cells (Kudla et al. 2006), but not decay rates, suggesting that mRNA synthesis
or processing is the underlying contributor to differences in mRNA levels.

To examine the contribution of WobbleGC to mRNA degradation, we
utilized four different GFP constructs. The four GFP are very different in
WobbleGC, but are similar in overall GC content (Figure 3.3A). They are all
under the exact same context of regulatory regions including the same
Doxycycline regulated promoter and the same UTR (Figure 3.3B), and are
therefore expected to have the same rate of transcription. Any differences in
steady state abundance must then result from differences in decay kinetics or
processing. We find that the mRNA levels are directly related to WobbleGC
(Figure 3.3B), consistent with similar observations in mammalian cells(Kudla
et al. 2006). This immediately suggested that decay rates are affected.
Following addition of Doxycycline to repress transcription, we find that
indeed, three of our strains degrade differentially in a WobbleGC dependent
manner (Figure 3.3C). Consequently, differences in steady state levels can at
least partially be explained by differences in decay rates, without the need for
concluding that synthesis rates or processing are responsible (Figure 3.3D).
However, GFP1, which has the lowest WobbleGC, has significant overlap with
GFP2, which has the next lowest WobbleGC (Figure 3.4A). This suggests that
WobbleGC affects the decay rate within a specific range, beyond which other

factors are contributing to observed mRNA degradation.
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Figure 3.3: WobbleGC content affects decay Kkinetics and steady state
levels

(a) The four GFP transcripts are similar in overall GC content (right), but are
very different in WobbleGC (left). At the bottom is the alignment of each GFP
relative to GFP2. Positions of similarity in sequence are depicted by gray line
and differences are in triangles. (b) All GFP transcripts are under control of
the same regulatory elements (inset). Differences in WobbleGC affect the
transcript steady state levels. (c) GFP2-4 degrade with different kinetics in a
WobbleGC dependent manner. (d) Degradation rate is at least partially
responsible for observed changes in mRNA abundance levels.
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We next investigated what other factors could explain the similarity in
decay rate of GFP1 and GFP2. Our multiple regression analysis suggested that
a variety of factors involved in translation contribute to variation in mRNA
decay kinetics. Therefore, we looked to see if differences in translation could
explain the similarities and differences in mRNA decay kinetics. As shown in
Figure 3.4B, there is no clear relationship between the amount of protein
produced and mRNA decay rate. However, when we determined translational
efficiency, as measured by the amount of protein produced per total mRNA
levels, we see that the rapidly degrading GFP1 and GFP2 have very similar
efficiency (Figure 3.4C). In contrast, GFP3 and GFP4, which are more slowly
degrading transcripts, are much lower in overall translational efficiency.
These patterns are also true when we calculate the codon adaptation index
(CAI) for each transcript, which is a separate measure of translatability
(Figure 3.S2). From these data we conclude that within a certain range, an
increase in the GC content of the wobble position decreases degradation rate.
Simultaneously, decreased translational efficiency is associated with
decreased degradation rate. Possible explanations and mechanism for this

observation are discussed below.
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Figure 3.4: Translational efficiency contributes to degradation rates

(a) GFP1 and GFP2 are similar in their degradation kinetics. We calculated a
decay rate constant for each strain using non-linear regression and compared
it to (b) protein level of each GFP strain and (c) translational efficiency based
on ratio of protein expression level with steady state mRNA levels. The
transcripts with higher translational efficiency (GFP1 and GFP2) have faster
degradation rate constants.
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3.4: Discussion
The expression level of every gene is determined both by the rate at

which it is synthesized and the rate at which it is degraded. Studies of several
individual transcripts determined cis and trans features that had effect on
observed mRNA decay rate. However, the variation in genome-wide mRNA
half-life studies cannot be explained to a great degree based on any single
transcript feature. In this paper we tried to address the reason for this
observation, as well as investigate other determinants of decay rates through
analysis of transcriptome wide datasets.

Through multiple regression analysis of each, we determined
significant predictors of mRNA decay. We found that the RATE-seq dataset
explained more variation than any of the other analyzed datasets. In addition
many of the significant predictors of variation involved different aspects of
translation.

Previous studies regarding the role of translation on mRNA
degradation have shown differing results. In (Yun and Sherman 1996) CY(C1
was mutagenized such that all start codons were removed from its coding
region with the intention of inhibiting ribosome binding and translation. They
found that following transcription inhibition with thiolutin, the translationally
impaired transcript degraded no differently than the translationally intact
transcript. Similarly, in (Beelman and Parker 1994) translation of the MFA2
transcript was inhibited, but with strong secondary structures in the 5’ region

of the transcript. There too, following a transcriptional pulse-chase with the
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gal inducible system, the MFA2 transcript degrades with similar kinetics. In
contrast, the PGK1 transcript, when inhibited translationally with strong
secondary structures as in MFA2, degrades more rapidly than in the absence of
secondary structures (Muhlrad et al. 1995). A more recent analysis of
transcriptome-wide decay datasets suggests that on average, increasing
ribosome density increases mRNA stability (Edri and Tuller 2014), an
observation we confirm in our decay dataset (Figure 3.S3). A potential
resolution of these observations, then, is that translation affects mRNA
degradation to different degrees, depending on the transcript under
investigation.

We attempted to determine the role of ribosome density for two
separate transcripts, keeping all other features about the transcript and
protein produced constant. Our approach was to mutate the start codon from
ATG to GTG, to prevent ribosome formation at the start codon. By mutating
the start codon of GFP, we generated a yeast strain that does not produce a
fluorescent protein (Figure 3.S4), and should therefore at least be reduced in
ribosome density. One scenario in which this would not be the case is if the
GTG mutation can serve as a non-canonical start site of translation (Ingolia et
al. 2009). However, in such a scenario, we would still expect a fluorescent
protein to be produced. Since no fluorescence is observed, we must assume
that the GTG is not a start codon for ribosome formation in this case.
Therefore, if ribosomes form on the transcript, they do so further downstream
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of this codon, potentially at nucleotide 234, which is the next start codon. For
the GAP1 transcript, we were unable to show that mutation of the start codon
results in loss of production of the GAP1 protein (Figure 3.S5). However,
assuming that the GTG cannot serve as a start codon, the next start codon is
288 nucleotides (96 amino acids) downstream. Encoded within this putative
non-translated region of the transcript are amino acid residues known to
affect the extent of functionality and localization of the encoded permease
(Merhi et al. 2011). This decrease in protein function may explain why the
transcript is potentially destabilized and why we see a large drop in the steady
state levels of GAP1 as well as an increase in the degradation rate.

One possible explanation for the difference between the GFP and GAP1
transcripts is the functional role of the encoded protein. The GFP transcript
encodes a protein that has no role in the cell. In contrast, GAP1 encodes an
amino acid permease that is necessary for efficient survival in nitrogen poor
conditions. One possibility is that the function of the protein encoded by a
given transcript affects the decay kinetics of the transcript itself. This is
consistent with our previous observation that transcripts encoding genes in
similar GO term categories have similar degradation rate constants (Neymotin
et al. 2014). The relationship we see between ribosome density and mRNA
decay rate on the transcriptome-wide level is then either a result of

correlation with some unidentified factor affecting decay rate, or most likely, is
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an indication of ribosome density affecting the decay rate of some, but not all
transcripts.

Another predictor of variation that we investigated was the GC content
of the wobble position in a transcript. This has previously been suggested to
affect decay in human lymphoblastoid cells (Duan et al. 2013). This question
was directly addressed in mammalian cells when looking at two different
forms of GFP. In that study, where transcription was globally inhibited, they
found an effect on mRNA levels, but not mRNA decay rates. In our studies we
find that WobbleGC content determines both mRNA levels and decay rates.
The effect is true within a certain range. Outside of that range, other factors
contribute to observed decay rates, as is clear from two of our transcripts,
which are very different in WobbleGC, but degrade with similar kinetics.

We searched for similarities and differences between the rapidly
degrading and slowly degrading transcripts. Despite the large differences in
decay kinetics between GFP2 and GFP4, their sequence is identical in the latter
portion of their transcripts (Figure 3.3A). This suggested that any sequence
factors affecting decay kinetics were in the first portion of the transcripts.
Given that translation and mRNA decay are intimately linked, we checked how
codon adaptation index (CAI), a measure of the translatability of the transcript,
differed between the four strains in the initial third of the transcript, which is
the source of most of the sequence divergence between GFP2 and GFP4. We
found that the CAI of the two rapidly degrading strains is almost identical
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(GFP1 and GFP2), whereas those of the more stable transcripts (GFP3 and
GFP4) are lower (Figure 3.S2), suggesting similarities in translation efficiency.
This observation is consistent with that found in (Carlini 2005), that more
stable transcripts tend to have more rare codons, and should therefore have
lower CAI. We then measured translation efficiency directly as the ratio of
proteins produced per mRNA transcript, and also found GFP1 and GFP2 quite
similar, with GFP3 and GFP4 yielding much lower levels. These data are
potentially consistent with the idea that mRNA decay is co-translational, and
that the ribosomes continue elongation in the 5> 3’ direction, as they are
being degraded by the exonuclease (Hu et al. 2009). The slower degrading
transcripts, which are higher in WobbleGC, lower in CAI and lower in
translatability would therefore have ribosomes proceeding more slowly along
the transcript. However, this explanation does not explain why GFP3, which
has lower translatability than GFP4, degrades more rapidly. Most likely the
translational efficiency in addition to the effects of a change in GC content
together affect the observed decay rate.

Itis clear from our analyses that variation in mRNA decay rates is best
explained by a combination of different transcript features as suggested more
than two decades ago (Caponigro et al. 1993). At the same time, controlling
for all factors while changing one feature at a time is difficult, as seen with
WobbleGC content in our present study. We intended to change WobbleGC
content only, but that resulted in changes to protein levels, mRNA steady state
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abundance, and translatability. Interestingly, from our multiple regression
analysis we find that methods for measuring RNA decay that utilize
transcriptional inhibition tend to explain far less variation than less disruptive
methods. RATE-seq, which does not perturb cellular physiology, seems to
explain the largest amount of variation in decay rates as a function of natural
gene features. Future studies of mRNA decay and the factors underlying
variation need consider the physiological effects of the methods employed.
Metabolic labeling methods, which minimally perturb the cell, rather than
transcriptional inhibition, which causes rapid cellular death, should be
employed so as to obtain physiologically relevant data. Although all the
analyzed datasets of mRNA decay and predictor variables were generated
under similar environments, ideally, a single study would measure decay,
transcription, and protein levels in the same strain and environmental
conditions. Our analysis of the available datasets give a glimpse into the
complexities of mRNA decay and suggests WobbleGC and translation efficiency
are features of interest for future decay studies.
3.5: Materials and Methods
3.5.1: Plasmid construction

Plasmid pCM188 (Gari et al. 1997) was the backbone for all plasmids.
This CEN4 plasmid harbors the URA3 gene, the tetracycline transactivator
constitutively expressed, and a multiple cloning site with a CYC1 TATA region
upstream, all under control of two copies of the tetracycline operator.
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Transcription of the gene of interest is repressed in the presence of
tetracycline or its derivatives, which in our case is Doxycycline. Plasmids
DGP147,DGP148, DGP149, and DGP231 are pCM188 with degenerate forms of
GFP (Kudla et al. 2009) ranging in GC content in the third position of each
codon as 0.71, 0.38, 0.6, and 0.67 respectively (GFP4, GFP1, GFP2, GFP3). The
coding sequence of each GFP was cloned into the BamHI and Notl sites.
Plasmid DGP198 is the same as DGP149, except the start codon of GFP has
been mutated to GTG. Plasmid DGP217 is pCM188 with the GAPI gene +
3’'UTR cloned into the BamH I and Not I sites. Plasmid DGP218 is the same as
DGP217, except the start codon of GAPI has been mutated to GTG.

3.5.2: Strains and Growth Conditions

All yeast strains are FY3 (MATa, isogenic strain to the S288C derivative
FY4 with a ura3-52 mutation) with one of the above-indicated plasmids.
DGY696, 697, 698, 898, and 1281 have plasmids DGP147, 148, 149, 198, and
231 respectively. DGY1193 and 1194 harbor plasmids DGP217 and DGP218
respectively, with the KANMX4 cassette inserted in place of the endogenous
GAP1 locus.

A single colony for each strain was inoculated for an overnight culture
in synthetic complete media without uracil, to maintain selection of the
plasmids. Studies of the GAP1 transcript were performed in nitrogen limiting
media with proline as the limiting nitrogen source, as described in (Hong and
Gresham 2014). Saturated cultures were back-diluted 1:50 into media of the
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same composition as overnight. Cells were allowed to grow for 5.5 hrs (~2.5
doublings) before transcription was inhibited with Doxycycline at a final
concentration of 10ug/ml. Cells were collected by filtration on nitrocellulose

membranes and snap frozen in liquid nitrogen.

3.5.3: RNA extraction, RT, qRT-PCR analysis

RNA was extracted as previously described (Neymotin et al. 2014),
using the hot phenol-chloroform method. Purified RNA was then treated with
RQ1 DNAse according to manufacturer recommendations. Reverse
transcription was performed using random hexamers and MMLVRT enzyme.
Quantitative Reverse Transcription PCR (qRT-PCR) was performed using the
Syber Green system and a Roche Light Cycler. RNA levels were quantified in
comparison to the HTA1 housekeeping gene, which is unaffected by
Doxycycline addition. Ratios were calculated using the formula: Y=2((HTA1ct-
Gene_ct)) with ct being the calculated cycle threshold. RNA levels from each time
point were then normalized to t=0, which was set to 1. All analyses with error
bars are the mean +/- the standard error for 3-6 biological replicates. Values
without error bars are the average of two replicates. Primer sequences had
amplification efficiencies of at least 95% on RT products. The amplified
product for all GFP strains begins between position 463 and 586 of the
transcript. The amplified products are all between 80 and 120 base pairs long.

The sequences used for qRT-PCR analysis are as follows:
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HTAI:
Forward: 5’- GCTGGTAATGCTGCTAGGGATA-3’

Reverse: 5'- TTACCCAATAGCTTGTTCAATT-3’

GFP2, GFP4, GFP-ATG, GFP-GTG:

Forward: 5’-TTGCCGGATAACCACTACCT-3’
Reverse: 5-CCTGCTGCAGTCACAAACTC-3’
GFP1:

Forward: 5’-GCCGATAAGCAGAAGAATGG-3’
Reverse: 5-TGTTGATAATGGTCCGCAAG-3’
GFP3:

Forward: 5’- CGACCATTACCAGCAGAACA-3’
Reverse: 5’- GGGTCCTTTGACAGAGCAGA-3’
GAP1-ATG, GAP1-GTG

Forward: 5-TTTGTTCTGTCTTCGTCAC-3’

Reverse: 5’-CTCTACGGATTCACTGGCAGCA-3’

3.5.4: Fluorescence measurements and images

Four biological replicates each of DGY696, DGY697, DGY698, and
DGY1281 were grown to log phase and fluorescence was quantified using a
Becton Dickinson Accuri cell counter. For each sample, the fluorescence of
1000 events was measured and the mean of those events was used as a single
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value for the biological replicate. Fluorescent images were acquired using a
Nikon Eclipse phase contrast microscope.
3.5.5: Multiple Regression Analysis

To normalize the data for our multiple regression analysis, we utilized
decay rates rather than half-lives, which are typically log-normally distributed,
and removed any outliers based on interquartile range. Decay rates for most
datasets were calculated as In(2)/thair, except in (Munchel et al. 2011) and
(Neymotin et al. 2014) where the effects of dilution as a result of cellular
growth was also considered. Counts were taken from (Lipson et al. 2009) and
normalized based on an assumption of ~60,000 mRNA/cell (Zenklusen et al.
2008). Protein per mRNA was calculated as the values from (Ghaemmaghami
et al. 2003) divided by the values for mRNA transcript/cell. Codon adaptation
index (Sharp and Li 1987) was calculated for each transcript based on the
codon frequency tables in the seqinr package in R (R core team). To normalize
the data we log transformed the predictor variables (logio(Variable) or
logio(Variable +1)), except for GC content of each codon position, which is
approximately normal in distribution, and deltaG, which is negative in value.

In a linear multiple regression model (Crawley 2012), a parameter of
interest is modeled as being dependent on two or more predictors. We use the
degradation rate constant as the parameter of interest, and the other
measurements as predictors. To build the model, we followed two separate
approaches. In approach 1, we first determined the p-value of the pair wise
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correlation of each predictor to degradation rate. This indicates whether the
regression coefficient is significantly different from zero, and whether or not
the predictor has any effect on decay rate. Next we included all predictors that
have a p-value less than 0.05 into the multiple regression models. We then
performed stepwise deletion of terms by removing sequentially the predictors
with the highest p-value. The final model is then the reduced model where
only significant terms remained. In approach 2, we performed the regression
in a slightly different manner. We first calculated the significance of each
predictor when it is the only one in the model, as above. We then started
adding to the model based on the predictors with the lowest p-value. With
each additional term we checked to see that all of the terms in the model were
significant. If a new term was added and it was not significant, we removed it
from the model. If a new term was added and a different predictor lost its
significance, we tested a model with either the new predictor or the one that
lost significance, and retained the one that explained more variation. We did
not add terms that were insignificant in the pair wise correlation with decay
rate. Both models gave similar results regarding which predictors were
significant

We must note that several predictors are highly correlated with one
another including the number of transcripts with ribosome density and
protein per cell, and coding length with free energy (Figure 3.S6). In effect,
this means that if either of these pairs is in a model together, the variation that
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could be explained by one of these predictors is distributed (although not
necessarily equally) among the correlated variables. Nevertheless, the fact that
a combination of multiple predictors explains more variation than any one of
the factors individually, strongly suggests that the combinatorial effects of

multiple predictors determine mRNA decay kinetics.

3.5.6: R functions and packages
We performed all analyses using R (Team) and several open source
packages. In addition to custom written functions in R, we also used functions

from the following packages: TeachingDemos, Biostrings, LSD, and seqinr.
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Figure 3.S1: Multiple predictors best explain variation in mRNA

degradation in all studied degradation datasets

the model with multiple terms (“model”), GO terms with RNA binding Proteins
(“RNABP+GQ”), and the final model which includes both continuous variables
as well as the categorical GO and RNABP (“model++). First author indicates

We show the adjusted R2for individual predictors in each model, as well as for
each dataset.
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Figure 3.S2: CAI confirms translational effects on mRNA degradation
We calculated the codon adaptation index (CAI) for all four GFP transcripts.
The “GFP 1/3” indicates the CAI of the first 240 nucleotides, which is the
primary source of differences between transcripts. The “GFP” indicates the
CAI for the entire transcript.
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Figure 3.S3: Degradation rate decreases with increased ribosome density
The ribosome density of a transcript is inversely correlated with degradation
rate, showing that the more ribosomes present, the more stable the transcript.
Data are from (Neymotin et al. 2014).

89



Bright field FITC

GFP-ATG

GFP-GTG [

Figure 3.S4: Mutation of ATG disrupts fluorescent protein production
Using phase contrast microscopy, we visualized the GFP transcript that has
either the wild type ATG start codon, or the GTG in place of the start codon.
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Figure 3.S5: Effect of mutated start codon on GFP protein

We grew yeast in minimal media containing D-histidine (D-his). D-his is toxic
to cells and leads to cell growth inhibition and death. In the absence of a
functional GAP1 protein, cells do not have the permease and do not take up D-
his. We show five strains: GAP1-WT=wild type strain, GAP1-KO=strain with
complete knockout of coding sequence of GAP1, GAP1-NF=Derived strain with
non-functional GAP1, GAP1-ATG=plasmid GAP1 with normal start codon, and
GAP1-GTG=plasmid GAP1 with GTG in place of start codon.
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Figure 3.S6: Predictors of mRNA decay variation are highly correlated
We show that a number of predictors are highly correlated. The spearman
rank correlation is indicated for each pair wise comparison.

Tables:

Table 1: Source for each dataset with number of observations.
Supplemental Tables:

Table S1: Matrix with all values used for regression analysis.

Table S2: Matrix with p-value, adjusted R, and correlation for each predictor
and a given decay rate.

Table S3: Values for all qPCR experiments.
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CHAPTER 4: GLOBAL TUNING OF GENE EXPRESSION AS A
FUNCTION OF CELLULAR GROWTH RATE

4.1: Abstract

Gene expression programs are regulated in response to extracellular
signals. At the same time, these signals can affect the rate of cell growth.
Previous studies using microarrays have shown an effect of growth rate in
relative mRNA abundance. However, these data are potentially confounded by
the observation that the total RNA amount per cell is also a function of growth
rate. In this study we determined the absolute abundance of all transcripts on
a per cell basis as a function of growth rate, utilizing externally provided RNA
spike-ins. We find that all classes of RNA increase as a function of increasing
growth rate, but to different extents. This suggests that assumptions of
constant relationships between different classes of RNA are incorrect, but that
the use of external spike-ins can address this issue. To determine the extent to
which mRNA synthesis and decay affect observed changes in mRNA levels, we
applied RATE-seq to chemostat cultures of three different growth rates. We
find that both mRNA synthesis and degradation increase in response to
cellular growth rate. However, the response to growth rate of mRNA synthesis
exceeds that of degradation thereby resulting in increased steady-state
abundance of virtually all mRNAS. This study provides the first complete
picture of transcriptome dynamics as a function of cellular growth rate.

4.2: Introduction
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Regulated cell growth is critical for the normal development and
viability of all organisms. In the early developing embryo, the initial fertilized
egg undergoes rapid nuclear replication and cellular division. All initial protein
products are generated from maternally loaded mRNA and protein, which
must be degraded in proper space and time (Schier 2007). Subsequent
cellular growth depends on the differentiation of the cell type as well as
environmental cues (Lodish et al. 2008). Similarly in single celled organisms,
growth rate is tightly regulated as a function of nutrient availability (Ziv et al.
2013b), as well as other environmental factors. In the absence of proper
regulation of growth rate and cell cycle, the development and well being of an
organism may be compromised. In addition to the growth rate itself, gene
expression levels must be regulated to ensure proper cellular survival. Both
growth rate and gene expression levels determine cellular homeostasis, but
the extent to which one determines the other is unclear.

Genome-wide studies of mRNA levels provide the most comprehensive
view of gene regulation (Gasch et al. 2000). In a single microarray or RNA-
sequencing run, it is possible to observe the gene expression profile of a given
organism (DeRisi et al. 1997; Nagalakshmi et al. 2008). However, analysis of
such large data necessitates extensive normalization for removal of technical
artifacts introduced during sample processing. A common strategy involves
the assumption of total RNA levels not changing across samples and a mean
normalization to some arbitrary amount. Often times such assumptions are
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invalid. Different cell types are known to have different total mRNA amounts
and the same cell type may have different amounts of total RNA as a function
of growth rate or nutrient availability (Waldron and Lacroute 1975). Recent
studies have shown that such mean normalization in microarray technology
can mask underlying biological phenomena, simply as a result of incorrect
assumptions of constant RNA levels (Lovén et al. 2012). In addition, it is not
known if the relative abundance of different types of RNA, for example rRNA
or mRNA, within a cell change in response to environmental conditions.
Therefore, comparisons that rely on assumptions of equivalent total RNA
levels may be misleading analyses.

The rate of cell growth has a profound effect on gene expression. In
yeast, more than 25% of the yeast transcriptome changes in abundance level
as a function of growth rate (Brauer et al. 2008). Such changes in mRNA levels
can be achieved through modulation of synthesis rate, degradation rate, or
both (Hargrove et al. 1991). Analyses of a GFP library measuring promoter
activity indicates that the entire transcriptional activity of the genome is
scaled as a function of growth rate (Keren et al. 2013). In addition, individual
transcript studies in E. coli indicate that certain transcripts are regulated at the
mRNA degradation level (Nilsson et al. 1984). These observations indicate that
RNA levels are controlled with growth rate, and that each process of synthesis

and degradation may play a role in this regulation.
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In this study, we quantified the effect of cellular growth rate on changes
in mRNA levels. Using externally provided RNA spike-ins (External RNA
Controls Consortium 2005; Baker et al. 2005), we determined the absolute
number of RNA transcripts on a per cell basis. Results using RNA spike-in are
highly reproducible and obviate the need for normalization based on
assumptions of unchanging RNA levels. We show that RNA levels are directly
affected by changes in cellular growth rate. Using our recently described
method of RNA Approach to Equilibrium Sequencing (RATE-seq) (Neymotin et
al. 2014), we explored the underlying causes of changes in RNA levels by
measuring synthesis and degradation rates genome-wide. RATE-seq provides
a means for determination of kinetic parameters without compromising
cellular physiology. We find that both synthesis and degradation rates are
regulated in a growth rate dependent manner, but synthesis is the primary
determinant of increases in mRNA levels associated with increased growth
rates. Our study shows that much of the transcriptome is globally tuned in a

growth rate dependent manner.

4.3: Materials and methods
4.3.1: Strains, media, growth conditions, and sample collection

We performed all experiments using FY4, a MATa haploid derivative of
S288C. Cells were grown for two days on YPD plates. A single colony for each
experiment was inoculated overnight in minimal media containing a limiting
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nutrient concentration of either glucose or ammonium sulfate. Glucose
limiting media contained: 1x vitamins, 1x metals, 100uM uracil, 1x carbon
limited salts, and 0.08% glucose. Nitrogen limiting media contained: 1x
vitamins, 1x metals, 100uM uracil, 1x nitrogen limited salts, 2% glucose, and
400uM ammonium sulfate. Chemostat vessels were established as in (Ziv et al.
2013a) at a volume of 450ml. We monitored the dilution rate over several
hours to confirm that the culture was being diluted at the desired rate. For
each nutrient limitation, we performed our analysis at dilution rates of 0.12 /hr
(slow), 0.2/hr (medium), and 0.3 /hr (fast) in biological triplicate. Once the
desired dilution rate was attained, cultures were grown for ~8 generations
(generation time = In(2)/Dilution rate). We determined a steady-state was
attained by measuring cell density using a Coulter particle counter.

To sample a defined number of cells we collected approximately 12mL
of culture from the chemostat vessel by lowering the drop tube. Exactly 10mL
of culture was then pipetted and cells were collected on nitrocellulose filters.
These samples, designated as steady state samples, were further processed as
below.

We next performed RATE-seq (Neymotin et al. 2014) on the remaining
culture. We added 4-thiouracil (4tU) in a single bolus to the chemostat vessel
to instantaneously shift the concentration to 500uM 4tU. Simultaneously, we
switched the feed media lines to a media carboy containing the identical same
medium plus 500uM 4tU already present (Figure 4.1A). This ensures that the
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label is not diluted out as the experiment continues. We determined the
appropriate time points for sample collection for each dilution rate based on
the labeling kinetics (Figure 4.S1). For each dilution rate, we collected 8
samples of ~25ml each. The dilution rate (D) is determined by the flow (F) in
mL/hr and volume (V) in mL of the culture as D=F/V. With each collected
sample we change the volume of the culture. To maintain a consistent dilution
rate, we adjusted the flow to account for the change in volume. After each
sample, we changed the pump settings accordingly. At several points
throughout the experiment we measured cell density to confirm that our
adjustments were compensating for the change in volume. Following filtration
of the samples we immediately placed them in liquid nitrogen.
4.3.2: Quantitative RNA preparations

We determined the cell density of the steady-state chemostat cultures
by taking cell measurements with a Coulter counter (Beckman Coulter) in
technical triplicate and calculating the average of these measurements. A
defined volume of each steady-state culture was harvested for RNA extraction
in eight technical replicates. Extractions were performed using the acid phenol
method. Purified RNA was resuspended in a pre-defined volume of molecular
grade water and the sample concentration was measured.
4.3.3: Processing of steady state samples and library construction

Before RNA extraction of steady state cultures, 0.2ul of the ERCC spike-
in mastermix (mix 1, Life Technologies) was added to 10 million cells together
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with the Lysis Buffer. RNA was extracted using a standard hot acid phenol
protocol and depleted of rRNA (Ribo-Zero Magnetic Gold Kit [Yeast],
Epicentre). Sequencing libraries for both steady state and RATE-seq samples
were prepared using the directional RNA-seq protocol (Parkhomchuk et al.
2009). We used random hexamers without polydT for reverse-transcription
to avoid bias against transcripts that are not polyadenylated. Samples were
converted to cDNA and ligated to custom adapters for multiplex sequencing on
an [llumina Hiseq 2500.
4.3.4: RATE-seq sample preparation

We performed the biotinylation reaction as in (Neymotin et al. 2014).
We biotinylated ~45-95ug of total RNA for each sample. To normalize
libraries we pooled four different in-vitro transcribed thiolated transcripts.
Three of the spike-ins are described in (Neymotin et al. 2014) and a fourth is
based on the sequence of B0041.8.1 in C. elegans. For every 100ug, we added
4 ng of each thiolated spike-in. The same pool of spike-ins was used for all
biotinylation reactions. Following biotinylation, samples were spun and the
supernatant transferred to a new tube as in (Zeiner et al. 2008). RNA was
precipitated with one volume isopropanol and 1/10 volume 5M NaCl. Pellets
were washed with 70% EtOH and resuspended in nuclease free water such
that the final concentration was ~500ng/ul. Pulldown of labeled RNA was as
in (Neymotin et al. 2014), except we washed the beads four times, one of
which was with 65C wash buffer, and 1ul of 20mg/ml GlycoBlue was used for
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precipitation of the RNA pellet. The RNA pellet was resuspended in 10ul of
nuclease free water. To remove unwanted ribosomal transcripts, we utilized
the RiboZero kit (Epicentre), following a scaled down version of the
manufacturer’s protocol. We then proceeded to make libraries for sequencing.
4.4: Results

4.4.1: Chemostat enables precise control of growth rate

To study the effects of cellular growth rate on RNA metabolism, we
utilized chemostat cultures (Figure 4.1A) (Hoskisson and Hobbs 2005; Ziv et
al. 2013a). In the chemostat, fresh media limited in a particular nutrient is
supplied to growing cells at a particular rate. Simultaneously, old media and
cellular debris are expelled from the culture. By modulating the rate at which
the culture is diluted it is possible to establish a scenario of steady state
growth, where the growth rate is directly determined by the dilution rate of
the culture. Unlike experiments in batch culture where growth rate can be
controlled by use of different molecular forms of a key nutrient, the chemostat
can control growth rate without secondary effects of different nutrients.
Therefore, the chemostat is the ideal system for determining effects of growth
rate on gene expression programs and the underlying kinetic processes.

We first analyzed the contribution of cellular growth rate on different
physical properties of the cell. We grew 18 different chemostat cultures
corresponding to three different dilution rates, in two different nutrient
limitations, in biological triplicate. As expected, the culture density changes in
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a growth rate dependent manner, such that cells growing more slowly have
higher culture density (Figure 4.1B)(Brauer et al. 2008). In addition the bud
index, which is a measure of the proportion of cells progressing through the
cell cycle, increases with growth rate (Figure 4.1C) as expected (Johnston et
al. 1980; Brauer et al. 2008). Faster growing cells tend to be larger (Tyson et
al. 1979), which we find to be the case in our analysis as well (Figure 4.1D).
The culture density, bud index, and cell size are all determined in a growth
rate dependent manner.

Using quantitative RNA preparations, we found that the total RNA
content increases with growth rate (Figure 4.2), consistent with previous
observations (Waldron and Lacroute 1975). Interestingly, as with the physical
properties of cell size, culture density, and bud index the degree of difference
between RNA content as a function of growth rate is dependent on the
nutrient limitation: cells that are growing at different rates in environments
limited for nitrogen show a stronger response to growth rate variation than
cells growing in carbon limitation.

Because with this method we measure total RNA content, it is

impossible to know if only certain RNA classes (such as rRNAs, tRNAs, mRNAs,
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Figure 4.1: Chemostat maintains growth rate at different steady state
levels

We grew yeast cultures at three different growth rates by supplying a
continuous flow of new nutrients. The culture density of each vessel, as
indicated by the darkness of color, increases with increasing growth rate. For
the RATE-seq experiments, we added a bolus of 4-thiouracil as well as
switched the media lines to a media carboy that contains the exact same
media, but with 4-thiouracil in it as well. Once steady state was attained, we
measured the B) cell density, C) bud index, and D) cell size.
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Figure 4.2: Quantitative RNA content analysis
We performed RNA extraction for samples from each growth rate from a
defined number of cells.
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etc) are disproportionately contributing to variation in RNA content or it
reflects a globally coordinated increase in transcription with increasing
growth rates. To address this question we performed directional RNA-seq

analysis of all growth rates in both limiting conditions.

4.4.2: External RNA spike-ins are accurate and reproducible calibrators in
RNA-seq experiments

Normalization of genome-wide data is imperative for proper
interpretation of the results. Common normalization methods assume that
differences in absolute intensities between samples (e.g. total microarray
signal or library sequencing depth) are due to technical variation (e.g.
pippeting errors, variation in reaction efficiencies, errors in quantification etc).
This assumption is necessary as this variation is introduced routinely and
needs to be eliminated to ensure reproducibility in high-throughput
experiments (Weis and Consortium 2005). However, recent studies have
revealed scenarios where the total intensity of the sample measured is not an
experimental artifact, but reflects a true total transcriptome amplification
(Lovén et al. 2012). In this case, the use of external RNA spike-ins as
calibrators enables accurate measurement of changes in gene expression that
would otherwise be masked with the standard normalization procedures.

To evaluate the use of spike-ins for normalization purposes, we added
external RNA spike-ins to a defined number of cells rather than to a defined
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amount of RNA. We aliquoted the same biological sample (C-limited
chemostat, growth rate=0.35) into six replicate tubes, each containing the
same number of cells. Prior to RNA extraction, the same amount of spike-in
mix was carefully added to three of the cell aliquots, while the other set of
three tubes received 4.4-fold more spike-in per cell in each tube. The results in
Figure 4.3 support the conclusion that this method is highly reproducible and
yields accurate quantitative measurements.

4.4.3: Calculation of growth rate effects on gene expression

We next applied external RNA spike-ins to our growth rate samples. We
added the same amount of spike-in to 10 million cells of each of the 18
different chemostat samples. Sequencing data show that the correlation
between biological replicates is strong (Figure S2) and that the strength of the
correlation decreases across growth rate. Consistent with observations above,
the variation is higher between growth rates in the nitrogen limiting
conditions than in the carbon limiting conditions.

We next tested how differential expression using spike-ins compares
with a more commonly used normalization method, namely EdgeR
(BioconductoR). Specifically, we determined the effect of EdgeR normalization
on genes we found highly (50-20 fold) or lowly (1.2-2 fold) differentially
expressed between growth rates based on spike-in normalization. We find
that EdgeR normalization underestimated the extent of differential expression
for the highly differentially expressed genes, and reversed the direction of
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Figure 4.3: Use of RNA spike-in enables accurate and reproducible

quantification of RNA transcript number.

We added the same (top) or different (bottom) amounts of RNA spike-in to
two separate containers containing an equal number of cells from the same
biological sample. We then plotted the length normalized transcript counts for
RNA spike-in.
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differential expression for the lowly differentially expressed genes (Figure
4.S3C). This observation agrees with the observations of Loven et al. (2012)
and our simulations (Figure 4.S3A and 4.S3B).

Given the similarities between our experimental design and a previous
study (Brauer et al. 2008), we can compare our results using spike-ins to those
using microarray normalization. For consistency, we performed the
comparisons on similar growth rates between studies (between 0.1 and 0.3 h-
1) and in samples derived from the same limiting conditions (glucose- and
ammonium-limiting) as present in the previous study. We also log-
transformed our data prior to calculating the gene-wise slopes—which are a
measure of the expression response of each gene to the growth rate—for
compatibility with the M values used previously.

Comparison of each gene’s slope response to growth rate between the
two methods (Figure 4.S4), confirmed that our gene-wise measurements
correlate significantly with the previous dataset. However, there were big
differences between the two distributions of the estimated slopes (Figure
4.4). In the analysis of (Brauer et al. 2008) the authors concluded that certain
Gene Ontology classes of transcripts are affected positively and others
negatively by the growth rate (positive and negative slopes). We hypothesized
that our measurements, calculated in an RNA content-independent manner,
would reveal a greater number of transcripts responding positively to the
growth rate. The results in Figure 4.4 show exactly that; not only is the
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Figure 4.4: Accurate quantification using RNA spike-ins

(A),(B) Distributions of the gene-wise intensities of response to growth rate
(slopes) as measured in this (light) and previous (dark) studies (Brauer,
2008). (C),(D) r squares of the goodness-of-fit when calculating the slopes.
(A),(C) carbon limited samples (B),(D) nitrogen limited samples.
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distribution of the slopes calculated in this study shifted to higher values, the
vast majority of the transcripts we measured have a positive slope. This means
that the observed increase in RNA content with growth rate (Figure 2.4) is
due, in part, to a global increase in mRNA transcript numbers for almost every
gene. Moreover, using external RNA spike-ins for sample calibration seemed to
result in a better model fit to the data (r-squares of the correlations calculated
for each estimated linear model fit of the data, Figure 4.4).

Using abundance values calibrated by external RNA spike-in standards
seemed to outperform traditional normalization methods. However, the
comparison is potentially confounded by the different nature of the
measurements we were comparing. In (Brauer et al. 2008) the measurements
used for the calculation of slopes were M values, the log signal ratio of a
comparative high-density microarray hybridization experiment. In our study
we used log-transformed estimates of molecules per cell estimates derived
from directional RNA-seq.

To exclude the possibility that the different nature of the two
measurement units was acting as a scaling factor, we set the mean value of the
lowest growth rate in each dataset to one, and then normalized all other
values to this dataset-specific constant. This way the two studies become
comparable, albeit in arbitrary units. After this numerical transformation, the
differences between the two datasets was less pronounced but the overall
trend remains the same: our calculated slopes were consistently larger and
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primarily positive (Figure 4.S5).
4.4.4: Responses of transcript abundance to changes in growth rate

We next investigated the effect of growth rate on all classes of RNAs
within a cell. We examined the total number of RNA molecules in each cell, as
measured by RNA-seq (Figure 4.5A). These measurements are a clear
reflection of the results obtained by quantitative RNA purification (Figure 4.2)
in that we observe an increase in the total RNA content per cell with increasing
growth rates, and this effect is more pronounced in the nitrogen-limited
conditions. Further exploration of each RNA class individually (Figure 4.5B-
4.5 D) indicates that the effect of growth rate on gene expression is global,
affecting all transcript classes examined; mRNA (Figure 4.5B), non-coding
RNA (Figure 4.5C) and tRNA (Figure 4.5D) levels all appear to increase with
increasing growth rate. Whether this is a result of changes in RNA synthesis or
degradation is unclear from this analysis of total RNA abundance levels.
4.4.5: Degradation rates are regulated in a growth rate dependent manner

The absolute abundance of a transcript is determined by its rates of
synthesis and degradation. To study the contribution of variation in
degradation rate to observed differences in mRNA abundance, we performed
RATE-seq on nitrogen-limited chemostat samples grown at different growth
rates. Following normalization, we performed regression analysis to estimate
decay rate constants for all genes at three different growth rates (Figure
4.6A). For the slow, medium, and fast growing cells, we determined rates for
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4499, 4221, and 5052 genes respectively. As shown in Figure 4.6B, an
increase in growth rate is associated with an increase in degradation rates.
However, on the global scale, there is minimal difference between the medium
growth rate and fast growth rate (Figure 4.6B, compare “medium” and “fast”).
Nevertheless these data are a clear indication that rates of mRNA degradation
are regulated, at least partially, in a growth rate dependent manner.

We next investigated whether a subset of these genes can be explained
in a simple relationship with growth rate. Using linear regression, we modeled
degradation rates as a function of growth rate. Many genes fit well to a linear
model, with 432 genes having r-squared of 0.95 or higher (Table 4.S2). The
slopes of the regression lines differ between genes (Figure 4.6C), suggesting
that each gene is scaled in a transcript specific manner. Using Gene Ontology
enrichment analysis, we find that these 432 genes are overrepresented in
genes in a number of categories, with the strongest overrepresentation in
“ribosome biogenesis” and “cellular component biogenesis”. In fact, we see a
strong relationship between the degradation rate of the RP regulon and the
cellular growth rate (Figure 4.6D). These observations are consistent with
previous findings that ribosome levels (Ju and Warner 1994) and cellular
components (Scott et al. 2010) are finely tuned with growth rates. Together,
these data indicate that degradation rates are modulated on a wide scale to

enable rapid responses to changes in cellular growth rate.
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Figure 4.6: Regulation of Degradation rates as a function of growth rate
We show the non-linear regression for a single gene A) in the slow (purple),
medium (red), and fast (blue) growth rates. We show the in-vivo degradation
rate constant, as well as the time at which one half the equilibrium level of
labeling is attained. B) Global degradation rates are determined in a growth
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rate dependent manner. C) The extent of variation in degradation rate is
determined in a transcript specific manner. D) The RP regulon.
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4.4.6: Synthesis rates are regulated in a growth rate dependent manner

In addition to decay measurements, we also determined rates of
synthesis genome-wide. Under steady state conditions, rates of synthesis and
degradation are equal, and synthesis rates can therefore be inferred with
decay measurements and abundance levels. We estimated synthesis rates
using our degradation rates generated through RATE-seq, and abundance
levels generated from our measurements of mRNA copy number.

We find that similar to degradation rates, synthesis rates are
determined in a growth rate dependent manner (Figure 4.7A). However, the
relationship is much clearer with each growth rate having distinguishable
distribution genome-wide. To determine the extent of this relationship for
individual genes, we performed linear regression of synthesis rate as a
function of growth rate. We find that the synthesis rates of more than six
hundred genes can be explained in a simple linear model (Table 4.S3). As
with degradation rates, the extent of increase in synthesis rate with increased
growth rate is determined in a gene specific manner (Figure 4.7B). GO term
analysis reveals over representation relating to factors associated with growth
rate including “cell division”, “cell cycle”, and “biological organization”. These
data indicate that synthesis rates are determined as a function of growth rate.

We next compared the extent of variation of synthesis and degradation
as a function of growth rate. By comparing the extent of difference between

rates at the fastest and slowest growth, we can establish whether synthesis or
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Figure 4.7: Synthesis rates are the primary determinants of changes in

mRNA levels

We generated synthesis rates by combining our abundance dataset with
RATE-seq estimates of degradation rate constants. A) Global synthesis rates
are determined in a growth rate dependent manner. B) The extent of variation
in synthesis rates is determined in a transcript specific manner. C) Synthesis
rates vary to a greater extent as a function of growth rate than do degradation
rates, and are more highly correlated with degradation rates at lower cellular

growth rates.
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degradation contributes more to modulating mRNA levels. As shown in
Figure 4.7C, the difference between synthesis rates at the higher and lower
growth rates is more pronounced than the difference between degradation
rates. In addition, we find that the relationship between synthesis and
degradation rates is strong at the low growth rate, and decreases with
increasing growth rate (Figure 4.7C). Similarly, the relationship between
synthesis rate and abundance levels increases with increasing growth rate
(Figure 4.S6). These data indicate that globally, the rate at which a gene is
transcribed is the primary determinant of mRNA levels whereas increases in
degradation rates have a secondary effect.
4.5: Discussion

In this work, we address the effect of cellular growth rate on changes in
mRNA levels. To do so, we developed a method for normalizing RNA-seq data
that does not rely on assumptions of total RNA levels remaining constant
across time and samples. Using ERCC spike-ins, we determined the total
number of transcripts per cell in S. cerevisiae. We performed these analyses
for technical replicates to establish effects of technical variation, as well as
biological replicates to account for any biological variability. We found that
the number of transcripts per cell increases as a function of growth rate. This
is true for all types of RNA investigated including rRNA, tRNA, ncRNA and
mRNA. These analyses show that all types of RNA are modulated as a function
of growth rate.
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Global normalization strategies often rely on the assumption that the
proportion of different fractions of RNA does not change between samples.
Our data show this to be an inaccurate assumption when growth rate varies.
Because environmental perturbations or changes in extracellular condition
often lead to changes in growth rate, global studies of gene expression should
not assume constant RNA levels across samples. Such assumptions may lead
to inaccurate interpretation of results. Our observation that a large number of
genes are regulated in a growth rate dependent manner is consistent with
previous observations (Brauer et al. 2008). However, we show that our
response is always in the positive direction, that an increase in growth rate
leads to a concomitant increase in mRNA abundance. This observation was
masked in those previous observations, most likely as a result of faulty
assumptions about constant RNA levels. Use of externally provided spike-ins
provides the most accurate means for transcript number quantification on a
per cell basis.

To determine the contributing factors to changes in mRNA levels, we
utilized RATE-seq to establish rates of synthesis and degradation. We found
that both mRNA synthesis and decay are modulated in a growth rate
dependent manner. However, the primary determinant of mRNA levels seems
to be mRNA synthesis, as the changes in mRNA levels are best explained as a
function of synthesis rates. We performed linear regression of both synthesis
rates and decay rates versus cellular growth rate, and found a substantial
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fraction of genes for which changes in growth rate explains changes in
synthesis and degradation rates respectively. Interestingly, only 3 out of 614
genes that fit to a linear model of growth rate versus synthesis rate have a
negative slope. Likewise, only 7 out of 432 genes that fit a linear model of
growth rate versus degradation rate have negative slope. This suggests that
for the most part, increases in cellular growth rate lead to increases in
degradation rates and even larger increases in synthesis rates. This results in
higher overall mRNA levels. It will be interesting to see how these
observations compare to degradation rates measured in carbon limiting
conditions.

By utilizing chemostat cultures, ERCC spike-ins, and RATE-seq, we have
provided the first complete picture of transcriptome dynamics as a function of
cellular growth rate. The tools described here enable the absolute
quantification of RNA levels per cell, and determination of the underlying
kinetic parameters establishing those levels. We showed that there is
variation in rates of mRNA synthesis and degradation as a function of growth
rate, and the extent of this variation is determined in a transcript specific
manner. The fact that growth rate affects mRNA kinetics is of extreme
significance. This means that any study perturbing cellular growth rate will
inadvertently change the synthesis and degradation rates of all transcripts.
Why some transcripts increase their rates to a greater degree than other
transcripts is yet to be determined. Our recent studies of yeast cells growing
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in rich conditions in batch culture suggest that factors involved in translation
play a role in variation of genome-wide mRNA degradation rates (Neymotin et
al, in preparation). Whether this is true or not for the variation observed here

is to be investigated in future studies.

4.6: Supplemental Figures
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Figure 4.S1: The Kkinetics of labeling

We determined the appropriate time points for RATE-seq analysis based on
preliminary labeling studies. Here we show an example of the amount of
labeled RNA recovered for the samples grown at medium growth rate.
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Figure 4.S3: Differences caused by normalization method

Comparison of two methods in detecting differentially expressed genes in
conditions of total transcriptome amplifications. (A) Simulation showing the
“real” differential expression. (B)Simulation with the data from (A), but
normalized using Edge R. The gene-sets under comparison are color-coded
between (A) and (B). (C) Experimental data normalized with the standard
methods or RNA spike-in calibration. The “-ve binomial” refers to negative
binomial.
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Figure 4.S6: RNA synthesis correlates well with abundance levels

We show the Spearman correlation between synthesis rate and abundance for
each of the three different growth rates of slow (GR=0.12), medium (GR=0.2),
and fast (GR=0.3).
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Chapter 5: Conclusion

5.1: Summary of Results

For a cell to respond to the external world, it must regulate its gene
expression program. Although control of transcription is often the most
studied part of this regulation, it is increasingly clear that post-transcriptional
regulation is a major factor in rapid transcriptome modulation. One aspect of
this regulation is the rate at which different transcripts are degraded. The goal
of this thesis was to characterize variation in rates of mRNA degradation
transcriptome wide, identify determinants of this variation, and study how
environmental conditions affect mRNA degradation rates.
5.1.1: Measurement of mRNA decay and synthesis rates using RATE-seq

To monitor global changes in mRNA degradation rates, we needed a
method for measuring mRNA degradation rates genome wide that does not
impair physiological processes (Chapter 2). RNA Approach to Equilibrium
sequencing (RATE-seq) combines the uracil analogue 4-thiouracil, approach to
equilibrium kinetics, and RNA sequencing, to determine decay rates. We
quantified degradation rates for the entire transcriptome including coding and
non-coding genes and found that transcripts are coordinately regulated based
on similar biological pathways and complexes. Simultaneously we were able
to quantify mRNA synthesis rates, which allowed for a complete picture of

transcriptome dynamics under conditions of steady state growth in rich
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media. RATE-seq is a general method with broad applications that yields
accurate mRNA decay and synthesis rates.
5.1.2: Translational efficiency and GC content effect mRNA decay rates

To investigate the determinants of variation in mRNA degradation
rates, we integrated data for RATE-seq with the vast array of available data for
the features and products of all genes in the yeast S. cerevisiae (Chapter 3).
Through multiple regression analysis, we found that variation in mRNA decay
is best explained when combining multiple transcript features into a single
model. Our analysis suggested that features relating to translation play a
central role in variation in mRNA decay rates. To validate these observations,
we designed experiments in which we modified a single transcript feature,
attempting to keep all other parameters the same. We found that ribosome
density affects observed degradation rates in a transcript specific manner, and
we suggested that the function of the encoded protein contributes to this
observation. We also determined the effect of changes in GC content in the
wobble position of codons on mRNA degradation rates. Both steady state
levels and degradation kinetics could be explained by changes in GC content
up to a certain threshold, past which some other, undetermined factor
contributed to decay. Further investigation revealed that translational
efficiency, as measured by protein produced per mRNA and codon adaptation
index may underlie this variation.
5.1.3: Cellular growth rate affects mRNA synthesis and degradation rates
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We next determined the effect of cellular growth rate on rates of mRNA
degradation (Chapter 4). Using the chemostat in combination with RATE-seq,
we were able to determine that mRNA degradation is regulated in a growth
rate dependent manner. We found that variation in mRNA degradation rates
in a large subset of genes could be explained in a simple linear relationship
with growth rate. Gene Onotology enrichment analysis showed an over
representation for genes involved in “ribosome biogenesis” and “cellular
component biogenesis”. These observations are consistent with previous
findings that ribosome levels (Ju and Warner 1994) and cellular components
(Scott et al. 2010) are finely tuned with growth rate. By simultaneously
measuring absolute abundance of mRNA transcripts per cell, we were able to
infer synthesis rates. We found that at slower rates of growth, synthesis and
degradation are highly correlated, but as cells increase their growth rate, the
relationship between synthesis and degradation does not hold. The difference
between synthesis at the fast and slow growth rates is much greater than the
difference between degradation at the fast and slow growth rates. In addition,
synthesis rates are highly correlated with total mRNA levels, whereas
degradation is not. From these data we conclude that both synthesis and
degradation are regulated in a growth rate dependent manner, but that
synthesis is the primary driving force in observed differences in mRNA levels
as a function of growth rate.

5.2: Perspective and Future Investigation
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Our studies indicate that mRNA degradation rates are determined by
multiple factors. Using a combination of bioinformatic analyses of different
datasets, as well as carefully designed studies of individual transcripts, we
showed that aspects of translation affect mRNA degradation. In addition, by
using RATE-seq in combination with chemostats, we concluded that growth
rate is also a major contributor to mRNA synthesis and degradation rates. As
suggested by our multiple regression analysis, the greatest amount of
explained variation in mRNA decay rates occurs when multiple predictors are
integrated into a single model.

We have initiated collaborative efforts to quantify the yeast proteome
as a function of cellular growth rate in the same conditions of our mRNA
kinetic experiments. Previous observations indicate that protein levels
fluctuate as a function of growth rate as well (Castrillo et al. 2007). In so
doing, we will expand our understanding of gene regulation at the post-
transcriptional level. By incorporating proteomic data in combination with
mRNA abundance levels and kinetic parameters, we will enhance our
understanding of the role that cell growth rate plays in post-transcriptional
gene regulation.

One limitation of our studies, as well as all published studies, is the
focus on model organisms and laboratory strains. It is clear that different
strains of yeast from a variety of ecologies have different growth phenotypes
(Ziv et al. 2013b). Based on our growth rate investigations, the suggestion
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then is that the mRNA kinetics should differ between strains with different
growth rates. In our lab, we have initiated studies investigating how mRNA
decay rates vary based on ecological origin of different yeast strains. Using
heterozygous diploids, we are investigating allele specific mRNA degradation
rates. These results will inevitably be important in understanding the role of
ecological adaptation in post-trancsriptional gene regulation as well as the cis
and trans factors affecting variation.

RATE-seq assumes steady state growth and models mRNA degradation
rates on that assumption. Although extremely powerful and informative,
RATE-seq cannot be directly applied to non-steady state conditions. To
address this concern, we have initiated comparable experiments to RATE-seq,
but instead of tracking the increase in labeled transcript following addition of
thiouracil, we chase out the label using a pulse-chase experimental design
(Cleary et al. 2005; Munchel et al. 2011). Using this design, we need not
assume that cells are in steady state growth, and can model degradation as the
loss of labeled transcripts with time. A major caveat of pulse-chase labeling is
the possibility of nucleotide recycling, as mentioned in Chapter 2. Therefore,
determining the extent of recycling is necessary to accurately model the
observed degradation rates. We have initiated such studies in the dynamic
response of cells to preferred nitrogen sources.

Finally, our analyses showed that functionally related genes degrade
with similar kinetics. It will be interesting to determine how subcellular
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localization of mRNA transcripts within the cell affects mRNA decay kinetics.
[t is known that transcripts contain “zipcodes” in their sequences (St Johnston
2005), specifying their subcellular localization. How the spatial location of an
mRNA transcript affects its degradation kinetics is of great interest. Itis
possible to isolate different organelles with sucrose gradient fractionation
(Rieder and Emr 2001). Sequencing of the associated mRNAs in combination
with RATE-seq has the potential to provide new insight into the role of mRNA

localization on post-transcriptional gene expression.
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