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ABSTRACT 

 

 

Complex networks of interacting genetic and environmental factors regulate the initiation of cell 

growth and subsequent proliferation rates. In microbes, growth rate is a major component of 

fitness and likely a target of selection. Determining the genetic architecture of traits can lead to 

insights concerning underlying molecular mechanisms and evolutionary dynamics. In this 

dissertation, I have dissected the genetic basis of cell growth using natural isolates of the budding 

yeast (Saccharomyces cerevisiae). I have placed an emphasis on uncovering the genetic basis of 

phenotypic variability, the extent of variation between genetically identical individuals within the 

same environment. In chapter 1, I review the use of quantitative genetics to map the determinants 

of phenotypic variance and give an overview of the complexity of cell growth regulation. In 

chapter 2, I quantify differences in cell growth distributions for a set of natural isolates across a 

range of nutrient concentrations, using a high-throughput microcolony growth assay. In chapter 

3, I use different mapping approaches to describe the genetic architecture of both the central 

tendency and dispersion of cell growth distributions, with particular attention to gene-

environment and gene-gene interactions. In chapter 4, I explore the genetic basis of variance in 

growth rate distributions using an additional pair of isolates. Together, these studies underscore 

the complexity and context dependency of genotype to phenotype mapping. The implications of 

these findings are discussed in chapter 5. 
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CHAPTER 1: INTRODUCTION 

 

 

Signaling pathways connecting nutrient sensing, growth regulation and cell cycle progression are 

conserved from yeasts to mammals (Fontana et al. 2010; Cross et al. 2011) and are important for 

normal development and disease. Following decades of research, there is a wealth of knowledge 

about the molecular components needed for regulated cell growth and division. However, 

questions concerning the genetic and environmental determinants of variation in growth in 

natural populations remain largely unexplored. As microbial cell growth entails the integration of 

nutrient availability and intracellular cues it is ideally suited to dissection using quantitative 

genetics. 

 

1.1: Regulation of cell growth 

Jacques Monod defined the study of cell proliferation as a basic method of Microbiology 

(Monod 1949), emphasizing the capacity of cell growth and division to integrate all aspects of 

cell physiology and biochemistry. During the G1 phase of the cell cycle, cells increase in volume 

and protein content. When a critical threshold is reached, cells irreversibly commit to cell 

division. In budding yeast, this transition depends on the cell reaching an appropriate size 

(Johnston et al. 1977). Consequently, variation in growth rate is thought to mainly derive from 

variation in the length of G1 (Zaman et al. 2008), which in turn is regulated by the rate of cell 

growth (mass accumulation). Extensive research, particularly using the budding yeast 
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(Saccharomyces cerevisiae) has elucidated the molecular networks governing cell growth in 

response to nutrient availability. 

 

Glucose is primary source of energy for many eukaryotic cells (Ferretti et al. 2012). In budding 

yeast, replenishment of glucose causes transcriptional changes for over 40% of genes (Zaman et 

al. 2008). The effect of glucose is mediated by a number of signaling networks. The Protein 

Kinase A (PKA) pathway is responsible for a majority of transcriptional changes leading to an 

increase in biosynthetic capacity (via induction of ribosomes) and repression of the stress 

response (Broach 2012). PKA is regulated by levels of cyclic AMP, which are in turn regulated 

by both internal (via Ras1/2 GTPases) and external (via the G protein coupled receptor system 

Gpr1/Gpa2) concentrations of glucose (Smets et al. 2010). In addition to PKA, the multiprotein 

TOR complex 1 (TORC1) constitutes a major signaling pathway regulating cell growth (Smets et 

al. 2010). In response to nutrient quantity and quality, TORC1 regulates protein and mRNA 

synthesis and degradation, ribosome biogenesis, nutrient transport, and autophagy which 

collectively determine the accumulation of mass (Loewith and Hall 2011). The mechanisms by 

which TORC1 senses the nutrient environment remain unknown. The repression of genes in the 

presence of glucose needed for metabolism of alternative carbon sources is mediated by the Snf1 

kinase (Broach 2012). Snf1 is inactivated by the presence (and metabolism) of glucose, leading 

to de-repression of the transcriptional repressor Mig1 (Smets et al. 2010). Finally, various 

glucose transporters are regulated to match external glucose levels by the Rgt network (Broach 

2012). Sensing of glucose by Snf3 and Rgt2 leads to the phosphorylation and inactivation of the 

repressor Rgt1 (Zaman et al. 2008). Rgt1 is phosphorylated in both a PKA-dependent and Snf1-
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dependent manner leading to inactivation or activation respectively (Zaman et al. 2008). 

Furthermore, extensive crosstalk between pathways can lead to mutual antagonism between TOR 

and PKA (Ramachandran and Herman 2011). These interactions underscore the complexity of 

the sensing, signaling and metabolic networks determining the nutrient response. 

 

Cell growth and division are coordinated processes. Cell cycle progression is regulated by 

sequential activation of specific cyclins and the activity of cyclin-dependent kinases (Bloom and 

Cross 2007). The first cyclin to be expressed during G1 is Cln3, leading to initial inactivation of 

the repressor Whi5 and a positive feedback loop which enforces commitment to cell division 

(Cross et al. 2011). Cln3 activation and accumulation is dependent on internal and external 

environmental signals such as nutrient concentration and signaling molecules, modifying the 

length of G1 and coupling cell division to growth and nutrient availability. Cln3 transcription is 

activated within minutes by nutrients such as glucose, seemingly by the same transcription 

factors that regulate ribosomal gene expression (Shi and Tu 2013). This activation is dependent 

on glucose metabolism (Newcomb et al. 2003) and was recently shown to be initiated by the 

presence of Acetyl-CoA (Shi and Tu 2013). However, both TOR and PKA regulate Cln3 at the 

translational level. Systematic analysis of growth in different conditions can shed light on how 

the complex interplay between nutrient sensing and metabolism and cellular signaling networks 

generates variation in growth rates.   
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1.2: Methods for measuring and manipulating cell growth 

In microbes, many methods exist for high-throughput growth phenotyping, each with different 

advantages (Blomberg 2011). Growth rates for hundreds of thousands of microcolonies can be 

measured using a recently developed assay utilizing time-lapse microscopy (Levy et al. 2012). 

Microcolony growth rates are estimated from the change in area over time obtained using custom 

image analysis software. Manipulation of genetic background and growth conditions is 

straightforward as cells are grown in liquid on the bottom of glass 96 or 384 well plates. A main 

advantage of this method is the ability to measure growth rate variance in clonal populations. An 

additional advantage is the ability to grow cells in extremely low nutrient concentrations due to 

the small number of cells that can be studied simultaneously.   

 

Continuous culturing using chemostats enables extrinsic control of cell growth rate by nutrient 

limitation. The method of continuous culturing was independently described by Monod (Monod 

1950) and Novick & Szilard (Novick and Szilard 1950) over 65 years ago. Cells are grown in a 

fixed volume of media that is continually diluted by addition of new media and simultaneous 

removal of old media and cells. At steady state, the growth rate and density of the culture and the 

concentration of the growth-limiting nutrient remain constant. By varying the dilution rate it is 

possible to establish large steady-state populations of cells at different growth rates and under 

different conditions of nutrient limitation. Using chemostats in combination with other analytical 

methods allows investigation of how the rate of growth impacts fundamental processes in the cell 

and conversely how the cell regulates and coordinates cellular process with its rate of growth  
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1.3: The genetics of complex traits 

Quantitative genetics is the study of the inheritance of continuously distributed traits, which are 

defined by small quantitative differences in phenotype between individuals in contrast to discrete 

phenotypic classes. The amount of variation in such traits across individuals is classically 

partitioned into genetic and environmental variance components (Falconer and Mackay 1996).  

 

Genetic variance constitutes phenotypic differences attributable to genetic variation and can be 

further partitioned into additive and epistatic (non-additive) components. In practice, most 

quantitative genetic studies focus on searching for loci that contribute to additive genetic 

variance. This means the locus has a non-zero effect on trait values when averaged over variation 

at all other genomic loci, leading to differences in mean trait value for different genotype classes. 

However, contribution to additive variance does not necessitate that genes act independently of 

one another. Epistasis is defined as a difference in the magnitude or sign of a locus effect 

dependent on the genotype at another locus and is commonly found in model organisms using 

various experimental approaches (Lehner 2011). Epistatic loci contribute to both additive and 

epistatic variance components depending on the details of the interaction and allele frequencies 

(Cheverud and Routman 1995). Focusing on marginal additive effects obscures the distribution 

of locus effects, challenging phenotypic prediction and the replication of loci between studies. 

Searching for pairwise or higher order interactions in quantitative genetic studies will lead to a 

better understanding of the mechanistic basis and evolutionary relevance of epistasis, and 

provide a more complete picture of the genetic basis of complex traits (Mackay 2013; Taylor and 

Ehrenreich 2015). 
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Environmental variance constitutes phenotypic differences not attributable to genetic variation. 

While environmental variance describes the proportion of phenotypic variance that is not due to 

genetic differences, the extent of environmental variance (‘phenotypic plasticity’) can be under 

genetic control (Scheiner and Lyman 1989; Hill and Mulder 2010). When considering 

experimentally controlled environmental differences, this control manifests as gene-environment 

interactions. In this case, loci have different effects (including an absence of effect) depending in 

which environment the trait was measured. In addition to this aspect of environmental variance, 

genetically identical individuals can have different phenotypes even in the same environment 

(Raser and O’Shea 2005; Losick and Desplan 2008; Levy et al. 2012), termed ‘phenotypic 

variability’ (Geiler-Samerotte et al. 2013). Direct estimates of variability require measurements 

of individuals in clonal populations or repeated measurements. This aspect of environmental 

variance may also be controlled by distinct genomic loci, adding an additional layer of 

complexity to genotype to phenotyping mapping. These loci are best identified when mean-

independent estimates of variability can be measured and treated as quantitative traits. As with 

identifying gene-gene interactions, identifying the genetic basis of environmental variance can 

lead to better prediction of phenotypes based on genotype information.   

 

Large-scale genetic mapping of quantitative traits first became feasible following the utilization 

of molecular polymorphisms as genetic markers (Botstein et al. 1980) and development of 

analytical methods of analysis (Lander and Botstein 1989). Genetic mapping relies on 

identifying statistical associations between allele identity and trait values. Studies typically use 

genetic variation either segregating in families (linkage mapping) or present in natural 
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populations (association mapping). The number of individuals needed for quantitative trait loci 

(QTL) detection depends on the effect size and allele frequency of the locus while for QTL 

localization it depends on recombination frequency (Mackay et al. 2009). Linkage mapping has 

an advantage in detection due to the absence of rare alleles. Alternatively, association mapping 

has an advantage in localization as it uses ancestral recombination events (Mackay et al. 2009). 

Different mapping strategies can improve detection and localization of QTL. For example, 

pooled analysis of large numbers of individuals with extreme phenotypes improves detection of 

small effect QTL. Crossing strategies that incorporate several generations improve mapping 

resolution by introducing additional recombination events into the mapping population. 

Advancements in experimental and analytical methods of genetic mapping provide an 

opportunity to rigorously study the genetic basis of variation in complex traits.      

 

1.4: Quantitative analysis of cell growth 

The work presented in this dissertation makes use of natural variation to investigate the genetic 

and non-genetic determinants of cell growth. Specifically, I have used high-throughput 

individual-based phenotyping to quantify variation in cell growth distributions between natural 

isolates of Saccharomyces cerevisiae. I subsequently used two different crosses and a 

combination of mapping strategies to explore the genetic basis of cell growth variation and 

identify causative loci.  

 

I have worked on various additional projects throughout my graduate studies, a number of which 

have resulted in publications. I have contributed to a review about phenotypic variability; the 
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extent of variation between genetically identical individuals within the same environment 

(Geiler-Samerotte et al. 2013) and participated in a scientific video protocol outlining various 

applications of continuous culturing using chemostats (Ziv, Brandt, et al. 2013). I assisted in the 

initial description of the microcolony growth rate assay which focused on growth rate variability 

in benign conditions (Levy et al. 2012) and helped characterize the genetic factors required for 

initiation of cell quiescence using a reverse genetics approach (Gresham et al. 2011). These 

studies are not contained within this thesis. 
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CHAPTER 2: GENETIC AND NON-GENETIC DETERMINANTS OF CELL-GROWTH 

VARIATION ASSESSED BY HIGH-THROUGHPUT MICROSCOPY 

 

 

This chapter was published in the journal Molecular Biology and Evolution as: 

Ziv, N., M. L. Siegal, and D. Gresham. “Genetic and Non-Genetic Determinants of Cell-Growth 

Variation Assessed by High-Throughput Microscopy.” Molecular Biology and Evolution, 

August 11, 2013. doi:10.1093/molbev/mst138. 

 

2.1: Abstract 

In microbial populations, growth initiation and proliferation rates are major components of 

fitness and therefore likely targets of selection. We used a high-throughput microscopy assay, 

which enables simultaneous analysis of tens of thousands of microcolonies, to determine the 

sources and extent of growth-rate variation in the budding yeast (Saccharomyces cerevisiae) in 

different glucose environments. We find that cell growth rates are regulated by the extracellular 

concentration of glucose as proposed by Monod (Monod 1949), but that significant heterogeneity 

in growth rates is observed among genetically identical individuals within an environment. Yeast 

strains isolated from different geographic locations and habitats differ in their growth-rate 

responses to different glucose concentrations. Inheritance patterns suggest that the genetic 

determinants of growth rates in different glucose concentrations are distinct. In addition, we 

identified genotypes that differ in the extent of variation in growth rate within an environment 

despite nearly identical mean growth rates, providing evidence that alleles controlling phenotypic 

variability segregate in yeast populations. We find that the time to reinitiation of growth (lag) is 
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negatively correlated with growth rate yet this relationship is strain-dependent. Between 

environments, the respirative activity of individual cells negatively correlates with glucose 

abundance and growth rate, but within an environment respirative activity and growth rate show 

a positive correlation, which we propose reflects differences in protein-expression capacity. Our 

study quantifies the sources of genetic and non-genetic variation in cell growth rates in different 

glucose environments with unprecedented precision, facilitating their molecular-genetic 

dissection.  

 

2.2: Introduction  

The rate at which a population of cells proliferates (i.e. the population growth rate) depends on 

both the rate of cell growth (increase in mass and volume) and the rate of cell division (increase 

in number). Understanding the physiological principles and molecular determinants governing 

cell proliferation rates is of broad importance in biology. Despite many decades of research, 

major questions remain regarding how cells regulate their rate of growth and how cell division, 

cell growth and diverse cellular processes including metabolism and macromolecular synthesis 

are coordinated. At the same time, new questions are emerging including the identities of 

naturally occurring genetic variants that underlie heritable variation in proliferation rates 

(Cubillos et al. 2011), the extent to which environmental conditions impact this variation (Liti 

and Louis 2012), and the molecular basis of heterogeneous growth strategies among genetically 

identical cells in the same environment (Levy et al. 2012).  
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In all organisms, the rate of cell proliferation is sensitive to the status of environmental nutrients 

required for biomass accumulation and energy metabolism. In the single-celled microbe 

Saccharomyces cerevisiae (budding yeast), the molecular form and abundance of environmental 

carbon is a major determinant of proliferation rates. The addition of glucose to glucose-deprived 

cultures of S. cerevisiae results in dramatic changes in cell physiology and metabolism, as well 

as alterations in the expression of more than 40% of genes (Zaman et al. 2008). The major 

transcriptional changes include increased expression of genes involved in ribosome biogenesis 

and repression of genes required for respiration, and the metabolism of alternative carbon 

sources (Zaman et al. 2008), consistent with glucose lying upstream of a regulatory network that 

coordinates cell growth with metabolism. While the study of glucose regulation has typically 

entailed comparison of cells deprived of glucose with those provided with an abundance of 

glucose (2% w/v or 111 mM glucose in standard formulations), evidence suggests that cells 

modulate their responses to environmental glucose across a wide range of concentrations 

(Reifenberger et al. 1997; Yin et al. 2003; Kaniak et al. 2004).  

 

In single-celled microbes, variation in cell growth rates has important implications for evolution 

(Blomberg 2011). A fast-growing lineage will rapidly outcompete even slightly slower growing 

lineages when nutritional resources are abundant. However, microorganisms often face 

nutritionally poor environments (Smets et al. 2010). How they respond to suboptimal nutrient 

availability and starvation and, conversely, the kinetics with which they respond to nutrient 

replenishment are also major components of fitness. Moreover, it is not just the average response 

that matters, but the variance matters as well. If two lineages have identical arithmetic-mean 
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growth rates, the lineage with the least individual-to-individual variation around that mean will 

outcompete the other during growth (Frank 2011). However, population heterogeneity might 

provide an advantage in fluctuating environments (Kussell and Leibler 2005; Frank 2011; Levy 

et al. 2012). To date, most studies of microbial fitness have focused on the population growth 

rate in nutrient-rich conditions (Giaever et al. 2002; Hillenmeyer et al. 2008). However, this 

laboratory condition is of unknown relationship to environments encountered by natural isolates 

of yeast and analyses restricted to nutrient-rich conditions are likely to miss important, and 

potentially adaptive, variation. At the same time, variation in proliferation rates among diverse 

natural isolates of yeast in suboptimal conditions may provide unique insight into the regulation 

of cell growth and how this variation has been shaped by ecological and geographic histories. 

 

A more complete understanding of environmental and genetic determinants of cell proliferation 

rates requires surmounting two technical challenges: 1) accurate measurement of proliferation 

rates across a wide range of conditions including near-starvation conditions and 2) quantification 

of variation among genetically identical individuals. We recently developed a growth assay that 

measures individual cells growing into microcolonies comprised of up to ~100 cells that solves 

both of these problems (Levy et al. 2012). An important advantage of this approach over other 

high-throughput methods of growth-rate analysis is the capability of determining distributions of 

growth rates derived from thousands of individual microcolony growth-rate measurements.  

 

In this study, we have used this approach to investigate cell growth in a range of glucose 

concentrations of natural isolates of S. cerevisiae with different ecological histories. We 
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extended our high-throughput microcolony assay to enable measurement of both growth rate and 

lag time in single cells. We find that cell growth rates vary with glucose concentrations in 

accordance with a deterministic model of substrate-limited growth (Monod 1949). We surveyed 

a panel of wild yeast isolates across these conditions and find prevalent genotype-by-

environment interactions, suggesting that different genetic factors underlie growth-rate variation 

at different glucose concentrations. Isolates also differ in growth-rate variance independently of 

differences in mean growth rate. Using a fluorescent reporter of respirative metabolism, we find 

that although increased respiration is anti-correlated with growth rate between environments, 

within an environment increased respirative enzyme expression is correlated with increased 

proliferation rates, perhaps reflecting non-genetic variation in protein production capacity. By 

quantitatively analyzing variation in growth reinitiation, proliferation and metabolism in a 

spectrum of glucose-containing environments, we reveal a continuum of growth strategies 

among yeast populations that is amenable to genetic dissection. 

 

2.3: Results 

2.3.1: High-throughput analysis of environmental determinants of cell growth variation 

The rate of proliferation of yeast cells is regulated in response to both the form and abundance of 

environmental nutrients. Using chemostat cultures it has been shown that populations of yeast 

cells can modulate their rates of growth across at least a tenfold range (Brauer et al. 2007). In 

batch cultures, growth in environments containing low nutrient concentrations that are equivalent 

to the steady-state concentrations in chemostats cannot be easily measured using conventional 

methods (i.e. optical density or particle counting).  
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We hypothesized that our recently developed high-throughput microcolony growth-rate assay 

would provide sufficient resolution to measure cell proliferation rates in low-nutrient 

environments. Our assay uses time-lapse microscopy to monitor individual cells undergoing a 

small number of divisions to form microcolonies in 96-well glass-bottom plates (Levy et al. 

2012) (Figure 2.1A). Previously, we showed that the rate of change in microcolony area is 

highly correlated with the rate of change in cell number and thus provides an accurate estimate of 

microcolony growth rate (Levy et al. 2012). To study the effect of environmental glucose 

concentration on cell growth rates we used minimal, chemically defined media (Saldanha et al. 

2004). Prior to each experiment, cultures were grown to stationary phase in carbon-limiting 

media to ensure cell-cycle arrest due to carbon starvation. Starting from growth-arrested cells, 

rather than exponentially growing cells, allowed us to observe the time to reinitiation of growth 

(i.e. lag) in each environment. Each microcolony growth profile is defined by two phases, a lag 

phase and a growth phase (Figure 2.1B). We used a sliding-window regression method to locate 

the maximal rate of proliferation (increase in log area) for each microcolony (methods). Lag 

duration was defined by the intersection of this maximal-proliferation line with a horizontal line 

defined by the initial cell size (methods). Using 96-well plates our assay enables us to measure 

the lag times and growth rates of as many as 80,000 individual microcolonies in a single 24-hour 

experiment.  
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Figure 2.1: Calculation of growth parameters from microcolony growth profiles 

Images (A) and growth profiles (B) for two representative microcolonies. Growth of 

microcolonies follows a simple two-phase log-linear model. The exponential growth phase for 

each microcolony is determined by a sliding-window regression. The window of eight 

consecutive time-points with the log-linear fit of greatest slope (and R2>0.9) defines the maximal 

growth rate (red points). Lag duration is defined by the intersection of the line defining the 

growth phase with a horizontal line defined by the initial cell size 

 

2.3.2: Microcolony growth rate is determined by glucose concentration in agreement with 

the Monod model for substrate-limited growth 

We sought to determine: 1) the relationship between population growth rate and glucose 

concentration and 2) if the response to glucose concentration varies among natural isolates of S. 

cerevisiae. In preliminary studies, we found that mean growth rate was not affected in media 

containing ~25-fold less glucose than standard media. Therefore, we analyzed microcolony 

growth rates in seven different glucose concentrations, ranging from 0.05–4.44 mM glucose, for 

four different prototrophic diploid strains. The strains derive from the laboratory (FY4/5, 

isogenic to the reference yeast strain S288c; hereafter “lab”), a North American oak tree (BC248; 

hereafter “oak”), a Californian vineyard (BC241; hereafter “vineyard”) and a cross between the 
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oak and vineyard strains (BC252, hereafter “oak/vineyard F1”) (Gerke et al. 2006). The lab, oak 

and vineyard strains are homozygous throughout the genome. Each strain was grown in each 

glucose environment in three wells per plate and each plate was replicated four times, resulting 

in over 150,000 microcolony growth-rate measurements (methods). We confirmed that 

microcolony area is highly correlated with cell number for different strains growing in 0.22 mM 

glucose (Figure 2.S1).   

 

To differentiate variation due to the factors of interest (i.e. genetic background and environment) 

from variation unique to individual wells and plates (which likely result from variation in 

illumination, focus and media preparation) we used mixed-effect linear modeling in which we 

included strain identity, glucose concentration and their interaction as fixed effects and the plate 

and well as random effects (see supplementary note). Estimates for each genotype-environment 

combination clearly showed growth rate to be a function of both genetic background and 

environment (Figure 2.S2). In order to combine growth rate measurements for a given genotype 

from different wells and plates, we normalized the data by subtracting plate and well conditional 

means estimated from the mixed model from each microcolony growth rate (see supplementary 

note). The normalized data were used for further analysis.  

 

We aimed to model the growth-rate response to glucose concentration as a continuous function. 

Monod proposed that cell growth rate is related to the concentration of a limiting nutrient with 

saturating kinetics that resemble the Michaelis-Menten function (Monod 1949). Using non-linear 

least-squares regression, the normalized data for each strain were fit to the Monod model 
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(Figure 2.2A, Figure 2.2B, Figure 2.S3, Table 2.S1). This model requires two parameters: the 

maximum growth rate (µmax) and the glucose concentration at which growth rate is half-maximal 

(Ks). Our estimates of µmax (0.43-0.52 hr-1) and Ks (0.1–0.2mM) are similar to values estimated 

for S. cerevisiae strains using bulk population growth rates in batch cultures and chemostats 

(Snoep et al. 2009) respectively. As our estimates are generated from a large number of 

measurements (28,000 – 42,000 growth rates per strain), these parameters are estimated 

extremely accurately with standard errors on the order of 10-4 (i.e. three orders of magnitude 

smaller than the parameters).  

 

Alternatives to the Monod model have been proposed (Kovárová-Kovar and Egli 1998). Several 

of the alternatives are slight variations on the Monod model, containing an additional 

"maintenance" term representing the need for substrate even when cells are not growing 

(Kovárová-Kovar and Egli 1998). A conceptually different model is that of (Westerhoff et al. 

1982), which is based on non-equilibrium thermodynamics and proposes a linear dependence of 

growth rate on the logarithm of the substrate concentration (Westerhoff et al. 1982). We fit the 

data on each of the four strains to various alternative models (Figure 2.S3, Table 2.S1). We 

compared model fits by Akaike information criterion (AIC), Bayesian information criterion 

(BIC) and, when appropriate, likelihood-ratio tests (Table 2.S1). With the exception of the lab 

strain, variants of the Monod model with an additional parameter slightly improved fit relative to 

the Monod model (Figure 2.S3, Table 2.S1). Moreover, for all four strains, the Monod model fit 

substantially better than the Westerhoff model (Figure 2.S3, Table 2.S1). The data therefore 
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support the Monod model, or slight variations of it, over the most prominent competing model of 

substrate-limited growth. 

 

Figure 2.2: Growth rate is determined by glucose concentration in agreement with the 

Monod model for substrate-limited growth and varies among natural isolates of S. 

cerevisiae 

(A) Growth-rate distributions for the lab strain in a range of glucose conditions. The line depicts 

the best fit of the Monod equation (inset) to the normalized data. Glucose concentration is shown 
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on a logarithmic scale for clarity. (B) Fits to the Monod equation, showing growth rate as a 

function of glucose concentration for four strains. (C) Ks and µmax estimates for four strains. 

(D) Growth rates at 0.22 mM and 4.44 mM glucose are proxies for Ks and µmax respectively. 

(E) Competitive growth rate assays between oak and vineyard strains at two dilution rates in 

chemostats (lower dilution rates correspond to lower glucose concentrations). Replicate 

experiments were centered by mean subtraction; lines depict linear regressions of log-

transformed ratios against generations. 

 

2.3.3: The growth-rate response to different glucose concentrations varies among yeast 

strains  

Each of the four strains is defined by a unique combination of µmax and Ks parameters (Figure 

2.2C). The oak strain grows faster than both the vineyard and lab strains at all glucose 

concentrations; however the data also display genotype-by-environment interactions. The 

oak/vineyard F1 has an intermediate value for Ks compared to the parental strains, whereas its 

µmax is identical to the oak parental strain (Figure 2.2C). This suggests distinct genetic effects 

underlying variation in these two parameters, which we estimated using the mid-parent heterosis 

(MPH) metric (Zorgo et al. 2012) (methods). In the case of Ks the net genetic effect is largely 

additive (MPH = 0.25) whereas in the case of µmax the net genetic effect is primarily dominant 

(MPH = 1). Genetic variation in µmax and Ks is reflected in growth rate in high and intermediate 

glucose concentrations respectively: the growth rate of the oak/vineyard F1 at 0.22 mM glucose 

yields a MPH = 0.22 whereas at 4.44 mM the MPH = 0.9 (Figure 2.2D). 

 

We sought to independently confirm the effect of environmental glucose concentration on the 

growth rates of the oak and vineyard strains. Therefore, we measured the relative growth-rate 
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differences between the oak and vineyard strains using competitive growth-rate assays in 

chemostats (methods). Because the steady-state residual glucose concentration increases with 

increased dilution rate we performed competition assays in glucose-limiting media at a low (D= 

0.18–0.2 hr-1) and a high (D=0.35–0.39 hr-1) dilution rate. Consistent with our microcolony 

growth rate results, the growth advantage of the oak strain at a low dilution rate is greater than at 

a high dilution rate (9.6%±0.28% vs 0.6%±0.2%) (Figure 2.2E). Thus, both competition assays 

in chemostats and our microcolony growth-rate assay reveal that growth-rate differences 

between these two strains are conditional upon environmental glucose concentration.    

 

To more broadly survey genetic variation in the response of growth rate to glucose 

concentrations, we used the microcolony assay to analyze additional strains (methods) covering 

a range of genetic backgrounds and ecologies (Liti et al. 2009). Each strain was measured in 0.22 

mM and 4.44 mM glucose, resulting in over 300,000 microcolony growth rates. These diverse 

strains exhibit a range of growth rates in both glucose concentrations (Figure 2.3), which is 

delimited by the fastest-growing oak strains and the slowest-growing lab strain. The majority of 

strains have similar, intermediate growth rates in 4.44 mM glucose, but show more pronounced 

differences in growth rates in 0.22 mM glucose. Similarity in growth rates does not appear to be 

determined solely by common ecologies or genetic relatedness (as defined by (Liti et al. 2009)).   
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Figure 2.3: Natural variation in growth rates 

at two different glucose concentrations 

Growth rates at 0.22 mM and 4.44 mM glucose 

for 11 diverse strains. Shapes and colors 

correspond to genetic lineage and source (as 

defined by (Liti et al. 2009)) respectively. Error 

bars represent 95% confidence intervals.  

 

 

 

2.3.4: Natural variation exists in the distributions of growth rates within an environment 

In addition to variation in the average growth-rate response to different glucose concentrations 

between genotypes, we observed substantial variation in growth rates within each environment 

for a given genotype. In contrast to our previous study in which we observed left-skewed 

distributions (Levy et al. 2012), growth-rate distributions among diverse strains and conditions 

are largely symmetric. Therefore, we studied the effect on the shape of the growth-rate 

distribution of ploidy, growth condition and the recent history of the cells. We find that diploid 

strains have fewer slow-growing cells than haploid strains, that growth in minimal medium 

yields fewer slow-growing cells than growth in rich media, and that these effects of ploidy and 

nutrient conditions are particularly strong in the lab strain genetic background (Figure 2.S4). 

 

We aimed to determine if the variance of growth-rate distributions differs among the different 

strains and glucose concentrations. We used log-transformed absolute values of the residuals 
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from the mixed model as a measure of growth-rate deviation (see supplementary note). These 

deviations were then used as random variables in a new linear mixed model with the same 

structure as the original model. By using mixed modeling, we control for confounding technical 

effects of wells and plates on our estimates of average growth-rate deviations for each strain at 

each nutrient concentration.   

 

We find significant differences in the variability of growth rates among strains (Figure 2.4A) 

that are independent of the mean growth rate. Consistent with a lack of correlation between 

growth-rate means and variances (Figure 2.S5), there is no clear relationship between the 

variances in growth rates in the two glucose concentrations (Figure 2.4A). Notably, two 

European soil strains, which have nearly identical mean growth rates, show significantly 

different deviations from the mean in both glucose concentrations (Wilcoxon test on normalized 

data, p-value < 2.2e-16). Comparison of their growth-rate distributions shows that the Dutch soil 

strain has a broader distribution than the Finnish soil strain, including both slower and faster 

growing cells (Figure 2.4B). These observations provide evidence that variability in growth rates 

within environments is genetically determined and may be affected by genetic factors that are 

independent of those factors that affect the mean growth-rate response.   
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Figure 2.4: Variation in the extent of growth-rate variability 

(A) Absolute growth-rate deviations are plotted against growth rate for 11 strains at 0.22 mM 

and 4.44 mM glucose. Lines connect estimates for the same strain at the two concentrations. 

Shapes indicate genetic lineage as defined in Figure 2.3. The two European soil strains that 

exhibit the same mean but different absolute growth-rate deviations are highlighted. Error bars 

represent 95% confidence intervals. (B) Growth-rate distributions for the two soil strains at 0.22 

mM glucose.  

 

2.3.5: Natural variation in time to reinitiation of growth 

Our assay enables estimation of the time each cell takes to reinitiate growth in a defined 

environment (Figure 2.1). The fraction of cells that undergo a detectable lag decreases as 

glucose concentration increases (Figure 2.5A). In 4.44 mM glucose few cells lag whereas in 

lower glucose concentrations the majority of cells display a delay before initiating growth. The 

fraction of cells that lag also displays genetic variation, as a greater proportion of vineyard and 

lab cells lag than oak cells in almost all environments. The percentage of lagging cells (at 0.11 
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and 0.22 mM glucose) correlates with estimates of Ks across strains (Pearson correlation 

coefficient>0.969, p.value<0.03). Although 30% of oak strain cells do not have a detectable lag 

time (in 0.05 mM glucose), the unimodal distribution of lag times for all strains suggests that a 

nutrient concentration threshold exists at which all cells exhibit a lag regardless of genotype.  

 

To quantify the difference in lag duration between strains we used mixed-effect modeling 

(methods, supplementary note). We find that the average duration of lag is inversely correlated 

with mean growth rate, yet this relationship is variable between strains (Figure 2.5B). Strikingly, 

the lab and vineyard strains have longer average lag durations than the oak strain even when the 

subsequent growth rate is similar. This observation suggests that reinitiation and proliferation 

rates are under distinct genetic control. 

 

We wanted to determine if strains differ in the variability of lag time in addition to their 

differences in average lag duration. In contrast to growth rate, there is a strong relationship 

between average duration of lag and the associated variance within environments (Figure 2.5C, 

Figure 2.S5A). In low-glucose environments cells exhibit extremely heterogeneous behaviors 

with some cells initiating growth immediately whereas others lag for greater than ten hours 

before initiating growth. In order to control for this inherent relationship, we used smoothed local 

regression to estimate and control for the relationship between mean and variance. Specifically, 

median absolute deviations were regressed on medians and the residuals were compared between 

strains (Figure 2.S6). No significant difference was found between strains (F=1.618, p=0.185).  
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Figure 2.5: Variation in single-cell lag-duration distributions 

(A) Percentage of cells with estimated lag durations greater than 1 hour for four strains grown in 

seven different glucose concentrations. (B) Estimates of lag duration versus growth rate. Error 

bars represent 95% confidence intervals. (C) Distributions of lag times for the lab strain at four 

glucose concentrations.  

 

2.3.6: A marker of respiration correlates with growth rate negatively across conditions and 

positively within conditions  

As environmental glucose concentrations are known to affect whether yeast cells ferment or 

respire, we sought to determine the metabolic states of microcolonies growing at different 

glucose concentrations. CIT1 encodes a citrate synthase that catalyzes the first step in the TCA 

cycle. CIT1-GFP expression has been shown to correlate with the degree of respiration on 

different carbon sources (Fendt and Sauer 2010) and the relative abundance of CIT1 mRNA is 

negatively correlated with growth rate in glucose-limited chemostats (Brauer et al. 2007). 

Therefore, we used the average expression of a CIT1-GFP fusion protein (in the lab strain 

genetic background) as a marker of respiratory activity in growing microcolonies (methods).  
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To define the range of CIT1 expression we measured protein fluorescence and growth rates in 

the lab strain growing in: 1) a non-fermentable carbon source (acetate); 2) a high concentration 

of glucose (2%, 111 mM), in which respiration is minimal; and 3) galactose, in which cells 

simultaneously respire and ferment (Fendt and Sauer 2010). We then measured CIT1 expression 

and growth rate simultaneously in the range of glucose concentrations over which all strains 

exhibit glucose-dependent growth rate variation. Across all conditions CIT1 expression is 

negatively correlated with growth rate (Figure 2.6A). These data are consistent with a near-

complete absence of respiratory activity in cells growing in concentrations as low as 4.44 mM 

glucose and a systematic increase in respiration as environmental glucose concentration 

decreases.  

  

By contrast, within environments there is a positive correlation between CIT1 expression and 

growth rate in different carbon sources (Figure 2.6B) and different glucose concentrations 

(Figure 2.6C). The strength of this relationship increases as average growth rate decreases. That 

is, although the average growth rate in conditions that promote increased respiration (low 

glucose concentrations or alternative carbon sources) is lower, within these conditions cells that 

have higher expression of CIT1 tend to grow faster than cells with lower levels of CIT1 

expression.   
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Figure 2.6: Respiration and growth rate are negatively correlated between environments 

but positively correlated within environments 

(A) Estimates of CIT1 expression versus growth rate. Colors depict different environments. Error 

bars represent 95% confidence intervals. (B) Microcolony growth rates and CIT1 expression 

with glucose, galactose and acetate as carbon sources. Lines depict major axis type II regressions 

for the central 98% of growth-rate variation in each condition. Non-parametric correlation 

coefficients (Spearman ρ) were calculated for each condition. Bootstrapped standard errors range 

between 0.012–0.014. (C) Same as (B) for four different glucose concentrations. 

 

2.4: Discussion 

The quantitative analysis of microbial growth was initiated by Jacques Monod and colleagues in 

the middle of the twentieth century (Monod 1949). The advent of genomics and systems biology 

has stimulated renewed interest in understanding cell growth as recent advances make it clear 
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that the rate of cell growth is a major determinant of the transcriptional (Regenberg et al. 2006; 

Brauer et al. 2007; Gutteridge et al. 2010) and metabolic state (Boer et al. 2009; Gutteridge et al. 

2010) of the cell. Moreover, modeling cell behavior requires incorporation of cell growth rate as 

a parameter (Scott and Hwa 2011). Here, we have extended and enhanced our recently reported 

microcolony growth assay (Levy et al. 2012), which combines the advantages of accurate 

measurement of variation in growth rates between individual cells with high-throughput capacity 

enabling investigation of growth rate distributions across genetic backgrounds and environments.  

 

We have used this assay to study growth rate variation in response to changes in extracellular 

glucose concentrations. We have shown that the growth rate response of Saccharomyces 

cerevisiae to glucose concentration agrees with the Monod model of nutrient-regulated growth. 

The growth rate of yeast cells is continuously adjusted in response to the concentration of 

environmental glucose and maximal growth rates are achieved at low millimolar concentrations 

of glucose. Although it has been suggested that differences in genotype can influence the 

parameters of the Monod model (Ferenci 1999), these parameters had not been compared 

between different natural isolates in any organism. We found that the growth rate response to 

glucose shows natural variation among yeast strains. Comparisons of two homozygous parental 

strains and their F1 hybrid as well as a number of wild strains suggest that Ks and µmax are under 

distinct genetic control. As fluctuating nutrient availability and nutrient limitation are probably 

important aspects of the natural habitats of microbes we expect that identifying the genetic 

factors underlying variation in growth rates at different glucose concentrations would prove 
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informative about both the genetic control of cell growth and the evolutionary histories of 

diverse yeast strains.  

 

Although functional genomic studies have shown that deletion of many genes can affect cell 

growth rates in rich media conditions (Giaever et al. 2002; Hillenmeyer et al. 2008) there are few 

examples of natural alleles that underlie variation in cell growth rate. Natural variation in 

components of the RAS/cAMP pathway (IRA1 and IRA2) has been implicated in regulating 

quantitative growth at high temperature (Parts et al. 2011) and expression of growth-related 

transcripts in glucose and ethanol (Smith and Kruglyak 2008). The Monod constant (Ks) relates 

to the affinity of the cell for the nutrient, but its biological interpretation is a subject of debate 

(Liu 2007). Ks may be related to the Km of the relevant transporter, but the relationship between 

Ks and Km depends on assumptions about the kinetics of the transport system, and the extent of 

control that the transport step has on the growth rate can change between different substrate 

concentrations (Snoep et al. 2009). Increased expression of the high-affinity glucose transporters 

HXT6 and HXT7 has been shown to confer increased fitness in experimental evolution in 

glucose-limited conditions (Brown et al. 1998; Gresham et al. 2008) suggesting that growth rates 

at sub-maximal glucose concentrations may be largely determined by substrate-transport rates.  

 

A unique aspect of our assay is the ability to monitor lag in individual cells. Lag duration in bulk 

populations is usually poorly defined and the accuracy of its estimation is limited by the power to 

detect growth at low cell density. In population growth curves the transition between lag and 

growth phases is typically smooth, due to variability between individual cells (Buchanan et al. 
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1997), making the determination of a single lag time somewhat arbitrary. When measuring single 

cells, our data are best described by a distinct transition between lag and the exponential growth 

phase. Our results support previous observations (Peleg and Corradini 2011) that these different 

phases of growth can vary independently. We observe significant heterogeneity in the duration of 

lag particularly as environments become increasingly poor in glucose. Understanding the 

molecular basis of heterogeneity in lag will provide insight into the processes that underlie exit 

from quiescence and reinitiation of cell growth and may have practical applications; for example, 

in the food industry (Swinnen et al. 2004), where outgrowth of a small number of individual cells 

is a major concern.  

 

We observed phenotypic variability in both lag and growth phases. The advantage of increased 

cellular variability in the face of novel and fluctuating environments is relevant to the 

evolutionary rates of cancer progression and drug resistance (Frank and Rosner 2012). Although 

the extent of nongenetic phenotypic variation has important implications for evolutionary 

dynamics, it has been understudied in part because of the difficulties of accurately assessing 

phenotypes of individual cells. Consequently, the mechanisms regulating nongenetic phenotypic 

variability remain poorly understood (Pelkmans 2012; Geiler-Samerotte et al. 2013). One 

possible source of phenotypic variability is differences in gene expression between individual 

cells. Possible mechanisms by which these differences can be enhanced or reduced include 

regulation of chromatin modification (Levy and Siegal 2008), promoter structure (Ferguson et al. 

2012) and variability in the inheritance and functionality of mitochondria (Johnston et al. 2012). 

Furthermore, variation in protein translation capacity between cells (possibly as a result of 



  

31 

variation in ribosomal content), may contribute to variation in growth rates (Scott and Hwa 

2011). For cell growth in particular, variability in the lengths of different cell-cycle stages had 

been observed (Di Talia et al. 2007; Son et al. 2012), but the impact of natural variation on 

mechanisms controlling variability of cell-cycle timing has not been explored. Our identification 

of strains that differ substantially in their growth-rate variances despite nearly identical means, 

presents an ideal scenario for identifying the genetic and molecular basis of natural variation in 

growth-rate variability.  

 

We find that a decrease in cell growth rate corresponds with increased respirative activity, as 

measured by CIT1 expression, consistent with previous studies of the diauxic shift and yeast 

metabolic cycle (Brauer et al. 2005; Silverman et al. 2010). Because cells increase their 

respiratory activity at low glucose concentrations, differences in the efficiency of respiration 

between the oak and vineyard strains (Gerke et al. 2006) may underlie variation in Ks. 

Intriguingly, in contrast to the negative correlation between CIT1 expression and growth rate 

between glucose environments we find that within a glucose environment, increased expression 

of CIT1 is correlated with increased growth rate. We suggest that this correlation may represent 

global differences in rates of protein production between cells that are not necessarily specific to 

CIT1. The fastest growing cells within the same environmental conditions may have greater 

translational capacity. In this scenario, the environmental conditions specify the metabolic state 

of the cell, but inter-individual variation in protein production capacity underlies heterogeneity in 

growth rates. As a result, different combinations of metabolic and translational capacity can 

specify the same growth rate. Continued investigation of variation both within and between 
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environments will provide a deeper understanding of the genetic and non-genetic sources of this 

variation and how cells optimize their growth potential in a particular environment.     

 

2.5: Materials and methods 

2.5.1: Yeast strains and media 

All strains used in this study are prototrophic diploids, with the exception of two prototropic 

haploids used to investigate the effect of ploidy on the shape of the growth-rate distribution 

(Figure 2.S4). All wild strains were obtained from the lab of Barak Cohen (Washington 

University). The strains used in this study are the oak (BC248), vineyard (BC241), the F1 hybrid 

(BC252), an additional North American oak strain (YPS126), two European strains isolated from 

soil samples (DBVPG1373 and DBVPG1788), three genetically diverse strains isolated from 

plants/fruit in Malaysia, Hawaii and the Bahamas (UWOPS03-461.4, UWOPS87-2421 and 

UWOPS83-787.3), an African palm wine isolate (Y12) and a West African Bili wine isolate 

(DBVPG0644). Strains shown in Figure 2.S4 are the prototrophic diploid laboratory strain 

FY4/5; its haploid parent of mating-type a, FY4; the oak strain from which BC248 was derived 

YPS606; and its MATa haploid spore (after HO was knocked out), YPS2056.  

 

For competitive growth rate assays, the HO locus was replaced with the mCherry fluorescent 

protein and a nourseothricin resistance marker (natMX4) in both the oak and vineyard strains 

using high-efficiency transformation as in (Gerke et al. 2006). A haploid CIT1-GFP strain (from 

the yeast-GFP collection (Huh et al. 2003)) was purchased from Invitrogen and mated to FY5 (a 

prototropic alpha haploid), creating a functionally prototrophic diploid. All media used in this 
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study were chemically defined carbon limiting media (Saldanha et al. 2004; Brauer et al. 2005) 

without amino acid or nucleotide supplements.  

 

2.5.2: Inoculation of microcolonies 

For all growth-rate experiments, frozen cell stocks were streaked out on YPD plates and single 

colonies were used for inoculation. Cells were cultured in 4.44 mM glucose media for ~24 hr, 

diluted 1:300 into fresh 4.44 mM glucose media and cultured for ~48 hr. This procedure reduced 

variability in culture density at the initiation of growth-rate experiments and ensured that cells 

were starved for carbon. Cells were then diluted to a concentration of 1–2 x 104 cells/ml in fresh 

media containing defined glucose concentrations and plated in 96-well glass-bottom plates 

coated with concanavalin A. Each well was loaded with 400 µl of diluted cells (i.e. ~6000 cells). 

The glucose concentration is assumed to remain approximately constant throughout the 

experiment due to the low cell density and large media volume within each well. 

 

2.5.3: Microscopy and automated image analysis 

Experiments were conducted as described in (Levy et al. 2012), including all equipment and 

software for computing and tracking microcolony areas over time. The focusing routine was 

updated to a manual assignment for each well based on a single field (which took ~10 minutes 

per 96-well plate). Images were taken every hour for 2,880 fields (30 fields per well) for 20–24 

hours. CIT1-GFP fluorescence was captured for 2 s at 10x gain; due to the long exposure time, 

these experiments contained only 32 wells per plate and 20 fields per well (640 fields total).  
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2.5.4: Growth profiles and CIT1 expression analysis 

Microcolony growth profiles were analyzed according to a two-phase log-linear model. The use 

of a simple model is preferred (Buchanan et al. 1997; Peleg and Corradini 2011), particularly as 

microcolony growth profiles do not exhibit the smooth transition between phases caused by 

variability among cells in population growth curves (Buchanan et al. 1997). For each 

microcolony, a sliding-window approach was used to determine the phase of maximal growth. 

The natural log of microcolony area was regressed against time for each set of eight time points 

and growth rate was calculated as the greatest slope of a regression with R2>0.9. Subsequently, 

lag duration was estimated as the intersection of this regression with a horizontal line determined 

by the area of the microcolony at the first time-point. Lag duration was not calculated for 

colonies that were not tracked in the first time-point. A small proportion of microcolonies with 

aberrant growth parameters (growth rate < 0.075 hr-1, lag duration > 15 hr or initial size > 250 

pixels) were omitted from further analysis. All calculations and analysis were conducted in R.  

 

CIT1 fluorescence was averaged over area and time. First, total fluorescence intensity was 

measured for each microcolony and divided by the area of the microcolony, resulting in a 

measurement of fluorescence per pixel for each microcolony at each time point. Measurements 

were then averaged across four time points, during the period of maximal growth rate. Values 

were also log-transformed in order to reduce heteroscedasticity.  
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2.5.5: Mid-parent heterosis (MPH) metric 

Mid-parent heterosis was calculated as:  

 

Where X is either the estimate of Ks and µmax or the combined fixed-effect parameters (see 

supplementary note) for growth at 0.22 or 4.44 mM glucose.  

 

2.5.6: Competitive growth rate assays 

Competitive growth rate assays were performed in chemostats as described (Gresham et al. 

2008). Each strain was competed against a mCherry-labeled strain in reciprocal experiments. 

Competitions were initiated with equal proportions of each strain and samples were obtained 

every 3-6 hours over 20 generations. The proportion of each strain at each time point was 

measured using flow cytometry and the relative growth-rate difference was determined by linear 

regression of ln(strain1/strain2) against time (measured in generations). The slope of the 

regression is the proportional difference in growth rate (i.e. the fitness advantage) of one strain 

relative to the other. Each competition was performed in replicate and data from replicate and 

reciprocal competitions were normalized by mean subtraction and pooled. Competitions were 

performed in chemostats at two different dilution rates, approximately 0.2 hr-1 (low) and 0.4 hr-1 

(high).  
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2.5.7: Statistical analysis  

All statistical analyses used R (Team 2012). Mixed-effect modeling was performed using the 

package lme4 (Bates et al. 2011: 4) to analyze all measurements obtained from the microcolony 

growth assay, including distributions of growth rates, lag durations and fluorescent 

measurements. We use mixed effect modeling to estimate parameters and eliminate various 

aspects of technical variation on cell growth measurements. A discussion on the use of mixed-

effect models including determination of terms and evaluation of parameters is contained in a 

supplementary note. Reproducibility of the analysis presented in this paper is also discussed in 

the supplementary note. Estimation of the non-linear regression parameters for the Monod 

growth model was performed using the nls function in R. These parameters’ standard errors were 

estimated both by linearization and by bootstrapping, which yielded similar estimates. 

Correlation between growth rates and CIT1-GFP fluorescence was visualized by type II ranged 

major axis regression (Legendre 2011: 2), as both measurements are dependent variables, using 

the lmodel2 package. 
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2.7: Supplementary material – Note about mixed effect modeling 

2.7.1: Model construction 

Mixed-effect models contain both fixed and random terms. The levels of fixed-effect terms (such 

as concentrations of glucose) are repeatable and of interest in and of themselves, rather than 

instantiations drawn randomly from a larger population. By contrast, the levels of random terms 

(such as plates) are sampled from a potentially infinite population. For all models the fixed terms 

were genotype, environment and the genotype-environment interaction and the random terms 

were wells (explicitly nested within plates), plates and the interactions of plate with genotype 

and environment. 

 

The parameters of a mixed model are the fixed terms’ regression coefficients, the random terms’ 

variances and the error variance. All measurements (after appropriate transformation) were 

modeled with Gaussian distributions for error and random effects. Parameters were estimated 

using restricted maximum likelihood (REML), using the lmer function in the lme4 R package. 

The complete dataset and an R script containing the analysis are provided as supplementary 

material. 

 

We determined the significance of terms by performing a series of likelihood ratio tests, using 

the anova function, on nested models fit to the same dataset. For analyses of lag duration and 

absolute growth-rate deviation, log transformations were used to reduce heteroscedasticity and 

non-normality of the measurements, improving the accuracy of estimations and their associated 

errors. Table 2.1 presents datasets and models analyzed in this paper.  
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Table 2.1: Datasets and analytical strategy 

The complete study was performed and analyzed as four datasets. 

Dataset Structure Models discussed 

LWO – Lab, Vineyard, 

Oak and Oak-Vineyard 

F1 strains in a range of 

glucose concentrations * 

4 genotypes X 7 environments  

X 3 wells per plate X 4 plates  

 

Growth rate 

Lag duration 

WILD – A range of 

different wild yeast 

isolates in two glucose 

concentrations ** 

12 genotypes X 2 environments  

X 4 wells per plate X 4 plates  

 

Growth rate 

Growth-rate deviation 

Lag duration 

CIT1 – GFP fusion in 

Lab strain background in 

a range of glucose 

concentrations *** 

1 genotype X 8 environments  

X 4 wells per plate X 3 plates  

 

Growth rate 

CIT1 florescence 

 

SOIL – Two wild yeast 

strains in two glucose 

concentrations **** 

2 genotypes X 2 environments  

X 24 wells per plate X 2 plates  

 

Growth rate 

Growth-rate deviation 

 

*Experiments also contained an additional environment (12 wells per plate) of base media 

(containing no added glucose) in which we variably observed cells growing very slowly or not at 

all. Data from these wells were excluded from the analysis.  

**In addition to strains reported in the main text, we studied a strain that we understood to be 

DBVPG6765, but we later suspected to be an additional Pennsylvanian Oak strain (possibly 

YPS129) based on an oak-like phenotypic profile and adjacent well positions in a frozen stock 

plate. Data for this strain were included in the analysis (i.e., contributed to normalization) but not 

presented. 
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***These experiments only contain 24 wells per plate due to long exposure time in the 

fluorescent channel. Experiments also contained a base media environment with no added 

glucose. In contrast to the LWO dataset, the CIT1-GFP strain consistently grew slowly in the 

base media. Data for these wells were included in the analysis but not presented.   

****This dataset was used to assess the reproducibility of growth rate deviation estimates (see 

below). 

 

2.7.2: Fixed-effects estimation 

Each model contains coefficients for each level of the fixed-effect terms. To estimate a specific 

genotype-environment combination, the relevant parameters were combined. For example, the 

estimate for strain A in environment 1 would be calculated by adding 4 parameters (the 

regression intercept and the coefficients for Strain A, Environment 1 and the Strain A-

Environment 1 interaction). The error of this estimate is a combination of the errors of the 

individual parameters. Specifically, the standard error is the square root of the summed 

parameter variances and twice each of the co-variances. For the example of strain A in 

environment 1, this calculation would include four variances and six co-variances. 95% 

confidence intervals were calculated as plus or minus 1.96 multiplied by the standard error. 

These estimates and confidence intervals are shown in Figures 2.3-2.6 of the main paper. If data 

were transformed for modeling, as in the case of log transformations for lag duration and 

absolute growth rate deviation, estimates and intervals were transformed back to the original 

scale for presentation.  

 

Some genotype-environment combinations were reproduced in different datasets. Six 

combinations were shared between the LWO and WILD datasets and four were shared between 
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the WILD and SOIL datasets. Although experiments for different datasets were conducted 6–12 

months apart, the combined parameter estimates are highly reproducible (Figure 2.S7).  

 

2.7.3: Random-effects estimation 

Unlike fixed effects, random effects are not modeled with a parameter for each level. Instead, the 

variances of the random effects are parameters in the model. However, an estimate for each level 

of each random term can be calculated conditional on the model parameters. These conditional 

means are the best linear unbiased predictors (BLUPs). The assumption of normality of the 

random effects was confirmed by assessing quantile-quantile plots (Figure 2.S8). Confidence 

intervals on the BLUPs are calculated from the conditional variance-covariance matrices 

(posterior variances).    

 

2.7.4: Adjusted pooled distributions 

The fixed-effect terms represent the factors of interest (genotype and environment) whereas the 

random-effect terms capture various aspects of technical variation (focus, illumination, media 

preparation and cell preparation). Although our estimates of the fixed-effect parameters were 

sufficient for some analyses (e.g., comparison of average growth-rate deviation between the 

Netherlands and Finland soil strains), other analyses required distributions of measurements for 

each microcolony (e.g., correlation between CIT1 expression and growth rate within conditions). 

In the latter cases, the relevant random-effect conditional means were subtracted from each 

original measurement, creating adjusted values that could be pooled by condition across wells 

and plates. For example if a specific well designated A1.110316 contained strain A and 
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environment 1, four values would be subtracted from each original microcolony measurement 

(the effects for well A1.110316, plate 110316, strain A-plate 110316 interaction and 

environment 1-plate 110316 interaction). After this normalization, we find that the means of all 

wells with the same condition are nearly identical (Figure 2.S9). This approach is analogous to 

using linear mixed modeling to normalize data from cDNA microarray experiments (Wolfinger 

et al. 2001).  
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2.8: Supplemental figures 

 
Table 2.S1: Assessment of alternative models relating growth rate to nutrient concentration 

 

 
!

Table S1. Assessment of alternative models relating growth rate to nutrient concentration    

Model Strain Parameters Fit 

  !max Ks  AIC BIC  
Lab 0.433 0.202  -161830.7  -161804.7  
Oak 0.519 0.115  -103657.9 -103633.2  
Vineyard 0.483 0.189  -169043.2  -169017.2      

! 

µ =
µmax s
Ks + s

 

Oak/Vineyard F1 0.520 0.143  -150138.7  -150113  

  !max Ks a AIC BIC P-value* 
Lab 0.433 0.202 -0.0001 -161828.8 -161794.2 0.729 
Oak 0.515 0.101 0.011 -104353.7 -104320.7 < 2.2e-16 
Vineyard 0.478 0.168 0.0149 -170171.2 -170136.5 < 2.2e-16     

! 

µ =
µmax (s " a)
Ks + s " a

 

Oak/Vineyard F1 0.518 0.135 0.005 -150355.7 -150321.4 < 2.2e-16 

  !max Ks a AIC BIC P-value* 
Lab 0.433 0.202 -0.0003 -161828.8  -161794.2 0.729 
Oak 0.515 0.090 0.062 -104353.7 -104320.7 < 2.2e-16 
Vineyard 0.478 0.153 0.046 -170171.2 -170136.5 < 2.2e-16     

! 

µ =
µmax s "Ks a

Ks + s
 

Oak/Vineyard F1 0.518 0.130 0.022 -150355.7 -150321.4 < 2.2e-16 

  !max Ks a AIC BIC P-value* 
Lab 0.433 0.202 -0.0003 -161828.8  -161794.2 0.729 
Oak 0.577 0.090 0.062 -104353.7 -104320.7 < 2.2e-16 
Vineyard 0.524 0.153 0.046 -170171.2 -170136.5 < 2.2e-16     

! 

µ =
µmax s "Ks a " s a

Ks + s
 

Oak/Vineyard F1 0.540 0.130 0.022 -150355.7 -150321.4 < 2.2e-16 

  a b  AIC BIC P-value* 
Lab 0.333 0.073  -142529.7 -142503.7 
Oak 0.434 0.076  -80730.29 -80705.55 
Vineyard 0.376 0.080  -139222.8 -139196.8 

    

! 

µ = a + b ln(s) 

Oak/Vineyard F1 0.424 0.081  -119618.4 -119592.7 

NA 
(models 
not nested) 

 
* Likelihood-ratio test comparing fit of alternative model to that of first (basic Monod) model. 
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Figure 2.S1: Microcolony area is correlated with cell number for different strains growing 

in low glucose conditions 

The number of cells within each microcolony was counted at each time point for ten 

microcolonies for both the oak (left panel) and vineyard (right panel) strains growing in 0.22 mM 

glucose. The average number of pixels per cell and Pearson correlation coefficient between the 

manual cell counts and automated area estimations are indicated in the upper left corner of each 

panel.  

 

!!
!!!!!
!

!!!!
!!!!!

!
!!!!
!!!!!

!
!!!!

!
!!

!!

!

!
!!

!

!
!!

!!

!

!!!
!

!

!!

!!

!

!!
!

!

!

!!

!!

!

!!
!

!

!
!

!

!!

!

!!
!

!

!

!
!

!!

!

!!
!

!

!

!

!

!!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

49 average pixels/cell 
 Pearson correlation −  0.995

!!!!!!!!
!!
!!!!!!
!!!!!!!!
!

!
!!!!!!!
!!

!
!!!!!!
!
!!

!
!!!!!!!

!!

!

!!
!
!
!!!

!!

!

!!
!

!!!!

!!

!

!!
!

!
!!

!
!!

!

!
!

!

!!!
!
!
!

!

!
!

!
!!!

!
!!

!

!
!

!

!!!

!

!!

!

!
!

!

! !
!

!

!!

!

!

!

!

!!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

! !

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

41 average pixels/cell 
 Pearson correlation −  0.988

Oak Vineyard

0

1000

2000

3000

0 20 40 60 80 0 20 40 60 80
Number of cells − manual count

M
icr

oc
ol

on
y 

ar
ea

 (p
ixe

ls)



  

44 

 
 
Figure 2.S2: Growth rate is determined by glucose concentration in a genotype specific 

manner 

Growth rate estimates for each genotype and environment combination based on mixed effect 

modeling. Estimates are calculated as a combination of relevant fixed effect parameters, 

estimated using restricted maximum likelihood (REML) (see supplementary note). Glucose 

concentration is shown on a logarithmic scale for clarity. Error bars represent 95% confidence 

intervals.  
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Figure 2.S3: Growth rate dependence on glucose concentration fits the Monod model for 

different strains 

Growth-rate distributions for four strains (A-Lab, B-Vineyard, C-Oak and D-Oak/Vineyard F1) 

over a range of glucose concentrations. Solid curves depict the best fit of the Monod equation to 

the normalized data. Fits of the Westerhoff model are shown as dashed curves. Three variants of 

the Monod model with an additional parameter give virtually indistinguishable fits and are 

shown as a single dot-dashed curve in each panel. The glucose concentration is shown on a 

logarithmic scale for clarity. 
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Figure 2.S4: Factors affecting the shape of the growth-rate distribution 

(A) Growth-rate distributions for four strains (haploid or diploid cells in the lab or oak genetic 

background) in four media/growth history conditions. Minimal medium is chemically defined 

carbon-limiting media with 0.08% glucose and rich medium is synthetic complete (SC) with 2% 

glucose. Cells were plated for imaging either from stationary cultures (~48 hours after 1:300 

dilution) or actively growing cultures (4 hours growth after 1:50 dilution of the stationary 

culture). Distributions are from data pooled across four replicate plates, each with six wells per 

strain/condition combination, after normalization using mixed modeling. (B) Box-plots of 

percent slow-growing cells, calculated as previously (Levy et al. 2012) as the percentage of cells 

growing at less than half the median for each well.  
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Figure 2.S5: Absence of mean-variance correlation for growth rate distributions 

Standard deviations verses means for 352 growth rate distributions representing eleven 

genotypes and two environments. The line depicts linear least squares regression.   
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Figure 2.S6: No median independent genotype specific difference in lag duration variation 

(A) Median absolute deviations (MAD) verses medians for 333 lag duration distributions 

representing four genotypes and seven environments. The line depicts a local loess regression. 

(B) Distributions of residuals from loess regression shown in A, grouped by genotype. There is 

no significant difference between genotypes.    
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Figure 2.S7: Reproducibility of fixed effect parameters 

For growth rate (A-C), growth rate deviation (D) and lag duration (E). In all panels, error bars 

represent 95% confidence intervals and the solid black line indicates x=y. (A and E) Comparison 

of growth rate (A) or lag duration (E) estimates for 6 genotype-environment combinations 

included in both the LWO and WILD datasets. The line type depicts glucose concentration (solid 

– 0.22mM, dashed – 4.44mM) and color depicts genotype (blue – Oak, red – Vineyard, black – 

Lab). (B and D) Comparison of growth rate (B) or growth rate deviation (D) estimates for 4 

genotype-environment combinations included in both the WILD and SOIL datasets. The line 
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type depicts glucose concentration (solid – 0.22mM, dashed – 4.44mM) and color depicts 

genotype (light blue – Finland, dark blue – Netherlands). (C) Comparison of growth rate 

estimates for 4 similar genotype-environment combinations between the LWO and CIT1 

datasets. While the environments compared are identical, the genotype in the two datasets differs 

slightly: the CIT1-GFP strain differs from the lab strain used in the LWO experiments, as it is 

heterozygous for the CIT1-GFP fusion and a number of auxotrophies. Color depicts glucose 

concentration (from light to dark green – 0.11, 0.22, 0.44 and 4.44 mM).  
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Figure 2.S8: Random effect conditional means 

Quantile-quantile plots comparing random effect conditional means for each random effect term 

in 6 distinct mixed models to standard normal quantiles. Panels represent models of growth rate 
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(A, C and E), lag duration (B), growth rate deviation (D) and CIT1-GFP fluorescence (F). Panels 

also represent the three main datasets: LWO (A and B), WILD (C and D) and CIT1 (E and F). 

Vertical columns represent different random effect terms, from left to right: well, plate, 

environment-plate interaction and genotype-plate interaction (not present in all models). Blue 

dots represent estimates and black lines represent 95% confidence intervals.      
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Figure 2.S9: Consequences of normalization by subtraction of random effect conditional 

means 

In all panels, a single dot corresponds to mean or median estimates of distributions originating 

from a single experimental well. Left panels (A, C and E) depict original estimates before 

adjustment; right side panels (B, D and F) depict corresponding estimates after adjustment. The 
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panels represent estimates of growth rate verses lag duration in the LWO dataset (A and B), 

growth rate verses growth rate deviation in the WILD dataset (C and D) and growth rate verses 

CIT1-GFP fluorescence in the CIT1 dataset (E and F). In some panels (A-D), estimates from the 

same genotype are grouped and represented as different labeled facets. In all panels colors 

correspond to different environments, which are specified in a legend between each pair of 

panels. For lag duration and growth rate deviation, estimates are presented on the original scale 

despite modeling log-transformed distributions, resulting in greater spread between same-

condition estimates. 

 
 

2.9: Correction 

We plan to publish a correction to the preceding chapter as it appeared in the journal Molecular 

Biology and Evolution. The correction will state that the strain assumed to be DGVPG1373 and 

regarded to as the "Dutch soil strain" or "Soil-Netherlands" strain in the text and figures is now 

believed to be a strain from the Malaysian lineage (Liti et al. 2009).  
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CHAPTER 3: GENE-GENE AND GENE-ENVIRIONMENT INTERACTIONS 

UNDERLIE VARIATION IN CELL GROWTH 

 

 

3.1: Abstract 

The growth of microbial populations is characterized by a lag phase (the time until the culture 

initiates growth) and a growth phase (characterized by an exponential growth rate). These 

parameters can vary both between environmental conditions and between single cells in a given 

environment. We used a high-throughput microscopy assay, which enables characterizing growth 

of hundreds of thousands of individuals, to map genetic loci determining variation in lag and 

growth rate distributions in distinct glucose concentrations, using natural isolates of the budding 

yeast (Saccharomyces cerevisiae). Some quantitative trait loci (QTL) are shared between traits or 

environments while some are unique, exhibiting gene by environment interactions. Furthermore, 

whereas variation in the central tendency (mean growth rate or median lag duration) is explained 

by many additive loci, variation in phenotypic variability can be explained by genetic 

interactions. We used an analogous mapping strategy to increase QTL resolution, consisting of 

bulk segregant analysis of complex mixtures of genotypes under selection, utilizing whole 

genome sequencing and growth in chemostats. We find that sequence variation in the high 

affinity glucose transporter HXT7 contributes to variation in growth rate and lag duration. Allele 

replacements of the entire locus as well as a single amino acid reveal the dependence of variation 

in HXT7 on the genetic background and inter-locus context. Our study highlights the complex 

nature of genotype to phenotype mapping across environments even in model organisms. 
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3.2: Introduction 

Variation in continuously distributed traits is a consequence of variation in multiple genetic and 

environmental factors. Genetic mapping has been successful in locating loci important for 

specific traits and even dissected to single nucleotide resolution in budding yeast (Gerke et al. 

2009). As more studies are performed, it is becoming clear that most associated loci are context 

dependent (Mackay et al. 2009; Liti and Louis 2012), their effect depending on variation at other 

loci or in the environment.  

 

An additional factor effecting variation in complex traits is phenotypic variability (Geiler-

Samerotte et al. 2013): the variation between individuals of identical genotypes in the same 

environment. Despite increased appreciation of the importance of phenotypic variability, many 

questions remain regarding its genetic and molecular basis. Specifically, it remains unclear the 

extent to which loci determining phenotypic variability and loci determining average trait values 

across different environments overlap.  

 

Complex networks of interacting genetic and environmental factors regulate cell growth in 

microbes and multicellular organisms, making it an ideal system to dissect the genetic basis of 

complex traits. The rate at which a cell grows is the result of myriad cellular processes including 

nutrient sensing and transport, signal transduction, macromolecular synthesis and metabolism. In 

microbes, growth can be separated into distinct phases, specifically lag phase, a period of 

adaptation in which cells do not grow and exponential phase in which cells grow at a constant 

rate (Monod 1949). Although correlated, the phases vary independently in natural populations 
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between different conditions (Cubillos et al. 2011; Ziv, Siegal, et al. 2013). Our recently 

developed high-throughput microcolony growth rate assay (Levy et al. 2012; Ziv, Siegal, et al. 

2013) permits accurate estimation of variability within each of these phases. Variation in cell 

growth is important from an evolutionary perspective as a major component of fitness in 

microbes (Blomberg 2011). Dissecting the genetic basis of cell growth variation in ecologically 

relevant environments may illuminate the prevalence of adaptation in natural populations.   

 

Budding yeast is a tractable model for the analysis of complex traits (Liti and Louis 2012). 

Genetic mapping of complex traits involves detecting and localizing quantitative trait loci 

(QTL). Detecting QTL ultimately relies on associating variation in genotype and phenotype in a 

mapping population. The detection of QTL depends on the effect and frequency of alleles while 

localization depends on the frequency of recombination (Mackay et al. 2009). Individual 

segregant analysis involves genotyping and phenotyping individual segregants and searching for 

associations (Steinmetz et al. 2002; Gerke et al. 2009; Cubillos et al. 2011; Bloom et al. 2013).  

Alternatively, bulk segregant analysis involves selecting a portion of the population based on 

extreme trait values and looking for a deviance in allele frequency from the entire population 

(Michelmore et al. 1991; Ehrenreich et al. 2010; Swinnen et al. 2012). The advantage of bulk 

segregant mapping is the increased power to detect loci with small effect due to increased sample 

size (Ehrenreich et al. 2010). However, only analysis of individuals can identify genetic 

interactions (Wilkening et al. 2014) which may be important for explaining trait variance. 

Localization of QTL can be improved by using an advanced intercross population, as increased 

recombination breaks up linkage (Darvasi and Soller 1995; Illingworth et al. 2013). Advanced 
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intercross populations have been used successfully in yeast in combination with bulk segregant 

analysis (Parts et al. 2011; Cubillos et al. 2013). 

 

In this study, we dissected the genetic architecture of cell growth using a combination of 

classical interval mapping and sequencing under selection. We focused on comparing the genetic 

architecture between two related and ecologically relevant environments, specifically, growth 

rate limiting (0.22mM) and non-limiting (4.44mM) glucose conditions. We decomposed cell 

growth by quantifying growth rate and lag duration distributions, mapping loci determining both 

the central tendency and variability of the traits. In addition to individual F2 segregant analysis 

that allowed us to discover genetic interactions, we used an advanced intercross population and 

bulk segregant analysis to increase the mapping resolution for additive QTL. Allele replacements 

confirm the effect of the candidate gene HXT7 but also reveal additional complexity.  

 

3.3: Results 

3.3.1: Distinct genetic architectures determine growth rate and lag duration distributions 

across environments 

Genetic mapping of complex traits is seldom done in separate but closely related environments. 

We have previously shown that wild yeast isolates, specifically an oak strain (BC248; hereafter 

“oak”) and a vineyard strain (BC241; hereafter “vineyard”) differ in their growth rate and lag 

duration distributions across glucose concentrations (Ziv, Siegal, et al. 2013). Oak cells grow 

faster and lag for shorter amounts of time than vineyard cells. The difference in the response to 

increasing nutrient concentration can be characterized by growth in two conditions, 0.22mM 
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(“growth limiting”) and 4.44mM (“non-limiting”) glucose. The higher glucose concentration 

results in maximum growth rates, despite being over an order of magnitude lower than standard 

lab media (Ziv, Siegal, et al. 2013). In order to identify quantitative trait loci (QTL), we used a 

panel of 374 recombinant segregants (Gerke et al. 2006) genotyped at 225 loci throughout the 

genome (Gerke et al. 2009). Each segregant was phenotyped in both conditions using a high-

throughput microscopy based microcolony assay (Levy et al. 2012; Ziv, Siegal, et al. 2013).   

 

The microcolony assay allows us to estimate for each strain, the central tendency and dispersion 

of growth rate and lag duration distributions. Growth rate distributions for wild isolates in both 

glucose concentrations are approximately normal and were characterized by their mean and 

standard deviation. On the other hand lag duration distributions tend to be right tailed and were 

characterized by their median and median absolute deviation (MAD). We disregarded lag 

duration distributions in the higher glucose concentration as most cells commence growth in less 

than one hour and thus do not have detectable lag times (Ziv, Siegal, et al. 2013). This analysis 

resulted in six traits amenable to genetic mapping. The segregant data within conditions 

recapitulated correlations observed between conditions in our previous study (Ziv, Siegal, et al. 

2013). Specifically, there exists a strong positive correlation between lag duration median and 

lag MAD, weak correlations between growth rate mean and growth rate standard deviation and a 

negative correlation between mean growth rate and median lag duration (Figure 3.S1). There is 

also a positive correlation between mean growth rate in the limiting and non-limiting glucose 

concentrations. In order to obtain variability estimates that are independent of average trait 
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values, we performed loess regressions and used the residuals as trait values for mapping 

(methods).         

 

Quantitative trait loci (QTL) are identified as statistical associations between genotype identity 

and trait variation. We used the R package RQTL (Broman et al. 2003) for mapping of QTL 

(methods). We first searched for additive QTL (methods) and found multiple QTL for most 

traits (Figure 3.1, Figure 3.S2). For mean growth rate and median lag duration, we found 5-9 

QTL explaining 32-58 percent of trait variance using an additive model (Figure 3.1, Figure 3.4). 

As expected based on trait correlations, some QTL were shared, however each trait also had 

unique QTL (Figure 3.1, Figure 3.S2, Table 3.S1). The effect of each QTL was estimated and 

ranged between 4-23 percent of the difference in parental phenotypes (Figure 3.S3). We 

identified 1-2 transgressive QTL (where the vineyard allele is predicted to increase growth rate 

or decrease lag duration) for each trait (Figure 3.1, Figure 3.S3). In contrast, only 0-2 additive 

QTL, explaining 0-14 percent of trait variance were found for variability traits (Figure 3.1, 

Figure 3.4). Two out of the three QTL found for variability were also found for central tendency 

(Figure 3.1, Table 3.S1). In particular, a single locus on chromosome IV had an additive effect 

on four traits, growth rate central tendency in both glucose concentrations and lag duration 

central tendency and variability. 

 

 



  

61 

 

Figure 3.1: Multiple QTL underlie variation in cell growth 

Additive QTL found for all traits. Chromosome size and QTL position correspond to genetic 

distance (measured in cM). Colors depict estimated effect sizes given the full additive QTL 

model. Different shapes are used to depict distinct QTL on the same chromosome. Positive 

effects correspond to oak alleles increasing growth rate traits or decreasing lag duration traits 

while negative effect sizes correspond to vineyard alleles increasing growth rate traits or 

decreasing lag duration traits.   

 

We tested for genetic interactions using two-dimensional genomic scans (methods). We 

identified a total of 8 significant interactions across all traits (Figure 3.2). There was some 

overlap between loci found for different traits. A strong interaction, which was found between 

positions on chromosome I and chromosome X, was shared between two traits, growth rate 

variability and lag duration variability in the growth-limiting glucose concentration (Figure 3.2, 

Figure 3.3). Additionally, three loci found for lag duration variability, on chromosomes IX, XII 

and XV had effects on other traits. The chromosome XII position was found as part of an 

interaction effecting growth rate central tendency in the limiting glucose concentration, while the 

other two loci had additive effects on growth rate central tendency or all central tendency traits 

respectively (Figure 3.1, Figure 3.2). The effect size of interacting loci (given the genotype of 
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the interaction partner) was comparable to the effect size of additive loci (Figure 3.S3). It is 

interesting to note that most of the interactions were found for variability traits and were 

responsible for a large proportion of explained trait variance in the limiting glucose condition 

(Figure 3.4).  

 

 

Figure 3.2: Genetic interactions underlie variation in cell growth variability 

Genetic interactions found for all traits. Chromosome size and QTL position correspond to 

genetic distance (measured in cM). Line width corresponds to the percent trait variance 

explained when only the two interacting loci are modeled. Colors depict trait type (pink – central 

tendency, green – variability). Different shapes are used to depict distinct loci on the same 

chromosome.     
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Figure 3.3: Example of a strong genetic interaction determining variation in growth rate 

variability in limiting glucose 

(A) LOD scores corresponding to additive (two QTL) or full (two QTL and interaction) models 

for each combination of chromosome I and X positions, for growth rate variability in the limiting 

glucose condition. (B) Mean growth rate variability in the limiting glucose condition for the four 

genotype combinations corresponding to two closest markers to the maximum LOD score 

difference shown in (A), error bars represent standard errors. 
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Figure 3.4: Variance in central tendency and variability traits are mainly explained by 

additive QTL or genetic interactions respectively.  

Percent trait variance explained per trait by a model of all identified additive QTL (black) or all 

identified additive QTL and genetic interactions (grey).  

 
 
3.3.2: An advanced intercross population and sequencing under selection increases 

mapping resolution 

One of the challenges of QTL mapping is identifying the relevant gene and causative variation. 

We sought to improve the resolution of QTL mapping by using a complementary mapping 

approach. We used a variant of bulk segregant mapping in which an advanced intercross 

population is subjected to selection for a desired trait and sequenced (Parts et al. 2011). 

 

We created an advanced intercross population for the oak/vineyard cross by repeated rounds of 

sporulation and mating (methods). Allele frequencies and linkage were characterized by 

sequencing the final population and three isolated clones. Allele frequencies in the final 

population deviated from the expected 0.5 in a number of genomic loci (Figure 3.S4). A relevant 
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in sporulation efficiency and indeed we identified two of the three major sporulation QTL known 

to segregate in this cross (Gerke et al. 2009). Despite inadvertent selection, over 85% of single 

nucleotide polymorphisms still segregated with minor allele frequencies above 10%. Linkage in 

the intercrossed population was decreased compared with the F2 segregants as an average of 

84.3 crossover events (60, 99 and 94) were identified in the three clones (methods), compared to 

an average of 31.9 (range: 13-55) in 374 F2 segregants. The increase in recombination frequency 

is consistent with the genetic map expansion observed in previous studies (Parts et al. 2011).  

 

In order to enrich for QTL conferring increased growth rate, we grew the advanced intercross 

population in replicate glucose-limited chemostats with a low (D=0.18 hr-1) or high (D=0.35 hr-1) 

dilution rate. In order to directly assess the contribution of the advanced intercross population to 

QTL mapping, we also pooled the panel of F2 segregants and grew them in chemostats. We 

collected and sequenced multiple samples from each chemostat over 20-40 generations. We 

identified QTL by comparing the allele frequencies between early and late time-points using the 

MULTIPOOL software (Edwards and Gifford 2012) (methods) (Figure 3.S5). 

 

We have previously shown that the effect of glucose concentration on the growth rate of the oak 

and vineyard strains can be recapitulated using glucose-limited chemostats (Ziv, Siegal, et al. 

2013). However, this does not ensure that the same genomic loci are relevant when comparing 

growth in chemostats to the microcolony growth assay. In order to compare between the 

different experiments, we computed maximal LOD scores for each genomic interval flanked by 

markers used in the interval mapping (Table 3.S3). We define 209 such intervals, with a size 
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range of 14kb-139kb and a mean and median of 50kb. We find that both mapping approaches 

result in high LOD scores in the same regions of chromosomes IV (both glucose environments), 

VIII (only in low glucose) and XVI (only in high glucose) (Table 3.S3). In addition to these 

QTL, bulk segregant analysis of the panel of F2s also converged with the interval mapping, 

resulting in high LOD scores in some regions of chromosomes VII, XII and XV (Table 3.S3). 

The absence of a chromosome VII QTL when using the advanced intercross can be explained by 

strong selection in the same region during the creation of the advanced intercross (Figure 3.S4). 

One caveat is that the bulk segregant analysis of the F2 panel is potentially confounded by the 

small number of segregants in the population. In this case non-random associations between true 

QTL and unlinked loci may result in spurious signals. This is supported by the observation of 

regions with high LOD scores for the F2 pool not shared by the advanced intercross or the 

interval mapping of the F2 segregants (Table 3.S3).    

 

The decreased linkage in the advanced intercross population had two consequences on QTL 

resolution. On the one hand, LOD scores decreased rapidly at individual QTL (Figure 3.5A). 

The size of 2-LOD drop intervals for the chromosome IV QTL decreased from more than 50kb 

and 235kb (for growth-limiting and non-limiting glucose respectively) using interval mapping of 

F2s to 9.3kb and 30.5kb using the advanced intercross. Most of the increased resolution was due 

to the use of the advanced intercross and not the bulk segregant approach, as intervals for the 

pooled F2s ranged between 22kb-78kb in low glucose and 66kb-203kb in high glucose based on 

choice of MULTIPOOL parameters (methods). HXT6 and HXT7, which encode high affinity 

glucose transporters, lie within the region of increased resolution (Figure 3.5A). On the other 
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hand, the environment specific QTL on chromosome 8 appears to be composed of multiple 

linked QTL, resulting in a broad QTL region (Figure 3.5B). In this case, the single peak found in 

the F2 pool may be an example of a ghost QTL, where two linked QTL whose effects have the 

same sign give a maximum LOD score at a location in between the two loci (Figure 3.5B).  

     

 

Figure 3.5: Increased QTL resolution due to decreased linkage in an advanced intercross 

population 

(A) LOD score profiles for the entire chromosome IV obtained by interval mapping using F2 

segregants (dark purple) or sequencing under selection of an advanced intercross population 

(orange). For the interval mapping profile, genetic distances were converted to physical distances 

based on marker positions. Inset shows profiles for 15kb directly under peaks, with gene 

positions. (B) LOD score profiles for a segment of chromosome VIII obtained by sequencing 
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under selection of a F2 pool (light purple) or an advanced intercross population (orange).  

MULTIPOOL parameters for both datasets are n=1000 and r=1000.   

 

3.3.3: Sequence variation in HXT7 contributes to variation in growth 

HXT6 and HXT7 encode nearly identical high affinity glucose transporters, making them 

appealing candidate genes for the growth QTL on chromosome IV. Amplification of these two 

genes are frequently selected during carbon limiting experimental evolution (Brown et al. 1998; 

Gresham et al. 2008), however sequencing of the oak and vineyard strains did not reveal copy 

number variation. To assess the contribution of variation in HXT6 and HXT7 to variation in 

growth rate and lag duration, we created reciprocal hemizygote strains, in which one copy of 

HXT6 or HXT7 was knocked out in the F1 hybrid background. Phenotyping implicated HXT7 

and not HXT6 in contributing to variation in growth (Figure 3.S6).   

 

Analysis of the oak and vineyard HXT7 alleles (methods) revealed 79 single nucleotide 

polymorphisms and 26 amino acid differences in the 1713 bp open reading frame (ORF). We 

created HXT7 allele replacement strains that contained no additional genetic modifications 

except the replaced allele (methods). Whole locus allele replacements replaced the entire ORF 

and 530 bp of upstream sequence (which contained 3 SNPs and 1 2bp indel). We also created 

single amino acid replacements by replacing a single amino acid (oak to vineyard T469Q) in 

each genetic background. This residue was chosen based on conservation and manual inspection 

of a structural homology model. The amino acid is positioned within the transporter channel and 

is predicted to interact with the sugar molecule. We also created strains homozygous for the oak 

or vineyard HXT7 allele in the F1 hybrid genetic background.  
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Phenotypic analysis revealed significant differences between the original and allele-replaced 

strains (Figure 3.6), consistent with the effects determined by linkage mapping. Of particular 

interest is the difference in the magnitude of the effect in the different genetic backgrounds. In 

the growth limiting glucose concentration, the strain containing the vineyard allele in the 

otherwise oak background grows slower and lags for a longer time than the original vineyard 

parent. In contrast, the oak allele in the vineyard background caused a small but significant 

increase in growth rate and decrease in lag duration. The single amino acid modification is only 

significant in the oak background and has a smaller effect than the whole locus replacement 

(Figure 3.6), suggesting additional loci within HXT7 effect growth. Consistent with a smaller 

effect size in the non-limiting glucose concentration, only the whole locus replacement in the oak 

background had a significant effect on growth rate, causing a small decrease (Figure 3.S7A). No 

significant effects were found for lag duration variability (Figure 3.S7B). However, the small 

number of strains used in the regression to estimate median-independent lag variability reduces 

our power to detect a change (Levy and Siegal 2008).  

 



  

70 

 
Figure 3.6: Effect of variation in HXT7 

Distributions of mean growth rate (A) or median lag duration (B) for allele replacement strains 

grown in limiting glucose. P-values are for two sample t test, n=12 (4 wells X 3 plates) for each 

strain. In strain illustration, blue-oak, red-vineyard.  

 

3.4: Discussion 

The field of quantitative genetics was established nearly a hundred years ago, reconciling the 

inheritance of continuously distributed traits with Mendelian genetics (Nelson, Pettersson, and 

Carlborg 2013). With increased sample sizes and resources, genetic mapping studies are 

detecting more QTL but also uncovering surprising complexity, including condition specific loci, 
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gene by environment interactions, epistasis and linkage between causative loci (Mackay et al. 

2009).  

 

Gene by environment interaction is a result of genetic loci that have different effects on 

phenotypic variance in different conditions. Gene by environment interactions are frequently 

found and were shown to effect the expression of a third of yeast genes (Smith and Kruglyak 

2008). Similar to previous studies, we also find that genetic interactions can be environment 

specific (Gerke et al. 2010). Considering additive loci, we find shared loci with different effects 

as well as environment specific loci when environmental glucose is varied 20-fold. Measuring 

changes in QTL effect sizes over a finer gradient of glucose concentration may be informative, 

analogous to dose dependent effects observed for chemical resistance (Wang and Kruglyak 

2014). For example, the contribution of HXT7 may indicate the extent of control that the nutrient 

transport step has on growth rate, potentially relating the transporter Km to the Monod constant 

(Ks) of the oak and vineyard strains (Ziv, Siegal, et al. 2013).  

 

Recently, there has been increased interest in searching for ‘variance QTL’, found by comparing 

the difference in variance between genotypic classes, instead of difference in means (Ronnegard 

and Valdar 2011; Shen et al. 2012). While this type of analysis may uncover strong additive loci 

determining phenotypic variability, it is likely to uncover genetic interactions affecting trait 

means (Nelson, Pettersson, Li, et al. 2013). When clonal data and repeated measurements of 

individuals are available, variability can be directly estimated and mapped as a quantitative trait. 

Alleles determining variability segregate in natural populations and have been mapped in yeast 
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(Ansel et al. 2008), flies (Mackay and Lyman 2005), plants (Hall et al. 2007; Jimenez-Gomez et 

al. 2011) and mice (Fraser and Schadt 2010). To our knowledge, this study is the first to find 

genetic interactions determining phenotypic variability. Moreover, we find that genetic 

interactions make up a larger proportion of explained trait variance for variability traits 

compared to traits of central tendency. The prevalence of genetic interactions may indicate that 

changes in a single component of a biological system are less likely to have evolutionary stable 

effects on variability. It will be very interesting to see if this observation will generalize to 

growth rate variability under different conditions or variability in different phenotypes and 

systems.  

 

Our study highlights the advantage of using different mapping approaches to dissect the genetic 

basis of complex traits. While individual segregant analysis has the advantage of detecting 

genetic interactions, the increased resolution of our bulk segregant approach was quite 

remarkable. The increased resolution is due to both an advanced intercross population and the 

increased sampling due to bulk segregant analysis. We note that the population was created using 

homothallic diploid strains with no auxotrophic or drug resistance markers.  

 

We confirmed the effect of sequence variation in HXT7 on variation in growth rate and lag 

duration. However, we identified important distinctions between the segregant analysis and the 

allele replacements. Specifically, the differential effect of the allele depending on the genetic 

background indicates additional genetic interactions. These may be higher order interactions 

involving more than two loci (Taylor and Ehrenreich 2014). Alternatively, it may be the result of 
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an accumulation of undetected pair wise interactions. Although we did not find significant 

interactions between the chromosome IV position for mean growth rate and median lag duration, 

the estimated effect of the locus was consistently smaller in the vineyard background when 

considering the genotype at other additive loci, particularly in the higher glucose concentration. 

This observation emphasizes the difficulties of predicting phenotype from genotype. Particularly, 

the estimated marginal additive effect of a locus may not represent the actual effect in any given 

genetic background.     

 

3.5: Materials and methods 

3.5.1: Yeast strains and growth analysis 

Parental oak (BC248) and vineyard (BC241) strains and the panel of segregants (Gerke et al. 

2006) were obtained from the lab of Barak Cohen (Washington University). NCYC3606 and 

NCYC3591 (Cubillos et al. 2009) were used during allele replacements. All media was minimal 

chemically defined carbon limiting media (Saldanha et al. 2004; Brauer et al. 2005) without 

amino acid or nucleotide supplements. All growth conditions, microscopy and analysis of growth 

profiles are as described (Ziv, Siegal, et al. 2013).  

 

3.5.2: Data normalization  

Estimates for mean growth rate and median lag duration were corrected for plate effects by 

subtracting the mean parent phenotype and dividing by the distance between parent phenotypes 

for each plate. This has the effect of scaling segregants across plates, where 0.5 and -0.5 are the 

parent estimates. Parent phenotypes were calculated as the mean of all well estimates for that 
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parent on that plate. For variability traits, residuals of a loess regression (standard deviation on 

mean growth rate or median absolute deviation on median lag duration) were used. Data used for 

the regressions was original values per well, contained only the segregants (including segregants 

that were not genotyped) and was conducted within environment. 

 

3.5.3: QTL mapping using R/QTL 

We used the R package R/QTL for interval mapping (Broman et al. 2003). We performed 

genome scans with a single QTL model (‘scanone’ function), using a normal phenotype model, a 

1cM step-size and the HK algorithm for all traits. QTL were identified using significance 

thresholds, based on an alpha of 0.1 and 10000 permutations. We also performed genome scans 

with a two QTL model (‘scantwo’ function) using the same parameters. 1000 two-dimensional 

permutations were performed using a 5cM step-size. Multiple additive QTL on the same 

chromosome were identified from the two dimensional scan by setting thresholds for additive 

and conditional additive (difference between additive and single QTL) LOD scores, based on the 

permutations and an alpha of 0.1. Additive multiple QTL models were fit (‘fitqtl’ function) and 

effect estimates and total percent variance explained were extracted. We identified genetic 

interactions for each trait using an alpha of 0.1 using the two-dimensional permutations for the 

interaction LOD scores (the difference between an additive and full model per pair of loci). Final 

models included all identified additive loci and genetic interactions. Both within and between 

traits, QTL were considered the same locus if they were within 30cM from one another. 

 



  

75 

3.5.4: Creation of an advanced intercross population 

The advanced intercross population was created by 11 rounds of sporulation and mating starting 

with a hybrid of the oak and vineyard strains. Generally 2.5X108 cells were sporulated for an 

average of 9 days at each iteration. Cells were sporulated by spinning (with the exception of 5 

days following hurricane sandy) at room temperature in 1% Potassium Acetate at a density of 

5X107 cell/ml. For mating, the sporulated culture was resuspended in equal amounts of water and 

ether and vortexed for 10 min to kill unsporulated cells. Spores were separated using 

centrifugation, washed with water and incubated in 1 mg/ml Zymolase for 10 min at 30°C. 

Spores were resuspended in a large volume of 0.01% Triton and vortexed to increase spore 

dispersion. Spores were subsequently resuspended in a small volume of 0.01% Triton and plated 

at high density on multiple YPD plates (generally 1.5X108 spores per plate). As both parental 

strains are homothallic, spores that do not mate with other spores will become diploids by mating 

type switching. After 19 hours of growth, cells were scraped off the plates and a portion were 

resuspended in 1% Potassium Acetate to begin a new round of sporulation. At the last iteration, 

spores were resuspended in liquid YPD and incubated overnight to reduce heterozygosity.     

 

3.5.5: Whole genome sequencing and analysis 

Libraries for sequencing were prepared and multiplexed using standard protocols and sequenced 

using an Illumina HiSeq. Reads were aligned to the reference genome (Ref.SGD020311.fasta) 

and single nucleotide polymorphisms (SNPs) were identified using BWA (Li and Durbin 2009) 

and SAMtools (Li et al. 2009). SNP alleles, position, quality and the number of high-quality 

reads mapping to reference or alternate alleles (DP4) were extracted from VCF files and 
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analyzed using R (Team 2012). Read depth was calculated as the sum of reads mapping to 

reference and alternate alleles. Oak and vineyard specific alleles were identified in each sample 

by comparing to SNPs found by sequencing the oak and vineyard strains. Data was formatted to 

reflect oak allele frequencies. Numbers of crossover events were identified in advanced 

intercross clones by identifying transitions between oak and vineyard SNPs. Data was filtered for 

read depth and SNP quality and two adjacent SNPs from the same parent were required to define 

a crossover. Numbers of crossovers in F2 segregants were based on transitions in marker 

genotypes. 

 

3.5.6: QTL mapping using MULTIPOOL 

For MULTIPOOL analysis data was filtered for read depth and SNP quality; SNPs with minor 

allele frequency less than 10% in at least one sample used for a comparison were also excluded. 

Samples used for comparison were separated by 12-14 generations (low dilution rate) or 20-26 

generations (high dilution rate). Replicate chemostats were analyzed separately as well as 

combined by combining reads at each SNP. Analysis was run in ‘contrast’ mode, with the 

exception of the advanced intercross results shown in Figure 3.S4B. Each comparison was run 

with parameters n=1000 or n=200 (number of individuals) and r=1000 or r=2500 (length of cM). 

We find that different parameter combinations do not change the overall shape of the LOD 

profile, however the n parameter has a large effect on the magnitude of LOD scores. To assess 

significance, we performed null comparisons between early time-points of replicate chemostats. 

The null comparisons had LOD scores ranges of -0.3 to 0.69 for n=200 and 0.4 to 2.9 for 

n=1000.     
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3.5.7: Variation in HXT genes and allele replacements 

The HXT6 or HXT7 genes were amplified individually using different primer pairs by PCR from 

the oak and vineyard strains and cloned in plasmids. The plasmids were Sanger sequenced to 

catalog genetic variation between the oak and vineyard genes and used during allele 

replacements. Reciprocal hemizygote strains were created by first replacing the HXT6 or HXT7 

locus with a construct containing the G418 resistance marker (kanMX) in the oak and vineyard 

strains (BC248 and BC241). These strains were then mated to the opposite parental strain to 

create heterozygote knockout strains in the hybrid genetic background. Allele replacements were 

first created in haploid strains of the oak and vineyard genetic backgrounds (NCYC3606 and 

NCYC3591 (Cubillos et al. 2009)). Each locus was first replaced by the URA3 gene and 

subsequently replaced by the modified allele; overlapping PCR was used to create single amino 

acid modifications. These strains were crossed to the original oak and vineyard strain (BC248 

and BC241) of the same background. The mated strains were sporulated and tetrads were 

screened to identify diploid prototrophs (inheritance of the functional HO and URA3 genes), 

sensitivity to G418 and resistance to hygromycin (inheritance of the sporulation marker found in 

the original parental strains). The HXT7 locus was sanger sequenced in this subset to identify 

final allele replacement strains (identical to the original strains with the exception of the replaced 

allele). Final allele replacement strains were also crossed to the opposite background oak or 

vineyard strain to create allele replacements in the heterozygote background. 
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3.6: Supplemental figures 

 

Figure 3.S1: Correlation between cell growth traits 

Trait estimates are per well for all F2 segregants phenotyped. Data are in the upper triangle. Pair 

wise Pearson correlations are in the lower triangle, size of text corresponds to correlation 

estimate.  
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−0.63 0.19 Median lag duration
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Figure 3.S2: Single QTL LOD profiles 

LOD profiles using single-QTL model, based on interval mapping using 374 F2 segregants. 

Growth rate traits in upper panel, lag duration traits in lower panel. Colors represent combination 

of trait and environment. Y-axis is limited to a LOD score of 12 for clarity; 0.22mM glucose 

mean growth rate QTL on chromosome IV reaches a maximum of 41.8. 
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Figure 3.S3: Effects of additive loci and genetic interactions 

Each row represents a single trait. Plots depicting additive loci correspond to trait means and 

standard errors for the oak and vineyard genotype class (at closest marker). Plots depicting 

genetic interactions correspond to trait means and standard errors for the four genotype 

combinations (at closest markers); X axis corresponds to first marker and colors represent second 

marker (blue-oak, red-vineyard). To interpret magnitude of effects, consider that for central 

tendency traits, normalization results in a difference of 1 unit (-0.5:0.5) between parental 

phenotypes and for variability, trait values represent residuals from a loess regression (see 

methods). GR-growth rate. 
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Figure 3.S4: Advanced intercross population 

(A) Allele frequencies in the final advanced intercross population. SNPs with minor allele 

frequency <10% in the F1 heterozygote were excluded. Frequencies reflect the oak allele. (B) 

MULTIPOOL LOD score results for the advanced intercross population, run with parameters 

n=1000 (number of individuals), r=2500 (length of cM) and mode ‘replicates’. 
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Figure 3.S5: MULTIPOOL LOD profiles 

LOD profiles based on allele frequency comparisons over time during growth in chemostats. 

Panels represent different starting populations and chemostat dilution rates. For the advanced 

intercross panels, different colors represent replicates or a combined score. Replicates were 

combined by adding together reads per SNP. Y-axis is limited to a LOD score of 15 for clarity; 

advanced intercross low dilution rate QTL on chromosome IV reaches a maximum of 54.97. 

MULTIPOOL results are shown with parameters n=1000 (number of individuals) and r=1000 

(length of cM).  
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Figure 3.S6: Reciprocal hemizygote HXT6 and HXT7 strains 

Distributions of mean growth rate or median lag duration per well for HXT6 and HXT7 

reciprocal hemizygote strains. Estimates are for 47-48 wells (across 4 384-well plates) per strain 

and media combination. 

 
Figure 3.S7: Effect of variation in HXT7 

Distributions of mean growth rate in 4.44mM glucose (A) or lag variability in 0.22mM glucose 

(B) for HXT7 allele replacement strains. P-values are for two sample t test, n=12 (4 wells X 3 

plates) for each strain.  
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Table 3.S1: Single QTL model LOD scores found by interval mapping for all loci and traits 

LOD scores for all loci identified in this study including additive QTL and genetic interactions. 

Positions are shown in cM as well as approximate physical location (in bp) based on position of 

markers. LOD scores are shown for all traits and are maximum value within 30cM of position. 

GR-growth rate, Chr.-chromosome, var.-variability. 

Trait      Chr. Position 
(cM) 

Approximate 
position (bp) 

GR 
0.22mM 

GR 
variability 
0.22mM 

Lag 
0.22mM 

Lag 
variability 
0.22mM 

GR 
4.44mM 

GR 
variability 
4.44mM 

          
GR 0.22mM 4 421 1160904 41.809 1.84 6.177 7.155 3.251 1.504 

GR 0.22mM 7 194 604096 8.965 0.708 8.535 1.277 3.282 0.048 

GR 0.22mM 8 13 62967 3.098 0.615 0.142 0.864 0.26 0.497 

GR 0.22mM 9 85.209 224632 2.892 0.243 1.764 1.451 2.985 1.927 

GR 0.22mM 11 79 268728 3.691 0.09 0.989 0.891 3.955 0.1 

GR 0.22mM 15 51.783 150756 5.029 0.682 10.916 0.833 2.674 1.781 

GR 0.22mM 7 30 137644 4.101 0.329 0.818 0.93 5.439 0.615 

GR 0.22mM 11 200 588873 0.705 0.752 0.337 1.288 0.176 0.288 

GR 0.22mM 12 360 1002860 0.007 0.008 0.09 0.284 1.354 0.704 
GR var. 
0.22mM 1 69 162928 0.737 0.142 1.23 0.106 0.468 1.113 

GR var. 
0.22mM 10 154 412254 1.054 0.086 1.361 0.464 1.171 0.281 

GR var. 
0.22mM 3 76 141885 0.357 0.273 0.203 0.85 0.367 0.739 

GR var. 
0.22mM 6 5 119284 0.097 0.606 0.274 0.43 0.516 0.712 

          
Lag 0.22mM 4 424.142 1179958 41.809 1.94 6.177 7.155 3.251 1.504 

Lag 0.22mM 7 188.801 594654 8.977 0.708 8.535 1.277 3.475 0.048 

Lag 0.22mM 14 82 361686 1.473 0.161 2.644 0.199 0.594 0.944 

Lag 0.22mM 15 47 137707 5.029 0.712 10.916 0.833 2.674 1.781 

Lag 0.22mM 15 350 974737 1.214 0.224 3.381 0.212 2.049 0.26 
Lag var. 
0.22mM 4 423 1173031 41.809 1.894 6.177 7.155 3.251 1.504 

Lag var. 
0.22mM 1 27 88087 0.705 0.297 2.054 0.004 0.17 0.621 

Lag var. 
0.22mM 4 157 327970 0.349 0.275 0.214 0.537 1.228 1.924 

Lag var. 
0.22mM 1 67 156762 0.737 0.172 1.319 0.004 0.468 1.113 

Lag var. 
0.22mM 10 157 417725 1.054 0.129 1.361 0.002 1.242 0.281 

Lag var. 
0.22mM 9 92 253032 2.892 0.243 1.735 1.176 2.985 2.693 

Lag var. 
0.22mM 14 160 587945 0.315 0.249 0.329 0.525 0.341 0.105 

Lag var. 
0.22mM 12 380 1033949 0.194 0.004 0.014 0.003 1.354 0.012 

Lag var. 
0.22mM 15 77 214637 5.029 0.668 10.909 0.384 2.674 1.781 
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GR 4.44mM 4 421 1160904 41.809 1.84 6.177 7.155 3.251 1.504 

GR 4.44mM 7 30 137644 4.112 0.329 0.818 0.93 5.429 0.615 

GR 4.44mM 9 85.209 224632 2.892 0.243 1.764 1.451 2.985 1.927 

GR 4.44mM 11 86 286752 3.691 0.09 0.989 0.891 3.955 0.1 

GR 4.44mM 12 229 609824 0.183 0.76 1.309 0.1 5.003 4.806 

GR 4.44mM 15 185 528176 1.564 1.203 1.525 0.461 3.145 0.621 

GR 4.44mM 16 177 512955 1.018 0.229 0.683 0.247 4.181 1.543 

GR 4.44mM 7 156 466129 8.006 0.596 8.229 0.093 3.496 0.065 

GR 4.44mM 15 63 179172 5.029 0.682 10.916 0.826 2.669 1.781 

GR 4.44mM 4 105 182578 0.251 1.273 0.103 0.844 0.269 0.124 

GR 4.44mM 7 255 763417 4.802 0.434 2 1.194 0.162 0.251 
GR var. 
4.44mM 9 146.039 361957 2.062 0.08 0.463 1.331 1.753 7.335 

GR var. 
4.44mM 12 209 550479 0.21 0.76 1.116 0.27 5.003 4.806 
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Table 3.S2: Two QTL model LOD scores found by interval mapping for all genetic 

interaction loci and traits 

Genetic interactions found for all traits. Each column specifies one interaction, with position for 

both loci in cM as well as approximate physical location (in bp) based on position of markers. 

Additive model and full model LOD scores are shown for the specific pair of positions for all 

traits. GR-growth rate, Chr.-chromosome, var.-variability, Add.-additive 

 

Trait GR 
0.22mM 

GR 
variability 
0.22mM 

GR 
variability 
0.22mM 

Lag 
variability 
0.22mM 

Lag 
variability 
0.22mM 

Lag 
variability 
0.22mM 

Lag 
variability 
0.22mM 

GR 
4.44mM 

         
Chr. #1 11 1 3 1 1 9 12 4 

Position (cM) #1 200 69 76 27 67 92 380 105 
Approximate 
position (bp) #1 588873 162928 141885 88087 156762 253032 1033949 182578 

Chr. #2 12 10 6 4 10 14 15 7 

Position (cM) #2 360 154 5 157 157 160 77 255 
Approximate 
position (bp) #2 1002860 412254 119284 327970 417725 587945 214637 763417 

         
GR 0.22 Add. 0.706 0.279 0.244 0.671 0.308 2.543 2.154 2.577 

GR 0.22 Full 5.037 1.115 0.326 0.702 1.036 2.931 3.634 3.258 
GR var. 0.22 
Add. 0.744 0.198 0.998 0.197 0.182 0.496 0.016 1.29 

GR var. 0.22 
Full 0.746 6.627 5.707 2 6.512 0.523 0.037 1.347 

         
Lag 0.22 Add. 0.029 1.39 0.217 1.97 1.452 0.536 5.936 1.392 

Lag 0.22 Full. 1.722 1.45 0.395 1.98 1.478 0.643 5.987 1.875 
Lag var. 0.22 
Add. 1.315 0.002 0.708 0.544 0.005 1.665 0.386 0.803 

Lag var. 0.22 
Full. 2.141 6.538 1.104 4.492 6.879 5.599 4.888 0.913 

         
GR 4.44 Add. 0.14 0.447 0.607 0.05 0.5 2.224 3.548 0.424 

GR 4.44 Full 0.318 1.152 0.668 0.067 1.149 2.31 3.728 4.62 
GR var. 4.44 
Add. 0.267 1.123 1.362 1.661 1.098 1.002 1.535 0.053 

GR var. 4.44 
Full 0.669 1.265 2.847 1.802 1.312 1.033 1.54 0.348 
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Table 3.S3: Comparison of mapping approaches 

List of intervals defined by each pair of adjacent markers used in the interval mapping. Each row 

specifies one interval which had a maximal LOD score >3 in at least one condition. Conditions 

are interval mapping in 0.22mM glucose or 4.44mM glucose, bulk segregant analysis of the 

advanced intercross grown in low or high dilution rate chemostats (scores are for combined 

replicate data) and bulk segregant analysis of the pool of F2 segregants grown in low or high 

dilution rate chemostats. MULTIPOOL results are shown with parameters n=1000 (number of 

individuals) and r=1000 (length of cM). GR-growth rate, Chr.-chromosome, var.-variability, 

Add.-additive, AIC-advanced intercross population. 

Chr. Marker 
#1 

Marker 
#2 

Position 
(bp) 
#1 

Position 
(bp) 
#2 

GR 
0.22mM 
glucose 

GR 
4.44mM 
glucose 

F2 
low 
dilution 

F2 
high 
dilution 

AIC 
low 
dilution 

AIC 
high 
dilution 

           

1 1 2 32304 65359 0.7 0.01 4.67 1.25 0.53 0.54 

1 2 3 65359 112085 0.67 0.17 4.79 0.66 0.5 0.49 

2 1 2 120437 157331 0.55 0.2 3.4 1.82 0.48 1.32 

2 2 3 157331 232715 0.9 0.07 3.55 1 1.43 1.06 

2 6 7 401143 470054 0.26 0.18 0.91 1.97 3.01 1.88 

2 8 9 502224 575934 0.67 0.04 6.56 0.71 1.62 0.85 

2 9 10 575934 656829 0.17 0.04 6.44 0.5 1.89 0.61 

2 11 12 702460 771102 0.01 0.02 5.46 1.75 3.29 1.24 

3 4 5 188786 225558 0.36 0.54 1.15 3.18 2.6 0.49 

4 1 2 49679 114170 0.01 0.02 2.4 1.68 5.8 1.79 

4 2 3 114170 151239 0.25 0.42 1.56 1.33 5.49 0.7 

4 3 4 151239 246448 0.25 0.42 6.81 1.09 5.63 0.64 

4 4 5 246448 280697 0.01 0.03 6.42 0.65 1.61 1.21 

4 5 6 280697 346360 0.05 0.03 2.97 0.52 2.79 3.31 

4 12 13 635526 696637 0.63 0.99 1 4 1.65 1.78 

4 13 14 696637 767335 0.54 0.36 1.46 2.53 3.75 0.7 

4 15 16 826861 938147 6.44 0.84 15.13 7.43 3.55 1.59 

4 16 17 938147 1005614 9.79 1.04 24.21 9.57 4.95 1.56 

4 17 18 1005614 1071559 20.35 1.55 31.55 16.85 16.17 1.73 

4 18 19 1071559 1105164 30.71 2.49 44.3 21.64 32.03 4.81 

4 19 20 1105164 1179958 41.81 3.25 60.1 21.83 54.97 13.31 

4 20 21 1179958 1230646 40.53 3.19 59.81 18.84 27.15 10.91 

4 21 22 1230646 1264123 34.55 2.61 42.53 13.22 17.25 6.69 

4 22 23 1264123 1362236 15.45 1.11 11.52 4.28 4.55 4 

4 23 25 1362236 1501556 4.41 0.45 8 0.89 0.71 0.82 

5 1 2 49043 100056 0.17 1.17 9.21 2.49 4.14 2.21 

5 2 3 100056 158171 0.1 0.1 9.19 3.43 3.81 2.65 

5 3 4 158171 217279 0.1 0.14 5.62 3.91 3.95 1.42 
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Chr. Marker 
#1 

Marker 
#2 

Position 
(bp) 
#1 

Position 
(bp) 
#2 

GR 
0.22mM 
glucose 

GR 
4.44mM 
glucose 

F2 
low 
dilution 

F2 
high 
dilution 

AIC 
low 
dilution 

AIC 
high 
dilution 

           

5 4 5 217279 338773 0.3 0.36 3.11 1.76 4.6 0.72 

5 5 6 338773 399605 0.3 0.36 2.34 0.62 3.69 0.45 

6 3 4 170876 201882 0.04 0.32 0.5 1.53 3.71 0.63 

6 4 5 201882 223558 0.25 0.24 0.48 0.77 3.26 0.47 

7 1 2 44796 96932 3.48 4.11 4.94 6.03 2.17 0.88 

7 2 3 96932 171763 4.11 5.44 4.99 6 3.54 0.66 

7 3 4 171763 230207 3.79 4.83 3.65 3.42 2.81 0.68 

7 4 5 230207 284675 2.63 2.97 3.24 4.07 0.53 0.58 

7 7 8 432466 490117 5 3.5 4.9 0.88 0.63 1.35 

7 8 9 490117 545582 5.51 2.96 4.73 1.34 0.53 0.72 

7 9 11 545582 594654 8.84 3.05 1.35 1.5 0.41 0.46 

7 11 12 594654 644097 8.98 2.97 1.45 1.69 1.49 0.46 

7 12 13 644097 726509 4.8 0.75 1.29 0.93 2.85 1.24 

7 13 14 726509 763036 3.26 0.64 0.67 0.55 2.96 0.58 

7 15 16 809363 863960 3.05 0.72 1.68 0.72 1.7 0.51 

7 16 17 863960 892563 3.05 0.89 1.78 0.62 1.35 0.51 

8 1 2 44529 66740 3.1 0.26 8.21 2.25 10.71 0.75 

8 2 3 66740 117292 3.07 0.14 13.93 3.69 14.02 0.5 

8 3 4 117292 153282 0.53 0.14 10.44 3.32 15.67 0.5 

8 4 5 153282 198394 0.15 0.31 3.3 3.02 8.8 0.81 

8 5 6 198394 218718 0.22 0.31 0.86 1.36 4.96 0.95 

8 6 7 218718 256537 0.22 0.08 1.09 1.38 4.35 0.86 

8 7 8 256537 297020 0.21 0.01 1.99 0.41 3.14 0.96 

8 8 9 297020 396688 0.2 0.12 4.6 0.53 3.81 2.14 

9 5 6 201167 224632 2.89 2.99 1.88 3.99 1.91 0.72 

9 6 7 224632 250317 2.89 2.99 2.19 4.86 0.53 0.65 

9 7 8 250317 276759 2.83 2.2 2.36 4.59 0.77 0.66 

10 1 2 37500 66255 1.16 1.97 4.68 1.27 1.6 0.64 

10 2 3 66255 101653 1.16 1.93 3.13 2.38 1.77 0.61 

10 5 6 219800 270368 0.58 0.58 3.28 2.65 1.78 1.54 

10 8 9 336551 385727 0.63 0.71 1.31 5.44 1.35 1.26 

10 9 10 385727 444535 0.83 0.64 1.07 9.78 1.29 2.78 

10 10 11 444535 465360 1.05 1.27 0.76 9.26 0.66 2.82 

10 11 12 465360 527586 1 1.27 1.99 6.78 0.44 2.08 

10 12 13 527586 565916 0.51 0.06 5.73 0.7 0.59 0.57 

10 13 14 565916 619631 0.8 0.15 6.17 2.27 0.63 1.11 

10 14 15 619631 660770 0.77 0.26 6.23 1.77 0.91 1.06 

10 15 16 660770 690593 0.68 0.86 1.95 0.42 3.08 0.49 

11 1 2 42555 98234 0.01 0.02 4.71 6.4 2.43 1.08 

11 2 3 98234 153726 1.21 1.44 2.06 4.76 2.29 2.11 

11 4 5 206087 249055 3.32 2.56 1.37 3.59 2 1.99 

11 5 6 249055 295134 3.69 3.95 0.52 3.6 2.56 2.23 
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Chr. Marker 
#1 

Marker 
#2 

Position 
(bp) 
#1 

Position 
(bp) 
#2 

GR 
0.22mM 
glucose 

GR 
4.44mM 
glucose 

F2 
low 
dilution 

F2 
high 
dilution 

AIC 
low 
dilution 

AIC 
high 
dilution 

           

11 6 7 295134 350464 3.03 3.9 0.56 1.69 0.84 0.48 

11 11 12 504700 550500 1.02 0.16 0.87 4.39 0.62 0.99 

11 12 13 550500 575225 0.94 0.09 1.49 4.19 0.43 1.94 

11 13 14 575225 611629 0.71 0.18 2.48 5.61 0.45 3.87 

11 14 15 611629 637800 0.52 0.18 1.88 7.92 0.44 3.88 

12 2 3 89702 154678 0.34 0.05 0.57 0.83 4.96 2.04 

12 3 4 154678 213608 0.17 0.11 0.74 1.02 5.85 2.2 

12 6 7 311265 367241 0.33 1.07 3.48 5.29 0.81 0.66 

12 7 8 367241 451216 0.33 2.54 2.12 5.01 2.36 1.03 

12 9 10 492640 518152 0.21 3.64 1.28 0.71 2.06 0.41 

12 10 11 518152 561785 0.1 4.17 0.84 0.69 2.39 0.67 

12 11 12 561785 672637 0.07 5 2.86 4.19 2.22 1.45 

12 12 13 672637 717712 0.32 3.29 1.31 4.29 2.88 1.68 

12 13 14 717712 755968 0.91 3.49 2.87 2.26 2.84 1.59 

12 14 15 755968 820804 0.91 3.49 6.47 3.23 2.08 3.24 

12 15 16 820804 881789 0.06 0.87 9.29 3.92 0.8 2.54 

12 16 17 881789 969370 0.06 0.05 7.95 0.51 1.74 0.8 

12 17 18 969370 990749 0.07 0.02 9.98 0.46 1.37 0.81 

12 18 19 990749 1034324 0.19 1.35 9.88 0.72 1.63 1.1 

13 1 2 56276 102221 0.36 0.13 3.62 0.52 1.4 0.73 

13 5 6 244520 308353 1.53 0.88 4.51 3.26 3.65 0.48 

13 6 7 308353 341111 2.51 0.98 10.12 2.35 3.88 0.51 

13 7 8 341111 396424 2.51 0.92 8.76 2.12 2.87 0.6 

13 8 9 396424 502787 1.55 0.63 8.81 2.51 2.09 1.52 

13 9 10 502787 555633 0.82 0.62 6.35 2.3 1.98 1.76 

13 16 17 858414 914425 0.81 0.09 4.92 3.1 1.42 1.38 

14 4 5 231538 288198 1.06 0.02 1.38 4.27 1.43 3.18 

14 5 6 288198 340447 1.36 0.07 2.54 8.75 1.76 3.9 

14 6 7 340447 387811 1.47 0.27 3.04 8.71 1.65 3.06 

14 7 8 387811 437370 1.44 0.55 2.5 5.58 1.18 1.17 

14 8 9 437370 466584 1.06 0.59 1.25 4.24 0.64 1.31 

14 9 10 466584 502292 0.35 0.57 3.86 4.32 0.41 0.45 

14 10 11 502292 558811 0.05 0.28 11.25 2.7 1.47 0.45 

14 11 13 558811 635465 0.31 0.04 11.87 1.08 3.72 0.91 

14 13 14 635465 694158 0.31 0.29 5.25 1.38 4.83 0.61 

14 14 15 694158 745494 0.25 0.29 2.94 2.01 5.12 0.46 

15 1 2 51154 88251 1.34 0.27 3.05 9.71 0.94 4.06 

15 2 3 88251 150756 5.03 2.22 3.16 1.48 0.54 2.32 

15 3 4 150756 215310 5.03 2.67 4.51 2.67 1.49 1.98 

15 4 5 215310 280789 1.92 2.16 4.69 1.42 1.54 1.72 

15 5 6 280789 346309 0.29 0.13 4.74 0.62 0.64 1.97 

15 6 7 346309 407363 0.21 0 4.92 0.52 2.29 1.91 
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Chr. Marker 
#1 

Marker 
#2 

Position 
(bp) 
#1 

Position 
(bp) 
#2 

GR 
0.22mM 
glucose 

GR 
4.44mM 
glucose 

F2 
low 
dilution 

F2 
high 
dilution 

AIC 
low 
dilution 

AIC 
high 
dilution 

           

15 7 8 407363 454325 0.55 0.27 6.4 1.13 2.67 1.47 

15 8 9 454325 523989 1.56 3.13 6.54 3.22 1.38 0.93 

15 9 10 523989 572941 1.55 3.15 2.57 2.66 1.26 0.93 

15 13 14 693081 747648 1.25 0.72 3.31 1.47 1.88 0.65 

15 14 15 747648 804445 1.25 0.73 7.25 2.91 0.46 1.19 

15 15 16 804445 826784 0.48 0.48 7.5 2.61 0.45 1.33 

15 16 17 826784 870951 0.29 1.05 7.62 2.46 0.48 1.35 

15 17 18 870951 898552 1.44 2.18 4.7 1.83 0.53 0.95 

15 18 19 898552 912655 1.44 2.18 3.51 1.79 1.33 0.91 

16 6 7 266276 324298 0.43 0.7 0.45 3.36 1.16 3.73 

16 7 8 324298 372267 0.05 1.95 1.05 6.21 0.85 4.06 

16 8 9 372267 429004 0.54 2.95 0.75 8.96 0.52 2.91 

16 9 10 429004 482737 0.82 3.12 3.72 8.8 0.59 3.22 

16 10 11 482737 536003 0.85 4.18 8.75 9.35 0.41 7.4 

16 11 12 536003 593104 0.41 3.48 7.96 12.65 0.5 7.26 

16 12 13 593104 648617 1.28 2.91 5.39 16.5 0.68 4.21 

16 13 14 648617 745578 1.28 2.5 0.83 16.23 1.18 2.87 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



  

91 

CHAPTER 4: THE GENETIC BASIS OF GROWTH RATE VARIABILITY  

 

 

4.1: Abstract 

Phenotypic variability is present even when genetic and environmental differences between cells 

are absent. In this study we explore the genetic basis of natural variation in growth rate 

variability. We have identified wild isolates of Saccharomyces cerevisiae that differ in the 

variance of growth rate distributions measured for populations of clonal cells. The difference 

between the strains is apparent when cells are grown in two distinct glucose concentrations. We 

find that in both environments, the net genetic effect is primarily dominant, as the F1 hybrid has 

low variability. However, we also find that the genetic determinants of variability in each 

environment can be separated, indicating gene by environment interactions. Classic genetic 

mapping is complicated by reproductive isolation caused by low spore viability of the F1 hybrid, 

thought to be a result of extensive chromosome rearrangements in one of the parental strains. 

Growth rate variability in the higher glucose concentration can be separated from the presence of 

the aberrant chromosomal configuration and shows complex segregation. In contrast, there is an 

association between chromosomal configuration and growth rate variability at the lower 

concentration. Tracking the inheritance of spore viability in a set of backcrosses supports 

chromosome structure as the main determinant of reproductive isolation and reveals the creation 

of new chromosomal configurations by recombination and assortment.  
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4.2: Introduction 

Genetic and environmental factors are the major determinants of natural variation in quantitative 

traits. However, even genetically identical individuals raised in nominally identical environments 

can display heterogeneity. This residual variation, or “phenotypic variability” (Geiler-Samerotte 

et al. 2013) can be an advantageous and even necessary feature of biological systems (Losick and 

Desplan 2008; Eldar and Elowitz 2010). The extent of variability can be genetically controlled 

(Hill and Mulder 2010) and hence subject to evolutionary selection. However, the prevalence of 

natural variation that modifies phenotypic variability is still unknown as only a few studies have 

searched for loci that alter the variance of traits (Geiler-Samerotte et al. 2013). Detection of such 

loci has the potential to shed light on both the mechanistic basis and the evolutionary 

significance of phenotypic variability.   

 

Reproductive isolation restricts gene flow between two populations and is thought to be 

important for the onset of speciation. Although all members of the Saccharomyces genus can 

form viable F1 hybrids, hybrid spore viability is generally less than 1% (Hittinger 2013). 

Interspecies post-zyogotic isolation is mainly due to decreased recombination due to sequence 

divergence (Hittinger 2013), but translocations (Fischer et al. 2000) and nuclear/mitochondrial 

incompatibility (Lee et al. 2008) also contribute. In contrast, a recent study surveying 

reproductive isolation within S. cerevisiae found that reciprocal translocations explained cases in 

which hybrid spore viability is approximately 50% or 75% (Hou et al. 2014). Within S. 

cerevisiae, the Malaysian lineage (Liti et al. 2009), known to be reproductively isolated with 

2.5% – 10% spore viability when crossed to other lineages of budding yeast (Naumov et al. 
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2006; Cubillos et al. 2011), has been shown recently to harbor many large-scale translocations 

(Marie-Nelly et al. 2014).  

  

We previously identified two wild yeast isolates that differ in growth rate variability but not 

mean growth rate (Ziv, Siegal, et al. 2013). Here we show that these strains are reproductively 

isolated. By isolating, intercrossing and backcrossing viable segregants, we investigate the 

segregation of spore viability and growth rate variability in different environments. We explore 

connections between growth rate variability and aberrant chromosomal configuration and discuss 

possible mechanistic implications.  

 

4.3: Results 

4.3.1: Reproductive isolation of strains with different phenotypic variability 

We have previously measured the growth rate distributions of 12 isolates of S. cerevisiae, using a 

high-throughput microscopy based assay (Levy et al. 2012) in two different glucose 

concentrations (Ziv, Siegal, et al. 2013). The two conditions, 0.22mM (“low”) and 4.44mM 

(“high”) glucose, were chosen as they characterize the growth response to variation in nutrient 

concentration. The high glucose concentration supports maximal growth rates despite being over 

an order of magnitude lower than standard lab media. We found that natural variation in 

phenotypic variability segregates in yeast populations. We were particularly interested in two 

strains that differed in variability in both glucose concentrations. DBVPG1788, which was 

originally isolated from soil in Finland (hereafter “Finland”) had lower than average variability. 

The other strain was originally presumed to be DBVPG1373, a strain from soil in the 
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Netherlands, but was later discovered to be a strain from the Malaysian lineage (Liti et al. 2009) 

(hereafter “Malaysia”). The Malaysia strain has higher than average growth rate variability (Ziv, 

Siegal, et al. 2013). These strains also have nearly identical mean growth rate, making them ideal 

for identifying the genetic basis of natural variation in growth rate variability. 

 

We crossed the two strains (methods) and sporulated the resulting hybrid. One hundred and 

thirty-two tetrads were dissected but only 44 spores formed colonies (8.3% spore viability). 

Many tetrads had 0 or 1 viable spores and the distribution of viable cells per tetrad fit well a 

Poisson distribution with a mean of 0.33 (Figure 4.1A). Different molecular scenarios could 

explain the observed distribution. However, the extent of spore inviability is not consistent with a 

small number of interacting alleles or structural differences (Hou et al. 2014). The Malaysian 

strain (UWOPS03-461.4) was recently shown to have extensive chromosomal rearrangements, 

consisting of eight large chromosomal translocations, four smaller subtelomeric translocations 

and a few small intrachromosomal inversions (Marie-Nelly et al. 2014). In contrast to the 

massive genomic rearrangement, sequence divergence is typical for an S. cerevisiae lineage (Liti 

et al. 2009).    

 

It is likely that the low spore viability of the Finland/Malaysia hybrid is a consequence of the 

radically different chromosomal structure in the Malaysia strain. The potential effect of these 

rearrangements on growth rate variability is less clear. It is of interest to note that the hybrid, 

which contains both sets of chromosome configurations, has low growth rate variability when 
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grown in both glucose concentrations, suggesting that the increased variability is recessive 

(Figure 4.1B).  

 

 

 
 
Figure 4.1: Finland/Malaysia hybrid has low 

spore viability and growth rate variability 

A) Distribution of number of viable cells per 

tetrad for the F1 hybrid. Mean and variance of 

distribution is 0.33. Red line depicts estimates 

based on a Poisson distribution. B) Absolute 

growth-rate deviations are plotted against growth 

rate; estimates for each strain/media combination 

are based on 25 wells, measured across 5 plates, 

analyzed using mixed effect modeling. Error bars 

represent 95% confidence intervals. As indicated, 

shapes represent media and colors represent 

strains. 
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4.3.2: Phenotypic variability of viable segregants suggest different genetic basis for 

variability between environments 

Depending on the genetic basis of growth rate variability and mechanism of reproductive 

isolation, the rare viable segregants may or may not have variability differences. We first isolated 

a large number of segregants from the Finland/Malaysia cross by random spore analysis 

(methods). We define F2 segregants as the meiotic products of the Finland/Malaysia hybrid. Six 

F2 segregants were chosen that had low or high variability based on preliminary experiments and 

their growth rate distributions were measured in the two glucose concentrations. Some 

segregants had low or high variability in both conditions, resembling the parental strains (Figure 

4.2A). However, some segregants had low variability in low glucose and high variability in high 

glucose (Figure 4.2A). This suggests that the genetic basis of variability is distinct between the 

two environments. The segregants did not have large differences in mean growth rate compared 

to the parental strains (Figure 4.S1A).  

 

We performed intercrosses and backcrosses (methods) to determine if the spore inviability could 

be separated from the segregation of growth rate variability (Figure 4.2B). We used a subset of 

the segregants that had similar variability phenotypes to one or both parents. In this set of 

crosses, hybrids had either low spore viability (3% – 16%) or high spore viability (87% – 94%) 

(Figure 4.2B). Spore viability was associated with the difference in growth rate variability of the 

hybrid progenitors when grown in low glucose but not high glucose (Figure 4.2C, Figure 4.2D). 
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Figure 4.2: Phenotypic variability and spore viability for viable Finalnd/Malaysia 

segregants 

A) Growth rate standard deviations (estimated for 6 wells per strain/media combination) for the 

Finland and Malaysia strains and six viable segregants. Strains are ranked by median standard 

deviation in 0.22 mM glucose. Colors represent media. B) Representation of crosses performed. 

Line colors represent spore viability of resulting hybrids (red – low, blue – high). C) Percent 

spore viability of hybrids is plotted against difference in the median standard deviation of the 

hybrid progenitors (shown in (A)). Standard deviation estimates are for cells grown in 0.22 mM 

glucose. D) Same as (C) for standard deviation estimates for cells grown in 4.44mM glucose. 
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the segregation of alleles affecting growth rate variability in high glucose. Specifically, we had 

crossed strains (F2-36 and F2-91) that differed in growth rate variability but produced a hybrid 

with high spore viability (Figure 4.2). Using this cross to create a mapping population has some 

advantages. As it is an intercross, both the amount of segregating variation and the extent of 

linkage may be reduced.      

 

Fifty-four segregants, consisting of 12 4-spore tetrads and 2 3-spore tetrads were collected from 

the F2-36/F2-91 cross. Growth rate analysis (methods) suggests complex segregation of 

phenotypic variability (Figure 4.3A, Figure 4.3B). Variability for a subset of the segregants was 

higher than the estimate for the F2-36 strain but comparable to that of the Malaysia strain 

analyzed in the same dataset (Figure 4.3A). This observation may indicate the importance of 

epistasis in determining growth rate variability. There was no correlation between growth rate 

mean and standard deviation in the segregants (Figure 4.S1B).  
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Figure 4.3: Segregation of phenotypic 

variability in the F2-36/F2-91 cross 

A) Histogram of estimates of growth rate 

variability for 54 segregants. Estimates are mean 

standard deviation based on 3-6 wells, normalized 

between plates by mean subtraction of common 

strains. Vertical lines represent parental strains 

(dotted – F2-91, dashed – F2-36, solid - 

Malaysia). B) Same estimates as (A), grouped by 

tetrad, error bars depict standard errors. 

 

 

 

 

 

4.3.4: Segregation of spore inviability likely depends on inheritance of chromosome 

structure  

The association between reproductive isolation and growth rate variability at low glucose 

(Figure 4.2C) may indicate that shared or linked loci are responsible for both phenomena. This 

observation motivated us to follow the inheritance of spore viability. We utilized a backcrossing 

strategy starting with F2 segregants that had similar phenotypic variability as the Finland and 

Malaysia strains (F2-91 and F2-164) (Figure 4.4). Each F2 was backcrossed to the parent with 
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the opposite variability phenotype and the few viable segregants resulting from the backcross 

were again backcrossed in the same direction (Figure 4.4). The resulting strains had similar 

proportions of low and high spore viability. A cross that yielded low spore viability was chosen 

and the few surviving spores were again backcrossed and the procedure was repeated (Figure 

4.4). This backcrossing strategy resulted in strains that were enriched for either the Finland or 

Malaysia genome but maintained low spore viability when crossed to Finland or Malaysia 

respectively.  
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Figure 4.4: Backcrosses to follow the inheritance of spore viability 

Pie charts represent the distributions of viable cells per tetrad for each backcrossed strain that 

was measured. Each row represents a generation; curly brackets represent ancestry. Strains with 

low spore viability are predominantly red and orange while charts for strains with high viability 

are mostly blue. Distributions are based on 2–18 tetrads per strain (mode=3). Strains were 

backcrossed at each generation in the Finland direction, starting with F2-164 (top) or in the 

Malaysia direction, starting with F2-91 (bottom).    
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The genomes of seven haploid segregants (DGY1162, DGY1163, DGY1166, DGY1167, 

DGY1179, DGY1180 and DGY1181), coming from the third generation of both backcrossing 

directions (Figure 4.4), were sequenced (methods). For comparison, the genomes of the 

Finland, Malaysia, F2-91 and F2-164 strains, as well as a pool of 170 viable F2s from the 

Finland/Malaysia cross (obtained from random spore analysis), were also sequenced. Sequencing 

revealed that the backcrossed strains were enriched for the expected genetic background (Figure 

4.6A).  

 

As the Malaysian strain (UWOPS03-461.4) harbors a number of large-scale chromosome 

rearrangements (Marie-Nelly et al. 2014), it is possible to deduce which chromosome 

configurations exist in the backcrossed strains. Inheritance of the Malaysian chromosome 

structure results in inheritance of Malaysian-specific SNPs around the translocation breakpoints. 

Segregant chromosomal configurations were inferred based on sequence analysis (Figure 4.5A, 

Figure 4.5B) and pulse field gel analysis (Figure 4.S2).  
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Figure 4.5: Sequence analysis of backcrossed strains 

SNP allele frequencies in sequenced strains relative to the Malaysian strain for reference 

chromosomes VII (A) and VIII (B). Vertical lines depict translocation breakpoints. Top diagram 

relates chromosome fragments to Malaysia specific chromosomes (see Figure 4.6B).  
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Of the backcrossed strains that were sequenced, two had the Finland parental chromosome 

configuration and none had the Malaysian parental configuration (Figure 4.6B). In the remaining 

five strains, recombination and segregation have created new chromosomal configurations. 

Specifically, recombination events on chromosome VII created a VII-XIII chromosome that 

could segregate with a full-length chromosome XI (replacing Malaysian XI-VII-XIII and VII-

XI). Similar events created a VII-VIII-X chromosome that could segregate with a full-length 

chromosome VIII (replacing Malaysian VIII-VII-VIII-X and VIII-VII) (Figure 4.6B). In this 

second case, the resulting strains have two copies of a 120kb region of chromosome VIII, one 

originating from each of the original parental strains. This was detected in the sequencing data as 

a doubling in read depth and the presence of both Finland- and Malaysia-specific SNPs at ~0.5 

frequency (Figure 4.5B).       

 

Intercrosses between the backcrossed strains (Figure 4.6C) support the idea that chromosome 

structure is the main determinant of reproductive isolation in budding yeast (Hou et al. 2014). 

Specifically, the cross between DGY1163 and DGY1181, which are enriched for Finland and 

Malaysia SNPs respectively, but have identical chromosome configurations, yields a hybrid with 

high spore viability. Due to mating type constraints, additional crosses (such as between 

DGY1166 and DGY1181) were not performed.    
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Figure 4.6: Characterization of backcrossed strains 

A) Proportion of SNPs originating from the Finland or Malaysia strain, normalized to the F2 

segregant pool. Sequenced backcrossed strains are progenitors of strains shown in Figure 4.4. B) 

Diagram of chromosomal configurations. Only major Malaysian translocations are shown, which 

comprise re-arrangements in 5 chromosomes. Colors represent reference chromosome identifier. 

C) Representation of crosses performed. For clarity, strains DGY1162 and DGY1167 are 
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excluded from the diagram; both strains had the same viability pattern as the Finland strain. Line 

colors represent spore viability of resulting hybrids (red: 0% – 25%, orange: 25% – 50%, light 

blue: 50% – 75% and blue: 75% – 100%).      

 

4.4: Discussion  

A number of studies have demonstrated that there is significant phenotypic variation in 

genetically identical individuals (Raser and O’Shea 2005; Levy et al. 2012). Despite its 

prevalence, the genetic basis of phenotypic variability is not well understood, particularly in 

natural populations. The main limitation in studying variability is the necessity of experimental 

and statistical methods that permit accurate estimation and analysis (Geiler-Samerotte et al. 

2013). We have used a high-throughput microcolony growth assay (Levy et al. 2012; Ziv, Siegal, 

et al. 2013) to explore the genetic basis of growth rate variability in natural isolates of S. 

cerevisiae.  

 

This study has focused on two strains, isolated from Finland and Malaysia, which differ in the 

variance of microcolony growth rate distributions. These two strains are divergent at both the 

nucleotide and karyotype level. The unique Malaysian karyotype may be the product of genomic 

instability. This genomic instability may be associated with an increased mutation rate leading to 

high variance in the measured growth rate distributions. However, two observations argue 

against this. First, the Malaysian lineage has not accumulated mutations as the level of sequence 

divergence is similar to other lineages (Liti et al. 2009). Second, higher variance in Malaysia 

growth rate distributions is due to equal proportions of fast and slow growing cells (Ziv, Siegal, 

et al. 2013), whereas random mutations tend to have deleterious effects (Hall and Joseph 2010). 
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Moreover, any mechanism creating genetic variation between microcolonies will have to be 

reconciled with the low growth rate variance of the F1 hybrid. 

 

The association between Malaysian chromosomal configuration and high variability when cells 

are grown in low glucose can be either direct or indirect. An indirect link may be the chance 

genetic linkage of loci determining variability and the translocation breakpoints. On the other 

hand, the chromosomal rearrangements may have changed the relative position and chromatin 

environment of growth related genes. This in turn could have caused lower and more variable 

expression of many or few genes. Change in expression variation of key genes (such as 

transcription factors) could propagate through cellular networks resulting in increased growth 

rate variability (Stewart-Ornstein et al. 2012).    

 

This study contributes to the growing body of work that aims to investigate phenotypic 

variability. It demonstrates the feasibility of treating variability as a quantitative trait and 

provides evidence that chromosomal structure may contribute to phenotypic variability. The 

connection between phenotypic variability and the structure and associated epigenetic landscape 

of the genome warrants further investigation. 

 

4.5: Materials and methods 

4.5.1: Yeast mating 

The Finland and Malaysia strains are capable of mating type switching and hence do not exist as 

stable haploids. Crosses in this study were performed either between two diploids, between a 
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diploid cell and a haploid cell or between haploids. For diploid crosses (original 

Finland/Malaysia cross and initial intercrosses/backcrosses shown in Figure 4.2B), parents were 

sporulated and single spores from each strain were dissected and placed in adjacent positions on 

a YPD plate. If the spores are of opposite mating types (expectation: 50%), they will form a 

hybrid. In the absence of any selectable markers, hybrids were identified using restriction 

fragment length polymorphisms (RFLPs).  

    

Subsequently, the Finland and Malaysia strains were transformed, replacing one copy of the HO 

endonuclease with a construct containing the G418 resistance marker (kanMX). The 

heterozygote strains were sporulated and colonies derived from dissected tetrads contained both 

haploid and diploid cells. Haploid cells of both mating types in both genetic backgrounds were 

isolated. For the backcrossing strategy, F2-91 and F2-164 were crossed to Malaysia and Finland 

haploids. Crosses between diploids and haploids were similar to diploid-diploid mating. These 

crosses also produced both haploids and diploid progeny. Only haploid cells were used for the 

second backcrossing round. Haploids were crossed by mixing the two strains on an agar plate, 

incubating for ~4 hours at 30°, streaking out the mixture and physically “pulling zygotes” out of 

the mating mixture using a dissecting microscope.   

 

4.5.2: Random spore isolation 

A sporulated culture of the Finland/Malaysia hybrid was resuspended in equal amounts of water 

and ether and vortexed for 10 min to kill unsporulated cells. Spores were separated using 

centrifugation, washed with water and incubated in 1 mg/ml Zymolase for 1 hour at 30°C. 0.15 
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grams of sterile 0.5mm glass beads were added per ml of sporulated culture, incubated for an 

additional hour at 30°C and vortexed for 2 minutes. Cells were subsequently diluted in 0.1% 

triton and plated on YPD plates. 168 colonies were picked at random and arrayed in 2 96-well 

plates. Preliminary micro-colony growth rate analysis revealed bimodal distributions in a subset 

of wells. When wells were subsequently streaked for single colonies and growth rate 

distributions were remeasured, no strains retained bimodal distributions, suggesting that some of 

the original colonies picked were a mix of two different segregants. This may be a result of 

incomplete separation of spores during random spore analysis.   

  

4.5.3: Growth rate analysis 

All growth conditions, microscopy and analysis of microcolony growth profiles are as described 

(Ziv, Siegal, et al. 2013). Where multiple replicates were available, estimates for strain growth 

rate and variability were estimated as in (Ziv, Siegal, et al. 2013) using mixed effect modeling. 

Otherwise, distributions of mean or standard deviation per well were compared between strains 

and conditions. For the F2-91/F2-36 cross, some of the segregants were phenotyped across 6 

wells (3 wells X 2 plates) and some were phenoptyped across 3 wells (1 plate) using a different 

microscope. All plates had 15 wells containing the same strains (3 wells X 5 strains). In order to 

correct for plate effects, the average growth rate standard deviation (or average mean growth 

rate) for the common strains was subtracted from the segregant estimates. Standard deviations 

were estimated based on 300-3500 microcolonies.  
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4.5.4: Whole genome sequencing and analysis 

Libraries for sequencing were prepared and multiplexed using standard protocols and sequenced 

using an Illumina HiSeq. Reads were aligned to the reference genome (Ref.SGD020311.fasta) 

and single nucleotide polymorphisms (SNPs) were identified using BWA (Li and Durbin 2009) 

and SAMtools (Li et al. 2009). SNP alleles, position, quality and the number of high-quality 

reads mapping to reference or alternate alleles (DP4) were extracted from VCF files and 

analyzed using R (Team 2012). Read depth was calculated as the sum of reads mapping to 

reference and alternate alleles. Finland and Malaysia specific alleles were identified in each 

sample by comparing to SNPs found by sequencing the Finalnd and Malaysia strains. Data was 

formatted to reflect Malaysia allele frequencies. 
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4.6: Supplemental figures 

 

 
 
Figure 4.S1: Mean growth rate in Finland/Malaysia segregants 

A) Growth rate means (estimated for 6 wells per strain/media combination) for the Finland and 

Malaysia strains and six viable segregants. Strains are in same order as Figure 4.2A. Colors 

represent media. B) Normalized growth rate standard deviation verses normalized growth rate 

mean for all growth rate distributions (3-6 per strain) representing 54 segregants from the F2-

91/F2-36 cross. The line depicts loess regression. 
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Figure 4.S2: Pulse-field gel supporting inferred chromosome configurations 

Whole chromosome preparations for eight strains: the reference (Lab strain), Finland, Malaysia 

and five backcrossed strains. Chromosome annotation is based on expected size.   
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CHAPTER 5: CONCLUSION 

 

 

Accurately predicting quantitative phenotypes based on the identity of underlying genetic 

variants is a central goal of basic research in genetics and biology with important medical and 

industrial applications (Nelson, Pettersson, and Carlborg 2013). However, mapping genotype to 

phenotype is a challenge even in model organisms due to the prevalence of gene-environment 

interactions, epistasis and variance among isogenic individuals (Lehner 2013). In this thesis, I 

have dissected the genetic basis of natural variation in cell growth, a quintessential quantitative 

trait, using natural isolates of the budding yeast (Saccharomyces cerevisiae). Using a high-

throughput microscopy based assay, I defined the genetic architectures determining two growth 

traits, the exponential growth rate and time to growth initiation, in two ecologically relevant 

environments.  

 

Studies presented in this thesis support the importance of quantitative trait loci (QTL) context 

dependency (Mackay et al. 2009; Chandler et al. 2013). Genome-wide analysis uncovered a 

multitude of loci with additive effects. However, at least in the case of HXT7, functional 

confirmation revealed extensive genetic background effects. Furthermore, epistatic interactions 

were also found, particularly determining variation in growth variability (variation in the absence 

of genetic and environmental variance). Gene-environment interactions were common both for 

mean growth rate and growth rate variability. These studies have set the stage for further 

functional characterization of natural alleles determining cell growth.  
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One of the major focuses of this thesis has been elucidating the genetic determinants of 

phenotypic variability. Phenotypic variability comprises variation between genetically identical 

individuals in the same environment (Geiler-Samerotte et al. 2013). Variability is a relative term; 

low variability implies homogeneity among individuals while high variability corresponds to 

heterogeneity among individuals (Levy and Siegal 2012). From an evolutionary perspective, 

theory suggests stabilizing selection on traits will decrease variability while strong directional 

selection and disruptive selection will select for increased variability (Mulder et al. 2007). 

Analysis of loci determining growth variability in the Oak/Vineyard cross did not reveal clear 

evidence of directional selection on variability, as combinations of oak or vineyard alleles could 

result in both high and low variability. However, due to limitations and detection bias, 

evolutionary inferences based on analysis of a small sample of QTL can be misleading 

(Rockman 2012).  

 

Beyond the ultimate evolutionary significance of variability, the proximate causes of variability 

are also of interest. In many cases, variability is thought of in terms of bistability, which creates 

bimodal phenotypic distributions. Bistability is mediated by specific configurations of positive 

and negative feedback (Losick and Desplan 2008; Eldar and Elowitz 2010). Examples of such 

systems include bacterial persistence, the well studied lac operon and cell fate determination 

during development in multicellular organisms (Losick and Desplan 2008; Eldar and Elowitz 

2010). In contrast, variability differences in continuous mRNA expression can be modulated by 

the frequency and magnitude of transcriptional bursts (Zenklusen et al. 2008). The system 

properties that enable differences in variability of more complex phenotypes are largely 
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unexplored. In this respect, cell growth is particularly appealing, as many cellular components 

required for cell growth regulation are known. Further functional analysis of the loci determining 

growth variability will lead to insights into the molecular mechanisms that can promote or reduce 

variability in continuous complex traits.  

 

Valuable information is missed when only considering distribution averages. By studying 

phenotypic variability and analyzing the effect of QTL over different environments and genetic 

backgrounds, we can start to unravel the complexity of genotype to phenotype mapping. This 

thesis has laid the groundwork for the molecular dissection of genetic and non-genetic 

determinants of cell growth. In particular, it has provided a wealth of information on gene-gene 

and gene-environment interactions determining the central tendency and variability in cell 

growth distributions.    
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