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Genetic interaction profiles of regulatory kinases
differ between environmental conditions and
cellular states
Siyu Sun1,2, Anastasia Baryshnikova3, Nathan Brandt1,2 & David Gresham1,2,**

Abstract

Cell growth and quiescence in eukaryotic cells is controlled by an
evolutionarily conserved network of signaling pathways. Signal
transduction networks operate to modulate a wide range of cellu-
lar processes and physiological properties when cells exit prolifera-
tive growth and initiate a quiescent state. How signaling networks
function to respond to diverse signals that result in cell cycle exit
and establishment of a quiescent state is poorly understood. Here,
we studied the function of signaling pathways in quiescent cells
using global genetic interaction mapping in the model eukaryotic
cell, Saccharomyces cerevisiae (budding yeast). We performed
pooled analysis of genotypes using molecular barcode sequencing
(Bar-seq) to test the role of ~4,000 gene deletion mutants and
~12,000 pairwise interactions between all non-essential genes and
the protein kinase genes TOR1, RIM15, and PHO85 in three
different nutrient-restricted conditions in both proliferative and
quiescent cells. We detect up to 10-fold more genetic interactions
in quiescent cells than proliferative cells. We find that both indi-
vidual gene effects and genetic interaction profiles vary depending
on the specific pro-quiescence signal. The master regulator of
quiescence, RIM15, shows distinct genetic interaction profiles in
response to different starvation signals. However, vacuole-related
functions show consistent genetic interactions with RIM15 in
response to different starvation signals, suggesting that RIM15
integrates diverse signals to maintain protein homeostasis in
quiescent cells. Our study expands genome-wide genetic interac-
tion profiling to additional conditions, and phenotypes, and high-
lights the conditional dependence of epistasis.
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Introduction

Most cells spend the majority of their lifetime in a quiescent state

defined as the temporary and reversible absence of proliferation

(Lemons et al, 2010; O’Farrell, 2011; Valcourt et al, 2012). Quies-

cence requires exit from the mitotic cell division cycle and initiation

of a distinct G0 cell cycle phase, during which cells remain viable

and maintain the capacity to reinitiate the cell cycle and proliferative

growth (Valcourt et al, 2012). In multicellular organisms, develop-

ment, tissue renewal, and long-term survival are dependent upon

the persistence of stem cells that are quiescent, but retain the ability

to reenter the cell cycle to self-renew, or to produce progeny that

can differentiate and repopulate the tissue (Miles & Breeden, 2017).

Exit from quiescence, and initiation of aberrant proliferation, is a

hallmark of cancer (Hanahan & Weinberg, 2011; Miles & Breeden,

2017). Conversely, many cancer-related deaths are the result of

quiescent tumor cells that are resistant to therapeutics and underlie

tumor recurrence (Borst, 2012; Yano et al, 2017). Thus, understand-

ing cellular quiescence and how cells regulate the transition

between proliferative and quiescent states is of fundamental impor-

tance to our understanding of cellular homeostasis and disease.

Cells exit the cell cycle and enter quiescence when they are

deprived of essential nutrients or growth factors (Daignan-Fornier &

Sagot, 2011; Klosinska et al, 2011; Valcourt et al, 2012). Quiescence

in the model eukaryotic organism, Saccharomyces cerevisiae (bud-

ding yeast), shares many important features with that of higher

organisms, including cell cycle arrest, condensed chromosomes,

reduced rRNA synthesis and protein translation, and increased resis-

tance to stress (Valcourt et al, 2012; Dhawan & Laxman, 2015).

Therefore, the mechanisms that regulate cell cycle arrest and the

establishment, maintenance, and exit from a quiescent state, as well

as the physiological processes associated with this state, are likely

to be shared across eukaryotic cells.

Studies of quiescence in yeast typically examine stationary-phase

cells, namely cells grown to saturation in rich, glucose-containing

medium (Gray et al, 2004; Young et al, 2017). In this case, cells typi-

cally first exhaust glucose through fermentative metabolism and then,

following the diauxic shift, switch to respiration using ethanol as the
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carbon source. Upon exhaustion of ethanol, cells enter quiescence.

However, in addition to carbon starvation, yeast cells respond to a

variety of nutrient starvations by exiting the cell cycle and initiating

quiescence (Lillie & Pringle, 1980; Gresham et al, 2011; Klosinska

et al, 2011). Starvation for essential nutrients including nitrogen,

phosphorus, and sulfur result in many of the same characteristics as

carbon-starved cells including arrest as unbudded cells, thickened cell

walls, increased stress resistance, and an accumulation of storage

carbohydrates (Lillie & Pringle, 1980; Schulze et al, 1996; Klosinska

et al, 2011). Although in laboratory conditions, yeast primarily expe-

rience carbon starvation, in the wild, yeast is likely to experience a

diversity of nutrient deprivations. How the cell integrates these

diverse signals to mount the same physiological response, and estab-

lish cellular quiescence, remains poorly understood.

The ability of stationary-phase yeast cells to maintain viability

has also been used as a model for chronological aging. Chronologi-

cal lifespan (CLS) has been defined as the time a yeast cell can

survive in a non-dividing, quiescent state (Fabrizio & Longo, 2003;

Kaeberlein, 2010; Walter et al, 2014). Therefore, CLS is closely

related to the proportion of quiescent cells in stationary-phase

cultures because non-quiescent cells have a reduced ability to reen-

ter the cell cycle (Allen et al, 2006; Walter et al, 2014). Cells with a

shortened CLS have reduced reproductive capacity upon replenish-

ment of nutrients (Garay et al, 2014). Identification of genes that

mediate CLS in yeast under different nutrient restrictions is poten-

tially informative about the regulation of aging in higher organisms.

The genotype of a yeast cell has a profound impact on the regula-

tion of quiescence. Many studies of survival in stationary-phase

cells, and their application to the study of CLS, have been conducted

using auxotrophic strains. However, starvation for an engineered

auxotrophic requirement is an unnatural starvation that results in a

failure to effectively initiate a quiescent state and therefore leads to

a rapid loss of viability (Boer et al, 2008; Gresham et al, 2011). This

is likely due to the fact that yeast cells have not evolved a mecha-

nism for sensing and responding to laboratory-engineered auxo-

trophic requirements. The use of undefined media and auxotrophic

strains for studying CLS can be confounded by inadvertent starva-

tion for auxotrophic requirements. Thus, the identification of

mutants that suppress the rapid loss of viability upon undefined

starvation in auxotrophic strains may be of limited relevance for

understanding the regulation of quiescence and CLS. Previous stud-

ies of quiescence using prototrophic yeast cells, and defined starva-

tion for nutrients that are essential for growth in wild-type cells

(i.e., natural starvation), have shown that the genetic requirements

for quiescence differ depending on the nutrients for which the cell is

starved (Gresham et al, 2011; Klosinska et al, 2011). However,

whether the genes required for proliferation in different nutritional

conditions are the same set of genes that are required for program-

ming quiescence is not known.

Multiple evolutionarily conserved nutrient sensing and signal

transduction pathways, including the target of rapamycin complex I

(TORC1), protein kinase A (PKA), adenosine monophosphate kinase

(AMPK), and PHO pathway, have been shown to regulate quies-

cence. The integrator of these diverse signaling pathways is thought

to be the protein kinase RIM15, a great wall kinase that is a homo-

logue of the mammalian gene, microtubule-associated serine/thre-

onine-like kinase (MASTL) (Castro & Lorca, 2018). RIM15 appears

to be downstream of multiple signaling pathways and is required for

the establishment of quiescence (Broach, 2012; de Virgilio, 2012).

However, how different starvation signals are coordinately trans-

duced via these pathways, and how RIM15 orchestrates the estab-

lishment of cellular quiescence are not known.

The relationship between different cellular processes and path-

ways can be investigated using a variety of methods that identify

physical and functional interactions. One efficient approach to

define interactions between genes and pathways is through quanti-

tative genetic interaction mapping (Billmann et al, 2016, 2018; Cost-

anzo et al, 2016). A genetic interaction is a relationship between

two genes in which the phenotype of the double mutant diverges

from that expected on the basis of the phenotype of each single

mutant (Tong et al, 2004; Boone et al, 2007; Mani et al, 2008;

Beltrao et al, 2010; Costanzo et al, 2010). Genetic interactions can

be informative of the functional relationship between the encoded

products. Positive genetic interactions may be indicative of genes

that exist within pathways or complexes, whereas negative genetic

interactions often reflect genes that function in parallel pathways or

processes that converge on the same function (van Leeuwen et al,

2017). Extension of genetic interaction mapping to test genome-wide

interactions between defined alleles results in a genetic interaction

profile, comprising the set of negative and positive genetic interac-

tions for a given gene. The systematic application of this approach

has demonstrated that genes that share similar functions, or operate

in the same pathway, often share similar genetic interaction profiles.

As such, the similarity in quantitative genetic interaction profiles

between two genes (typically quantified as a correlation coefficient)

is informative about the similarity between the two genes’ func-

tions. The culmination of genome-wide genetic interaction mapping

in budding yeast has been the construction of a global genetic inter-

action similarity network that serves as a functionally informative

reference map (Costanzo et al, 2010, 2016). The recent completion

of this comprehensive genetic interaction map leads to two related

questions: (i) To what extent are genetic interactions dependent on

environmental conditions? and (ii) can genome-wide genetic inter-

action mapping be expanded to other phenotypes? Quantitative

genetic interaction mapping is increasingly being applied in other

organisms, including Drosophila melanogaster and mammalian cells

using RNAi or CRISPR/Cas9 (Fischer et al, 2015; Billmann et al,

2016, 2018; Du et al, 2017; Horlbeck et al, 2018; Norman et al, 2019

making these questions of broad significance.

To date, genome-wide genetic interaction mapping in yeast has

primarily been performed in a single condition and assayed using a

single phenotype—colony growth—in an optimal nutritional condi-

tion (Tong et al, 2001; Roguev et al, 2008; Costanzo et al, 2016).

Some studies have extended genetic interaction mapping to different

stress conditions (St Onge et al, 2007; Gutin et al, 2015; Martin

et al, 2015; Dı́az-Mejı́a et al, 2018), but not on a genome-wide scale.

Therefore, the extent to which genetic interactions depend on envi-

ronmental conditions and the feasibility of using additional pheno-

types beyond colony growth phenotypes in genetic interaction

mapping remains largely unexplored. Targeted studies of specific

genotypes suggest that functional relationships between genes are

environmentally dependent (St Onge et al, 2007; Bandyopadhyay

et al, 2010; Dı́az-Mejı́a et al, 2018; Jaffe et al, 2019), suggesting that

a complete understanding of global genetic interaction networks

requires identification of genetic interactions in multiple conditions

and using multiple phenotypes.
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Here, we have developed a new method for quantifying pheno-

types of pooled single and double mutants in different conditions

using Bar-seq. We applied this approach to quantify the genetic

requirements, and identify genetic interactions, in two different

cellular states and three different nutritional conditions. Our experi-

mental design entailed quantification of both fitness during prolifer-

ative growth and survival during prolonged defined starvation for

each genotype. We find that the genetic requirements for quiescence

differ depending on the nutrient starvation signal. Using genome-

wide genetic interaction mapping for three key regulatory kinases,

we find that these genes exhibit different interaction profiles in dif-

ferent growth conditions and in different cellular states. Finally, we

find that the master regulator of quiescence, RIM15, shows distinct

genetic interaction profiles and regulates different functional groups

in response to different starvation signals. However, vacuole-related

functions show consistent genetic interactions with RIM15 in

response to different starvation signals consistent with RIM15

controlling quiescence by integrating diverse signals to regulate

protein degradation processes (Cameroni et al, 2004; Swinnen et al,

2006). RIM15 also interacts positively with ERAD genes specifically

in nitrogen starvation conditions pointing to a previously unappreci-

ated role for this quality control pathway in quiescence. Our study

points to a rich spectrum of condition-specific genetic interactions

that underlie cellular fitness and survival across a diversity of condi-

tions and introduces a generalizable framework for extending

genome-wide genetic interaction mapping to diverse conditions and

phenotypes.

Results

Quantifying mutant fitness using pooled screens in
diverse conditions

Cellular quiescence in yeast can be induced through a variety of

nutrient deprivations, but whether establishment of a quiescent

state in response to different starvation signals requires the same

genetic factors and interactions is poorly understood. Therefore, we

sought to test the specificity of gene functions and genetic interac-

tions in quiescent cells in response to three natural nutrient starva-

tions: carbon, nitrogen, and phosphorus. The use of prototrophic

yeast strains is essential for the study of quiescence as unnatural

(starvation of an auxotroph for its auxotrophic requirement), or

unknown starvations can confound results and their interpretation

(Boer et al, 2008; Gresham et al, 2011). Therefore, we constructed

haploid prototrophic double mutant libraries using a modified

synthetic genetic array (SGA) mating and selection method

(Fig EV1A). Briefly, double mutant libraries were constructed using

genetic crosses between the ~4,800 non-essential gene deletion

strains (Giaever et al 2002) and query strains deleted for one of

three genes encoding the catalytic subunit of different regulatory

protein kinases: TOR1, RIM15, and PHO85 (Table EV1 and Materials

and Methods). In addition, we constructed a single mutant library

using the same method by mating the gene deletion collection with

a strain deleted for HO, which has no fitness defects in haploids. We

confirmed the genotype and ploidy of the resulting three haploid

double gene deletion libraries and the single mutant (HO) library

using selective media and flow cytometry (Fig EV1B).

Previously, genome-wide genetic interaction mapping in yeast

has been performed using colony growth phenotype as a measure-

ment of genotype fitness (Costanzo et al, 2010, 2016). In liquid

cultures, the growth cycle of a population of microbial cells

comprises a lag period, an exponential growth phase, and a subse-

quent period in which growth is no longer observed, known as

stationary phase. Stationary phase is indicative of cell growth and

cell cycle arrest due to starvation for an essential nutrient (de

Virgilio, 2012). To study each genotype over the complete growth

cycle in liquid cultures, we first analyzed the four libraries (Fig 1A)

in three different defined nutrient-restricted media: carbon-restricted

(minimal media containing 26.64 mM carbon), nitrogen-restricted

(minimal media containing 0.8 mM nitrogen), and phosphorus-

restricted (minimal media containing 0.04 mM phosphorus)

(Table EV2 and Materials and Methods). The composition of these

media ensures that, following an exponential growth phase, cells

experience either carbon, nitrogen, or phosphorus starvation,

respectively. In each of the three media, 1.5 × 108 cells from each of

the four libraries (Fig 1A) of pooled mutants were used to inoculate

cultures (t = 0). In nitrogen- and phosphorus-restricted media, we

observed that the starvation period commenced 24 h after inocula-

tion (Fig EV1C). Cells in carbon-restricted media underwent the

diauxic shift after 24 h and reached stationary phase approximately

48 h post-inoculation (Fig EV1C). Beyond these time points, we did

not observe additional cell division or population expansion

consistent with defined nutrient starvation and the initiation of

quiescence.

To compare the fitness of each genotype over the complete

growth cycle in each condition, a 1 ml sample (1 × 106 cells) was

removed from the culture at sequential time points and the subpop-

ulation of viable cells was expanded using 24–48 h of outgrowth in

supplemented minimal media (Fig 1A and Materials and Methods).

This step is required to enrich for mutants that survive proliferation

and starvation and to deplete those that have undergone senes-

cence. Sampling 1 × 106 cells from the cultures minimized the prob-

ability (P < 0.018) that a genotype was not measured due to

sampling error (Fig EV1D and Materials and Methods). We also

quantified population viability throughout this period and observed

no substantial change in any of the conditions (Fig EV1E). Using an

identical outgrowth step at every time point, and determining the

rate of change in the relative abundance of viable mutants in the

outgrown population, accounts for growth rate differences between

mutants during the outgrowth (Gresham et al, 2011). The abun-

dance of each mutant in the heterogenous pool was estimated by

sequencing DNA barcodes that uniquely mark each genotype using

Bar-seq (Smith et al, 2009; Robinson et al, 2014; Costanzo et al,

2016). In total, we studied ~4,000 strains that passed filtering (Mate-

rial and Methods) in each of the four libraries in the three conditions

with between 3 and 5 independent experiments to account for

biological and technical variability (i.e., total of 39 genetic screens).

To determine the fitness of each strain during the complete

growth cycle, we initially applied linear regression modeling of the

relative frequency of each mutant against time (t = 0, 24, 48, 96,

186, and 368 h) (Fig EV1C and Dataset EV1). To test the repro-

ducibility of our fitness assay, we first estimated fitness for each

biological replicate separately and used principal component

analysis (PCA) to identify and exclude poorly behaved libraries

(Fig EV1F). Hierarchical clustering of the filtered libraries shows
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that, for all 39 experiments, biological replicates cluster as nearest

neighbors (Fig 1B). Different libraries cultured in the same medium

tend to cluster together, indicating that environmental conditions

are a major determinant of fitness effects (Fig 1B). However, the

PHO85 library in nitrogen-restricted media and the RIM15 library in

phosphorus-restricted media were exceptions to this general trend

(Fig 1B), which indicates that genotype also plays a key role in

determining fitness. In general, mutants in carbon-restricted media

show less similarity to that observed in nitrogen- and phosphorus-

restricted conditions, particularly for HO and PHO85 libraries

(Appendix Fig S1).

To quantify fitness, and the associated uncertainty (expressed as

a 95% confidence interval), for each estimate we performed model

fitting for each library in each condition using all biological repli-

cates. We identified numerous cases in which the fitness of a single

mutant significantly differs between conditions. For example,
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deletion of the autophagy gene, ATG3 (atg3D0 hoD0), results in

reduced fitness in nitrogen- and phosphorus-restricted media, but

not in carbon-restricted media (Fig 1C).

Nutrient starvation signal is the primary determinant of
mutant survival in quiescent cells

The fitness of a genotype during proliferative growth in different media

may differ from the survival of the genotype in response to a specific

starvation signal. To test this, we separately modeled the relative abun-

dance of each genotype during the growth phase (i.e., from t = 0 to

t = 24 h) and during the starvation period (i.e., from t = 32 to

t = 368 h) for all mutant libraries using all replicates. This analysis

distinguishes the effect of each gene deletion in two distinct physiologi-

cal states: proliferation and quiescence. As cells do not generate

progeny when starved, we refer to the phenotype during the starvation

phase as “survival” and phenotype during proliferation as “fitness”

(Fig 1D). To identify the primary determinant of these two phenotypes,

we quantified the similarity between fitness and survival for each

mutant library in each condition (C-, N-, and P-restricted conditions)

(Fig 1E and Table EV3). We find a clear distinction between prolifera-

tive and quiescent cells. During proliferation, mutant libraries tend to

share similar fitness profiles regardless of the nutritional condition

(Fig 1E, lower left). By contrast, in quiescent cells, different mutant

libraries starved for the same nutrient tend to have more similar

survival profiles than the same library starved for different nutrients

(Fig 1E, upper right). Consistent with the fitness estimates over the

entire growth cycle, libraries starved for carbon have negative correla-

tion with the libraries starved for nitrogen and phosphorus (Fig 1E and

Appendix FigS2).

Distinct cellular functions are required for quiescence in
response to different nutrient starvation signals

Previous genome-wide genetic analyses of quiescence quantified the

survival of each mutant in the absence of specific essential nutrients

but did not assess the effect of each gene deletion on cellular prolif-

eration prior to starvation (Klosinska et al, 2011). To test whether

the genetic requirements for proliferation in nutrient-restricted

media and quiescence in response to starvation for the same nutri-

ent are distinct, we investigated the fitness and survival of each

genotype in the single mutant library (i.e., the HO library). We find

that fitness in proliferation and survival in quiescence are poorly

correlated for all three nutrient-restricted media: Pearson

r = �0.033 in carbon-restricted condition, 0.052 in nitrogen-

restricted conditions, and 0.064 in phosphorus-restricted conditions

(Fig EV2A and Dataset EV2). The fitness of the single gene deletion

mutants (Materials and Methods) is distributed around 0 in each of

the three proliferative conditions (Fig 2A), and the majority of

mutants do not show significant fitness defects compared to wild-

type cells (Figs 2A and EV2B). By contrast, we find that many

mutants show a survival defect in quiescent cells when starved for

specific nutrients (Fig EV2B), resulting in increased variance in the

distributions of survival compared to the distributions of fitness

(Fig 2A). Many of the genes that are dispensable for proliferative

growth in each of the three media conditions are required for quies-

cence. For example, deletion of genes involved in the cAMP-PKA

signaling pathways, GPB1/2, RGT2, and GPR1, results in a profound

survival defect in response to carbon starvation, but deletion of

these genes does not lower the fitness of carbon-restricted proliferat-

ing cells and instead appear to result in a fitness increase, suggestive

of a trade-off (Fig 2A, left panel). This observation is consistent with

the fact that mutations in cAMP-PKA pathway have increased fit-

ness in experimental evolution performed in carbon-limiting condi-

tions (Venkataram et al, 2016). Similarly, the autophagy genes

ATG4, ATG5, ATG7, and ATG12 have poor survival when starved

for nitrogen, but do not have a fitness defect during proliferation in

nitrogen-restricted media (Fig 2A, mid-panel). In response to phos-

phorus starvation, genes involved in response to pH have poor

survival, but those same mutants show fitness increase in phospho-

rus-restricted proliferating cells (Fig 2A, right panel). Thus, the

genetic requirements for growth in a specific nutrient-restricted

◀ Figure 1. Fitness and survival rate estimation over the entire growth cycle using pooled mutant libraries and Bar-seq.

A Experimental design for multiplexed mutant survival assay using Bar-seq. The synthetic genetic array (SGA) method was used to construct four genome-wide double
mutant prototrophic libraries (Fig EV1A). The yeast deletion collection (xxxnD::natMX) was mated with query strains deleted for one of three genes that encode
regulatory kinases important in quiescence: TOR1 (tor1D::kanMX), RIM15 (rim15D::kanMX), and PHO85 (pho85D::kanMX). A control library was made by mating the
deletion collection to a neutral gene deletion of HO (hoD::kanMX). To maintain library complexity, 1.5 × 108 cells from each library were used to inoculate (t = 0)
cultures restricted for glucose (-C, 26.64 mM), ammonium sulfate (-N, 0.8 mM), and potassium phosphate (-P, 0.04 mM) in 300-ml cultures. The starvation period for
-N and -P conditions commenced after 24 h and after 48 h for -C condition (Fig EV1C). At different time points, we removed a ~1 × 106 cell sample from the culture
and expanded the viable subpopulation using outgrowth in supplemented minimal media (Table EV2). DNA was isolated from the resulting outgrowth culture, and
the library composition was analyzed using Bar-seq.

B Hierarchical clustering of mutant fitness profiles computed for each replicate separately across the entire culturing period. White indicates that the strain has not
changed in fitness compared to wild type, blue represents increased fitness, and red represents decreased fitness. Culture conditions are indicated by color (orange:
carbon-restricted; green: nitrogen-restricted; and purple: phosphorus-restricted). Three kinase mutant libraries (TOR1, RIM15, and PHO85) and one control library (HO)
are shown.

C Representative gene (ATG3) for relative fitness estimation across the entire culturing period. The abundance of the atg3D0 hoD0 strain was determined at multiple
time points on the basis of counts of its unique DNA barcode, and fitness was determined using linear regression. Linear models (predicted value � 95% CI) fit to the
data are shown on the left, colored by condition. The coefficient (slope) of each model is shown in the dot plot on the right, with a 95% confidence interval indicated
as an error bar (-C: n = 17, -N: n = 9, and -P: n = 17).

D Cells exist in two distinct states depending on nutrient availability. An example of fitness determined during proliferation, and survival determined during quiescence,
in the three different nutrient-restricted conditions is shown for atg3D0 hoD0.

E Relationship of fitness profiles and survival profiles between mutant libraries. Heatmap of correlation coefficients between fitness profiles (lower left) and between
survival profiles (upper right) for four different mutant libraries (HO, TOR1, RIM15, and PHO85) in three nutrient-restricted conditions (carbon—C, nitrogen—N, and
phosphorus—P) and two cellular states (Pro and Qui). The dots on the diagonal (solid box) indicate the correlation between fitness and survival profiles for the same
mutant library under the same nutrient restricted condition. Both the color and size of each dot reflect the pearson correlation.
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media and quiescence in response to starvation for that nutrient are

distinct.

To further investigate the functional relationship between prolif-

erating and quiescent cells, we applied Gene Set Enrichment Analy-

sis (GSEA) (Subramanian et al, 2005; Yu et al, 2012) to the fitness

and survival profiles of the single mutant library in each nutrient-

restricted condition. We find no functional overlap between dif-

ferent cellular states under the same nutrient-restricted condition

(Fig EV2C). For example, deletion of genes involved in protein

deacetylase activity shows no significant impact on survival in

quiescent cells, but results in reduced fitness during proliferation in

nitrogen-restricted conditions (Fig EV2C).

Genes may be required specifically for proliferation, specifically

for quiescence, or necessary for both. To identify gene functions

that have a critical role uniquely in quiescence, we performed GSEA

using gene lists ranked by the phenotypic difference between

survival in quiescent conditions and fitness in proliferative condi-

tions (SQui - FPro) (Materials and Methods and Dataset EV3). We
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Figure 2. Distinct functional requirements for quiescence in response to different starvation signals.

A Violin plots of the distribution of fitness and survival for all mutants during proliferation and quiescence in response to different nutrient restrictions. The indicated
genes are examples of genes that are dispensable for proliferative growth (increased fitness or no significant fitness defects) in each of the three conditions but
required for quiescence (decreased survival).

B Enriched GO terms identified using Gene Set Enrichment Analysis (GSEA). GSEA was applied to a ranked gene list based on the difference in survival during starvation
and fitness during proliferation (SQui - FPro) estimated using ANCOVA. The false discovery rate (FDR) was set at 0.05. Positive enrichment scores (red) indicate functions
that have increased survival when starved (SQui - FPro > 0). Negative enrichment scores (blue) indicate functions that when impaired result in decreased survival (SQui
- FPro < 0) during nutrient starvation. Set size indicates the gene number in each enriched term.

C Genes that are required for quiescence but dispensable for proliferation. We found 8 genes that are commonly required for survival of all three nutrient starvations
(Fig EV2D); however, the overlap between conditions is not significant (Fisher’s exact test, P > 0.05).
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identified significantly enriched GO terms (Padj < 0.05) and found

that functions involved in responding to the specific starvation

signal are required for survival. For example, trehalose accumula-

tion provides a reserve of fermentable sugar to reinitiate the cell

cycle and provides protection against stress in quiescence (Gray

et al, 2004; Shi et al, 2010; Klosinska et al, 2011). Therefore, we

expect to see mutants defective in trehalose storage should fail to

survive when starved for carbon. Indeed, this is the case, but the

impairment of this function does not impact survival when starved

for nitrogen or phosphorus (Fig 2B and Table EV4). Autophagy has

previously been found to affect survival during phosphorus starva-

tion (Gresham et al, 2011), which we recapitulate in our assay

(Fig 2B). Similarly, we find that genes required for survival of nitro-

gen starvation are uniquely enriched for selective autophagy of

nucleus-related amino acid trafficking and recycling (Fig 2B) consis-

tent with protein degradation involving autophagy playing a major

role in response to nitrogen starvation (Tesnière et al, 2015). Some

functional groups show similar requirements in response to both

nitrogen and phosphorus starvations, such as autophagy and

protein localization by the cytoplasm-to-vacuole targeting (CVT)

pathway. By contrast, response to carbon starvation requires an

entirely unique set of gene functions. Thus, the biological pathways

and functions that are specifically required for cellular quiescence

differ depending on the nutrient starvation signal.

No evidence for common quiescence-specific genes

We sought to determine whether a common set of genes are

required for quiescence in all starvation conditions. We identified a

comparable number of quiescent-specific (hereafter: QS) genes

detected in carbon (713) and phosphorus (765) restriction media. In

nitrogen-restricted media, we identified about 2 times fewer QS

genes: 358 (Fig 2C and Table EV5). To define a common set of QS

genes, we applied three independent filtering criteria. We identified

mutants (i) that are dispensable for proliferation in all three nutri-

ent-restricted conditions (FPro ≥ 0, Padj < 0.05), (ii) that show signif-

icant defects in quiescence in all three conditions (Squi < 0,

Padj < 0.05), and (iii) for which there is a significant negative dif-

ference between fitness and survival in all three conditions (Squi -

FPro < 0, Padj < 0.05) (Materials and Methods). Using these criteria,

we found 8 genes that are commonly required for quiescence

regardless of the type of nutrient starvation (Figs 2C and EV2D).

However, this does not differ from what would be expected by

chance (Fisher’s exact test, P > 0.05). Thus, we find no evidence for

the existence of a common set of QS genes that are required for

establishing quiescence in response to carbon, nitrogen, and phos-

phorus starvations.

Detection of genetic interactions using pooled assays

We aimed to identify the set of genetic interactions between all non-

essential genes and the three query kinase genes in three different

nutritional conditions (carbon-, nitrogen-, and phosphorus-restricted

media) and two different cellular states (proliferation and quies-

cence). As there have been limited studies using pooled fitness

assays and time course data for quantifying genetic interactions, we

considered two possible approaches to do data analysis. First, we

used analysis of covariance (ANCOVA) to compute the genetic

interaction score (GIS) defined as the fitness (in proliferation) or

survival (in quiescence) difference between the double mutant

(queryD::kanMX xxxnD::natMX) and single mutant (hoD::kanMX

xxxnD::natMX) (Materials and Methods). In this case, the two dif-

ferent genotypes (single and double mutant) are treated as indepen-

dent categorical variables in the model, scaled time is the covariate,

and the normalized frequency at different time points is the depen-

dent variable.

In a second approach, the GIS was calculated using the approach

employed in previous genome-wide SGA studies, which defines a

null model based on a multiplicative hypothesis and defines a

genetic interaction as a significant difference (e) between the

observed and expected double mutant fitness: e = fab–fa�fb (Cost-

anzo et al, 2010). We computed the expected fitness for each double

mutant by first computing the two single mutant fitness from the

single deletion library (HO) and then computing e by determining

the difference between the expected and measured fitness of double

mutants (Materials and Methods). A limitation of this approach is

that both single gene deletion mutants must be well measured,

whereas the ANCOVA approach does not require quantifying the

query mutant in the single mutant library and therefore only

requires the measurement of one single mutant phenotype.

We find that the agreement between the two approaches is high

(Pearson r > 0.9) when applied to both fitness in proliferative cells

and survival in quiescent cells. The genetic interaction profiles

calculated by ANCOVA or the multiplicative model for both TOR1

and RIM15 (Fig EV3A and B) are highly correlated across all nutri-

ent-restricted conditions (Dataset EV4). As the PHO85 deletion allele

was not identified in the single mutant library (possibly due to an

erroneous barcode), we could not perform this comparison for

PHO85 genetic interactions. To further compare the two approaches,

we applied GSEA to genetic interaction profiles calculated using

each model and compared the similarity of generated GO terms

using GoSemSim (Yu et al, 2010). The significant GO terms for a

given condition identified using the different models are very similar

(Table EV6), indicating that ANCOVA identifies the same genetic

interactions and functional groups as the classic multiplicative

model. An analysis of estimated effect sizes and standard error indi-

cates that there are no systematic biases in applying the ANCOVA

model (Appendix Fig S3). As ANCOVA has a well-developed statisti-

cal framework for error estimation and significance testing, we

elected to use ANCOVA to compute GIS for all subsequent analyses.

Using this approach we find that gene deletions with larger pheno-

typic effects (either fitness or survival) tend to have strong interac-

tions (Appendix Fig S4) as has been previously observed (Costanzo

et al, 2016).

Genetic interactions are condition-dependent and common
in quiescence

To date, genome-wide genetic interaction mapping in yeast has

primarily been performed in a single condition (rich media) and

assayed using a single phenotypic readout—colony size. To investi-

gate the utility of using additional phenotypes in genetic interaction

mapping, we compared both fitness estimates and genetic interac-

tions identified in our study (Dataset EV5) with the global reference

set (Costanzo et al, 2016). As our conditions (nutrient limitation

and nutrient starvation) differ substantially from those used in the
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global reference set the genetic requirements are likely to be

distinct. Indeed, we find no significant correlation between fitness

measurements in all conditions (three proliferative and three quies-

cent conditions) assayed in our study and those of (Costanzo et al,

2016) (Appendix Fig S5), supporting the notion that fitness effects

are highly conditionally dependent. Similarly, no significant correla-

tion was detected between the genetic interaction profiles quantified

in both studies (Appendix Fig S6). To test whether this reflects dif-

ferent sources of noise in two assays, we considered only those

significant genetic interactions that were identified in both Costanzo

et al (2016) and our study. However, we find that there is poor

agreement, even for genetic interactions identified in our carbon-

restricted proliferative conditions, which is the most analogous

condition to rich undefined media (Appendix Fig S6).

We find that genetic interactions between genes are also

frequently condition-dependent and differ as a function of both

cellular state and environmental conditions. For example, in quies-

cent cells, the autophagy gene ATG7 positively interacts with TOR1

in carbon starvation, but negatively interacts with TOR1 in phospho-

rus starvation (Fig 3A and B). ATG7 interacts negatively with

PHO85 and RIM15 in phosphorus starvation, but these interactions

are not found in carbon or nitrogen starvation conditions (Fig 3A

and B). This example is illustrative of the conditional dependence of

genetic interactions, which we find is the case for the vast majority

of genotypes (data and model fitting for all genetic interactions can

be explored in the associated web application, http://shiny.bio.

nyu.edu/ss6025/shiny_Genetic_Interaction/).

We find a weaker correlation between phenotypes of single and

double mutants in quiescent cells compared with proliferative cells

(Figs 3C and EV3C). More genetic interactions are detected in quies-

cent cells compared to proliferative cells regardless of the starvation

signal (Fig 3D). For example, at an FDR of 5%, 55 genes (~1.4% of

mutant pairs tested) show significant interactions with TOR1 in

proliferative cells growing in carbon-restricted media (Fig EV3D).

The fraction of genes that significantly interact with TOR1 is similar

to the proportion of significant interactions in Costanzo et al (2016).

By contrast, we identified 228 negative and 381 positive (15% or

~10 times more) genetic interactions with TOR1 in carbon-starved

quiescent cells (Fig EV3D). This trend is observed for all three

kinases (TOR1, RIM15, and PHO85) in all starvation conditions

(Fig EV3D). We detected both positive and negative interactions for

each of the three kinases and an increase in total interactions for a

given kinase as more conditions are assayed (Figs 3D and EV3E),

indicating that each additional assay reveals unique genetic interac-

tions. We did not detect a bias in the number of positive or negative

interactions in either cellular state.

Genetic interaction profiles of kinases differ between
cellular states

Genes that are functionally related tend to share a common set of

genetic interactions that define a genetic interaction profile (Cost-

anzo et al, 2010, 2016). As the activity of regulatory kinases

depends on environmental signals, the functional consequences of

deleting kinases are likely to be conditionally dependent, which

may result in condition-dependent genetic interaction profiles. To

identify the primary determinant of genetic interaction profiles in

our study, we quantified the similarity between all pairs of genetic

interaction profiles for each kinase in each condition and cellular

state. Clustering of genetic interaction profiles reveals a clear

distinction between proliferative and quiescent cells (Fig EV4A).

In quiescent cells, genetic interaction profiles of the different

kinases cluster as a function of the starvation signal (Fig EV4A). By

contrast, in proliferative conditions TOR1, RIM15, and PHO85

genetic interaction profiles do not exclusively cluster by nutritional

condition (Fig EV4A). These results indicate that genetic interaction

profiles differ as a function of cellular state and that the impact of

the environmental conditions on genetic interactions is variable.

To visualize the correlation between genetic interaction profiles

for each kinase in each condition, we constructed correlation

networks for both proliferative and quiescent cells (Fig 4 and

Table EV7). These correlation networks emphasize the importance

of cellular state in determining the similarity of genetic interaction

profiles as the genetic interaction profile similarity network is drasti-

cally remodeled in quiescence compared to proliferation (Fig 4). For

example, a negative correlation is detected between TOR1 and

PHO85 genetic interaction profiles in proliferative cells growing in

carbon-restricted condition, but their genetic interaction profiles are

positively correlated in carbon-starved quiescent cells (Figs 4 and

EV4B). For cells in the same physiological state, the environmental

conditions can also alter the relationship between the same pair of

kinases. For example, RIM15 and PHO85 genetic interaction profiles

are highly correlated during growth in carbon-restricted media, but

this similarity is greatly reduced during proliferation in phosphorus-

restricted conditions (Figs 4 and EV4C). These results suggest that

environmental conditions alter the regulatory relationships among

signaling pathways both in quiescent and in proliferative cells.

Genetic interaction profiles are functionally coherent

To functionally annotate genetic interaction profiles for each kinase

in each condition, we used spatial analysis of functional enrichment

(SAFE) (Baryshnikova, 2016). We used SAFE to map quantitative

attributes onto the reference network, defined by the correlation

network of genome-wide genetic interaction profiles of 3,971 essen-

tial and non-essential genes (Costanzo et al, 2016), and tested for

functional enrichment within densely connected regions, which

define domains. Each of the 17 domains within this map comprises

genes that share similar genetic interaction profiles and functional

annotations (Fig EV5A). Importantly, SAFE uses the entire set of

genetic interactions for a given query gene (Dataset EV6), including

those interactions that do not reach statistical significance, which

allows identification of coherent trends that may exist despite a lack

of significance associated with each individual genetic interaction.

This analysis tests specifically for coherence in attributes such that

strong positive and negative genetic interaction scores that are

randomly distributed throughout the network will produce no

enrichment, whereas weak scores that tend to cluster as either posi-

tives or negatives within domains will have significant enrichment.

We superimposed genetic interaction profiles of each kinase in each

of the three nutrient-restricted media and both cellular states onto

the reference network using SAFE. We find that kinases that show

higher similarity in genetic interaction profiles (Fig 4) also show

more similar enrichment patterns using SAFE analysis (Fig 5). In

general, genetic interactions in proliferative conditions tend to show

increased enrichment when superimposed on this reference map
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indicating greater similarity among positive or negative interactions

within each domain despite the relative paucity of significant inter-

actions (Appendix Fig S7). This difference may reflect the fact that

genetic interactions in quiescent cells reflect novel regulatory rela-

tionships compared with those identified using fitness measure-

ments in rich media that were used to construct the reference map.

The functional annotation of genetic interactions for each kinase

differs as a function of the cellular state. For example, functional

domains related to respiration, oxidative phosphorylation, mito-

chondrial targeting, transcription, and chromatin organization are

enriched for negative genetic interactions with TOR1 and PHO85 in

carbon-restricted proliferative cells (Fig 5), but we find no evidence

for enrichment of these functions in quiescent cells starved for

carbon (Fig 5). Similarly, in nitrogen-restricted conditions, TOR1,

RIM15, and PHO85 share similar coherent functional interactions in

proliferative cells, which are not observed in quiescent cells starved

for nitrogen.

In addition, the functional enrichment of genetic interactions for

each kinase differs between the three different nutrient-restricted

conditions. For example, ribosome biogenesis genes are enriched

for negative interactions with TOR1 in nitrogen-restricted prolifera-

tive cells (Fig 5), but in phosphorus-restricted proliferative cells,
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Figure 3. Identification of condition-specific genetic interactions using pooled double mutant analysis.

A Genetic interactions for each gene were determined for three different query genes (TOR1, RIM15, and PHO85) in three different conditions (-C, -N, and -P) and two
different cellular states: quiescence (shown) and proliferation (not shown) using pooled mutant time series analysis.

B Survival rate for each genotype indicated in A) and 95% confidence intervals. The false discovery rate (FDR) as set at 5% (10 < n < 17, ***Padj < 0.05).
C Relationship between single mutant phenotype (xxxnD::natMX) and the corresponding phenotype of the mutant in the background of a RIM15 deletion (rim15D::

KanMX xxxnD::natMX) in two different cellular states (Pro—proliferation and Qui—quiescence). The dashed line is the line of equality. Blue dots are genes that show a
significant negative interaction with RIM15, and yellow dots depict significant positive interactions.

D At a false discovery rate (FDR) of 5%, different numbers of significant genetic interactions are detected for three regulatory kinases in the three nutrient restrictions
and two cellular states. Solid lines with circles indicate the cumulative total number of unique negative interactions, and dashed lines with triangles indicate the
cumulative total number of unique positive interactions.
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ribosome biogenesis genes positively interact with TOR1

(Fig EV5B). We find multiple additional cases of enrichment within

functional domains, in which the sign of the genetic interactions is

opposite between nitrogen and phosphorus restrictions in TOR1

(Figs 5 and EV5B), suggesting that TOR1 may play different regula-

tory roles in responding to nitrogen and phosphorus restriction.

We also found cases of functional enrichment that are main-

tained in the two different cellular states. For example, genes

involved in peroxisome functions are enriched for negative interac-

tions with PHO85 in carbon-restricted proliferative cells and carbon-

starved quiescent cells (Fig 5). This is consistent with the known

role of PHO85 in regulating long-chain-based kinase during station-

ary phase (Iwaki et al, 2005), suggesting that PHO85 may play a role

in maintaining long-chain fatty acid recycling and provide energy

for cells in calorie-restricted conditions.

Common and specific genetic interactions with RIM15 support its
role as a central mediator of quiescence

RIM15 has previously been identified as an integrator of quiescence

signals that is downstream of TOR1, PHO85, and PKA (Pedruzzi

et al, 2003; Wanke et al, 2005; Olivares-Marin et al, 2018). There-

fore, we expect that the genetic interaction profiles for RIM15 should

show more functional coherence in response to different quiescence

signals compared to TOR1 and PHO85, which are upstream of

RIM15. Using SAFE analysis, we find that RIM15 consistently inter-

acts with genes functioning in multivesicular body (MVB) sorting

and pH-dependent signaling under all starvation conditions in both

cell types (Fig 5). This suggests that RIM15 plays an essential role in

regulating protein homeostasis via MVB sorting. As the reference

genetic interaction map used for SAFE does not include all genes in

our genetic interaction dataset (only ~2,900 non-essential genes are

present in the reference) and tests for coherence among both statisti-

cally significant and non-significant interactions, we performed

overrepresentation analysis on the sets of genes that significantly

interact with each kinase (Materials and Methods). Due to the

limited number of significant interactions detected in proliferative

cells (Figs 3D and EV3D), we did not find any enriched GO terms

for kinases in proliferative cells. However, we identified multiple

significantly enriched functional categories in quiescent cells. As

with SAFE analysis, the functional enrichment of the significant

interacting genes for a given kinase depends on the starvation signal

(Figs 6A and EV6A).

Consistent with its role, RIM15 genetic interactions in quiescent

cells show more common functional enrichments in response to dif-

ferent starvation signals in comparison with TOR1 and PHO85.

Three functional groups are shared among genes interacting with

RIM15 in response to carbon/nitrogen or nitrogen/phosphorus
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Figure 4. Genetic interaction profile similarities are condition-dependent.

Correlation networks based on genetic interaction profiles for TOR1, RIM15, and PHO85 in proliferating cells (left) and quiescent cells (right) in three different nutrient-
restricted media: carbon (-C), nitrogen (-N), and phosphorus (-P). Hexagons are color-coded based on the restricted nutrient type (orange for -C, green for -N, and purple for
-P). Kinases with positive Pearson correlation are connected with pink edges, and kinases with negative Pearson correlation scores are connected with blue edges. The
thickness of the edge indicates the strength of the correlation (i.e., a larger absolute correlation is represented by thicker edge).

10 of 18 Molecular Systems Biology 16: e9167 | 2020 ª 2020 The Authors

Molecular Systems Biology Siyu Sun et al



starvations (Fig 6A, lower panel), whereas there is limited or no

functional overlap detected for TOR1 or PHO85 genetic interaction

profiles under the same conditions (Fig EV6A and Table EV8).

This is consistent with a model in which RIM15 regulates quies-

cence through integration of diverse signals and execution of simi-

lar regulatory interactions. In quiescent cells, RIM15 shows

consistent genetic interactions with genes involved in vacuolar

functions regardless of the starvation signals perhaps reflecting a

role for RIM15 in regulating autophagy and protein recycling in

response to different starvations.

Interestingly, we find that genes that function in the endoplasmic

reticulum-associated protein degradation, luminal domain moni-

tored (ERAD-L) pathway show coherent positive interactions with

RIM15 specifically in nitrogen-starved quiescent cells (Fig 6A). This

includes each of the genes that is known to function in ERAD-L:

USA1, YOS9, DFM1, HRD1, HRD3, CUE1, and DER1 (Figs 6B and

EV6B). ERAD-L genes present in the genetic interaction reference

data used for SAFE analysis; HRD1, HRD3, CUE1, and USA1 are

found in the domain enriched for ubiquitin-dependent protein cata-

bolic process (Fig EV6C, red arrow). These results point to a

Figure 5. Functional mapping of kinase genetic interaction profiles in proliferating and quiescent cells using SAFE.

Genetic interaction enrichment landscape of TOR1, RIM15, and PHO85 in proliferating and quiescent cells under different nutrient restrictions: carbon (-C) and nitrogen (-N).
Each dot represents one gene. Blue dots represent genes that have negative interactions with corresponding kinase (row-wise) in each condition (column-wise), and yellow
dots represent genes with positive interactions.
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previously unknown specific function for RIM15 in proteostasis

regulation in response to nitrogen starvation via the ERAD-L

pathway.

Discussion

Cellular quiescence is the predominant state of eukaryotic cells. To

study the genetic requirements of cellular quiescence in yeast cells,

we quantified the effect of each gene deletion in response to three

distinct nutrient starvation signals (carbon, nitrogen, and phospho-

rus). To study how these signals are coordinated within quiescent

cells, we quantified genetic interactions with three regulatory

kinases in each of the three starvation conditions. To undertake this

study, we quantified phenotypic differences in different cellular

states (proliferation versus quiescence) and genotypes (single versus

double mutational background) using multiplexed barcoded

analysis to track thousands of different genotypes using time course

analysis. By testing the contribution of ~4,000 yeast non-essential

genes to fitness in proliferating cells and survival in quiescent cells

in three different nutrient-restricted conditions, we find no evidence

for genes that are commonly required for quiescence. We extended

our method for multiplexed analysis of genotypes to study ~14,400

double mutants encompassing three core kinase genes: TOR1,

RIM15, and PHO85, which allowed us to test for genome-wide

genetic interactions with regulatory kinases that mediate

quiescence.

The functional requirements for maintaining and exiting quies-

cence differ depending on starvation signals. Time course analysis

of fitness during proliferation and survival during starvation

supports previous findings that yeast cells have distinct functional

requirements for maintaining viability of quiescent cells in response

to different nutritional starvations (Klosinska et al, 2011). In addi-

tion, our results show that a substantial fraction of the non-essential
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Figure 6. RIM15 genetic interaction profiles indicate its role as an integrator of quiescent signals with nutrient-specific functions.

A GO term enrichment analysis for genes that positively interact with RIM15 in all nutrient starvation conditions. Only significantly enriched GO terms are shown
(Padj < 0.05).

B GO term enrichment analysis for genes that negatively interact with RIM15 in all nutrient starvation conditions. Only significantly enriched GO terms are shown
(Padj < 0.05).

C Genetic interaction profile of the genes encoding the ERAD-L complex. ERAD-L genes show a unique cohesive set of positive genetic interactions with RIM15 in
nitrogen starvation-induced quiescent cells. Each column is the genetic interaction score between an ERAD-L gene and each of the kinase genes in each nutrient-
restricted condition.
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yeast genome is required for survival during quiescence indepen-

dent of their requirements for growth. For example, in carbon-

restricted conditions, deletion of 713 (~15%) of the non-essential

genes results in a significant defect in quiescence (Fig 2C). Clearly,

the definition of an “essential gene” is dependent on the condition

in which essentiality is assessed.

Across all starvation conditions, we found that only 8 genes are

commonly required for quiescence, a result that is not significantly

different from chance (Fig EV2D). The absence of a common set of

genetic requirements for quiescence in response to different natural

nutrient starvation signals is consistent with earlier work (Klosinska

et al, 2011). Although there appears to be no common set of genetic

requirements for quiescence, different nutrient starvations do share

some genetic requirements. Nitrogen- and phosphorus-starved

quiescent cells tend to have more overlapping features than carbon

starvation-induced quiescence: 81 genes are required for maintain-

ing quiescence in response to both nitrogen and phosphorus starva-

tion, whereas only 57 genes are commonly required for quiescence

in nitrogen and carbon starvation (Fig 2C). Results from functional

enrichment analysis are consistent with the trend of greater overlap

in genetic requirements in nitrogen and phosphorus starvation. For

example, genes involved in protein localization by CVT pathway are

required in response to nitrogen or phosphorus starvation. The

patterns of functional overlap in genetic requirements for

responding to nitrogen, phosphorus, and carbon starvation may

reflect their different primary biological uses: carbon is the major

energy source, whereas both nitrogen and phosphorus are primarily

utilized for macromolecular synthesis (Wilson & Roach, 2002;

Broach, 2012; de Virgilio, 2012; Alberts et al, 2013).

To date, genome-wide genetic interaction mapping in yeast has

primarily been assayed using a single phenotype in a single condi-

tion—colony growth in rich media. Our genome-wide genetic inter-

action mapping in different conditions and cellular states indicates

that: (i) genetic interactions with regulatory kinases vary between

conditions; (ii) genome-wide genetic interaction mapping is extensi-

ble to additional phenotypes and analyzing condition-specific

phenotypes may increase the sensitivity for identifying novel regula-

tory relationships; (iii) less favorable conditions result in an

increased number of significant interactions; and (iv) for a given

physiological state (e.g., proliferation or quiescence), increasing the

number of environmental conditions results in an increase in the

number of significant genetic interactions. The points are consistent

with, and extend, the limited number of studies that have investi-

gated genetic interactions in different growth and stress conditions

(St Onge et al, 2007; Gutin et al, 2015; Martin et al, 2015). Despite

the fact that our genetic interaction dataset is limited in its scale and

is focused on regulatory kinase genes, we anticipate that our

methodology can be broadly applied to define genetic interactions in

different conditions and cellular states.

Endoplasmic reticulum-associated protein degradation (ERAD) is

a quality control mechanism that ensures only properly folded

proteins leave the ER. Autophagy has been proposed to be a backup

mechanism for ERAD. Previous studies have shown that RIM15

plays a role in regulating autophagy and protein homeostasis (Wali-

ullah et al, 2017; Huang et al, 2018). In our study, we find that

genes that function in ERAD show coherent positive interactions

with RIM15 in nitrogen starvation conditions, suggesting that RIM15

regulation of ERAD activity in response to nitrogen starvation is

essential for quiescence. It is possible that RIM15 functions to regu-

late clearance of stress-induced misfolded proteins during nitrogen

starvation by mediating the balance between autophagy and ERAD.

Our study has important implications for our understanding of the

genotype to phenotype map. The prevailing result from our study is

that the effect of a given gene deletion on a phenotype (either fitness

or survival) is highly dependent on the specific environmental condi-

tions of the cell. Although nitrogen, carbon, and phosphorus starva-

tions all lead to cell cycle arrest and the initiation of quiescence, the

genetic requirements for this behavior are distinct. We find that the

conditional dependence extends to genetic interactions as we detect

different sets of genetic interactions in different growth and starvation

conditions. These results are consistent with our previous study of

natural genetic variation in which we found that the effect sizes of

QTL underlying fitness differences, and genetic interactions between

QTL, are acutely sensitive to the composition of the growth media

(Ziv et al, 2017). Identifying quantitative genetic effects and interac-

tions that are insensitive to environmental variation appears chal-

lenging and may, in fact, be extremely rare.

It has been argued that starvation for glucose is the relevant

condition for studying quiescence (Sagot & Laporte, 2019), and

indeed, the vast majority of quiescence studies are performed in

conditions in which carbon starvation is the pro-quiescence signal

(Laporte et al, 2011, 2018). However, it has been appreciated for

many decades that yeast cells can initiate a quiescent state in

response to different starvation signals (Lillie & Pringle, 1980;

Klosinska et al, 2011). Our study reiterates the importance of study-

ing quiescence in response to different nutrient starvation condi-

tions. Many important biological processes are likely to be missed—

autophagy being a preeminent example—if carbon starvation is the

only condition studied (Kawamata et al 2017). Organisms in the

natural world experience a range of nutrient limitations, and nitro-

gen and phosphorus appear to be the predominant limiting nutrients

in most ecologies (Elser et al, 2007). Thus, a complete understand-

ing of cellular quiescence requires the study of different nutrient

starvation signals.

The study of cellular quiescence may inform our understanding

of cellular aging and provide insight into the therapeutic challenge

of dormant cancer cells. Our study supports previous findings that

quiescence establishment follows distinct routes depending on the

nature of the inducing signal (Coller et al, 2006; Klosinska et al,

2011). In addition, different “degrees” of quiescence may exist

(Coller et al, 2006; Gookin et al, 2017; Laporte et al, 2018) as we

find that cells maintained longer in quiescence need more time to

return to growth. Thus, quiescence may be viewed as a continuum

that ultimately leads to senescence (even if that may take thousands

of years) unless conditions favorable for proliferation are met.

Overall, our data highlight the fact that quiescence does not

imply uniformity (O’Farrell, 2011). The idea that quiescence estab-

lishment is the result of a universal program is clearly an oversim-

plification. Our study points to a rich spectrum of condition-specific

genetic interactions that underlie cellular fitness and survival across

a diversity of conditions and introduces a generalizable framework

for extending genome-wide genetic interaction mapping to diverse

conditions and phenotypes. Deciphering the underlying regulatory

rationale and the hierarchical relationships between these signaling

pathways in different conditions is critical for understanding cellular

quiescence.
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Materials and Methods

Reagents and Tools table

Reagent/Resource
Reference or
source

Identifier or
catalog
number

Chemicals, enzymes,
and other reagents

SYBR Green Invitrogen Cat # S7563

LIVE/DEADTMFungaLightTM

Yeast Viability Kit, for
flow cytometry

Invitrogen Cat # L34952

Software

Cytoscape v3.7.1 http://www.cytoscape.org NA

metScape 3 Correlation
Calculator v1.0.1

http://metscape.ncibi.org/
calculator.html

NA

Revigo http://revigo.irb.hr/ NA

Other

Kits, instrumentation,
laboratory equipment

Illumina NextSeq 500 Illumina NA

PureLinkTM Pro 96
Genomic DNA Purification Kit

Invitrogen K182104A

Tecan Freedom Evo and
Infinite Microplate Reader

Tecan NA

Coulter counter Beckman Coulter NA

Flow cytometry BD Accuri
TM C6 NA

QIAquick PCR
purification columns

Qiagen 28104

Chemostats (Bioreactor) NA

Methods and Protocols

SGA library construction
The haploid prototrophic double deletion collections were

constructed using the synthetic genetic array method (Tong et al,

2001). The genotype and ploidy of double mutants are prototrophic

haploid (Fig EV1B). For the single deletion collection (array

mutants), gene deletion alleles are marked with the kanMX4

cassette conferring G418 resistance, which is flanked by two unique

molecular barcodes (the UPTAG and DNTAG). For double deletion

collection, an additional query allele is marked with NatR cassette

conferring nourseothricin resistance. To construct the RIM15 and

TOR1 SGA query strains, we mated a MATa xxxnD0::NATr strain

(transformed from FY4 with a NATr PCR product targeting the xxxn
allele) with the Y7092 strain. A haploid prototrophic strain was

identified following tetrad dissection and genotyping using selective

media with G418 and nourseothricin. To construct the HO, and

PHO85 SGA query strains, we transformed a prototrophic strain

containing the SGA marker with a NATr PCR product targeting the

xxx allele. Insertion of NATr was confirmed via PCR, and the geno-

type of the strain was checked via replica plating onto selective

media resulting in strains listed in Table EV1.

Growth conditions
After the growth of individual selected mutants on YPD agar plates,

all mutants were pooled to a final density around 1.7 × 109 cells/ml.

Each agar plate contained single colonies of individual genotypes

and replicated colonies of the control hoD strain. We inoculated

1.5 × 108 cells into 300 ml of nutrient-limited medium: for glucose

(C, 26.64 mM carbon), ammonia (N, 0.8 mM nitrogen), and phos-

phorus (P, 0.04 mM phosphorus) at 300 ml. To define the fitness of

~4,000 mutants we performed three-five independent experiments

for each mutant per nutrient-limiting conditions. In total, we studied

4 mutant collections × 3-5 biological replicates × 3 nutrient limiting

conditions in bioreactors maintained at 30�C and pH of 5. To deter-

mine the relative abundance of each genotype at different states

spanning both proliferative and quiescent stages, we collected five

time points in each stage (based on growth curve; Fig EV1C). The

duration of the experiment was 15–16 days, and populations were

sampled at 0, 9, 14, 18, 24, 32, 48, 96, 187, and 368 h for outgrowth

and barcode sequencing. To isolate viable cells from the culture, we

transferred 1 ml (i.e., 1 × 106 cells) from the pooled library at each

time point into 5-ml minimal cultures. This sample was grown for

24–48 h to a final density of 3 × 108 cells/ml. Cells were then

washed with water once, and then resuspended in 1 ml sorbitol

buffer for genomic DNA purification.

Viability quantification using propidium iodide and SYTO® 9
For viability quantification at each time point, 1 × 107 cells were

collected and subsequently washed once with sterilized DI water

and once with PBS. The washed cell pellet was resuspended with

1 ml 1× PBS and stained with 3.34 lM of SYTO� 9 and 20 lM of

propidium iodide for 20 min. The stained samples were analyzed by

flow cytometry (BD AccuriTM C6).

DNA extraction and library preparation for Bar-seq
Genomic DNA was isolated from 1 × 108 cells for each sample (3

nutrient-restricted × 3-5 biological replicates × 4 deletion collec-

tions × 10 times points) using Invitrogen PureLinkTM Pro 96 Genomic

DNA Purification Kit. We used a two-step PCR protocol for efficient

multiplexing of Bar-seq libraries (Robinson et al, 2014). Briefly,

UPTAGs and DNTAGs were amplified separately from the same

genomic DNA template. In the first PCR step, unique sample indices

are added to each sample. For each biological replicate, we used 120

unique sample indices that differed by at least two nucleotides to label

each sample from 3 nutrient-limiting conditions × 4 deletion collec-

tions × 10 time points. We normalized genomic DNA concentrations

to 10 ng/ml and used 100 ng template-amplified barcodes using the

following PCR program: 2 min at 98°C followed by 20 cycles of 10 s at

98°C, 10 s at 50°C, 10 s at 72°C, and a final extension step of 2 min at

72°C. PCR products were confirmed on 2% agarose gels, and the

concentration was quantified using a SYBR Green staining followed

by Tecan Freedom Evo and Infinite Microplate Reader. We combined

35 ng from each of the 120 different UPTAG libraries and, in a sepa-

rate tube, 35 ng from each of the 120 different DNTAG libraries for

each condition/deletion collection. The multiplexed UPTAG libraries

were then amplified using the primers P5 (05-A ATG ATA CGG CGA

CCA CCG AGA TCT ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA

TCT-30) and Illumina_UPkanMX, and the combined DNTAG libraries

were amplified using the P5 and Illumina_DNkanMX primers using

the identical PCR program as the first step with 75 ng template. The
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140-bp UPTAG and DNTAG libraries were purified using QIAquick

PCR purification columns, quantified using a Qubit fluorometer for

qPCR quantification, combined in equimolar amounts after qPCR,

and adjusted to a final concentration of 4 nM mixture of pooled

UPTAG and DNTAG. In total, each sequencing library contained 120

UPTAG and 120 DNTAG libraries from 120 different samples. The

library was sequenced on a single lane of an Illumina NextSeq 500

with High Output 1 × 75 bp read configuration. 20% PhiXwas spiked

into each library for increasing the complexity of two color base call-

ing on the Illumina NextSeq500 platform.

Data analysis, filtering, and normalization
Sequence reads were matched to the yeast deletion collection

barcodes using reannotation by Smith et al (2009). Inexact matching

was performed by identifying barcode sequences that were within a

Levenshtein distance of 2 from each read (Levenshtein 1966). Sample

indices were similarly matched using a maximum Levenshtein

distance of 1. The final matrix of counts matching the UPTAG and

DNTAG of each of the 480 samples is provided as Dataset EV7. 41

libraries with total read depth less than 1 × 105 reads were removed

from the 960 libraries. We merged the UPtag and DOWNtag counts

representing the same gene within each condition resulting in 439

libraries in total. A set of outliers was identified that had fewer than

3,000 total reads across all 439 samples. These low-count matches

(=< 4) were likely due to sequencing errors and were removed. 1,996

mutants were removed with a coverage < 3,000 or missing in either

tag counts. After filtering, a matrix containing 3,931 mutants consis-

tent with high-quality counts data across conditions was generated

corresponding to 857,016,574 sequence reads. This counts table was

normalized using the function varianceStabilizingTransformation in

the DESeq2 package (Love et al, 2014) (version 1.8.1) with argu-

ments blind = FALSE and fitType = “local”.

Fitness, survival, and phenotypic difference quantification
The normalized frequency of each mutant within each library was

used for linear regression modeling. For example, in the HO

library, the count of each mutant (ho::kanMX xxxn::natMX) is

normalized by the count of the wild-type control (hoD::kanMX

his3D1 can1D::STE2pr-Sp_his5) at each same time point. In the

other double mutant libraries, the counts for each double mutant

(query::kanMX xxxn::natMX) is normalized by the counts of the

query mutant (queryD::kanMX his3D1 can1D::STE2pr-Sp_his5)
(Dataset EV8). For each mutant strain N, fitness fn was calculated

as the coefficient of a linear regression model using R:

lm
� Fn

Fwt
�T

�
;

Fn is the count of strain N at each time point, and Fwt is the count

of the wildtype or query mutant strain at the same time point. T

refers to time points, which was measured in days for quantifying

the fitness in prolonged starvation. d is the error term.

To compare the phenotypic difference for a given mutant between

different cellular states, before linear regression modeling we scaled

the independent variable, time (hours) for each stage into the same

unit maintaining the natural interval using the scale() function in R

with center = FALSE. For example, the time point (independent vari-

able) in the proliferative stage was scaled from 0 h, 9 h, 14 h, 18 h,

and 24 h into 0, 0.5246676, 0.8161497, 1.0493353, and 1.3991137,

and the time point for sample collected during quiescence was scaled

from 32, 48, 96, 187, and 368 h into 0.1553874, 0.2330811,

0.4661622, 0.9031894, and 1.6995499. Then, we quantified the

phenotypic difference between fitness in proliferation and survival in

quiescence using ANCOVA:

lm
� Fn

Fwt
�T � GS�

where T is the scaled time, and GS is the Growth Stage (e.g., prolif-

eration or quiescence). The different growth stages in this function

is the interaction term, which was used to test for statistical signifi-

cance.

After quantifying the phenotypic difference between quies-

cence and proliferation for a given mutant, we ranked the

mutants by phenotypic difference in a descending order and then

applied Gene Set Enrichment Analysis (GSEA) using clusterPro-

filer (Yu et al, 2012).

To test whether the common genes required in response to dif-

ferent quiescent signals are statistically significant we used the

multiset intersection test algorithm in the R software package Super-

ExactTest (Wang et al, 2015).

Comparison of SGA genetic interaction quantification
with ANCOVA

SGA genetic interactions scoring method

We first computed genetic interactions using a method analogous

to estimation of epsilon (e) as defined in SGA screens. The SGA-

like score was quantified by testing the null hypothesis based on a

multiplicative model from single mutant fitness: ɛ = faq - fa * fq (a

—single array mutant; q—single query mutant, aq—double

mutant).

In our case, e is calculated as the difference between the coeffi-

cients of linear modeling:

where

faq is the coefficient generated by lm Faq

Fq �T
� �

;

fa is the coefficient generated by lm Fa

Fwt �T
� �

;

fq is the coefficient generated by lm Fq

Fwt �T
� �

;

faq, fa, and fq are normally distributed around 0 with positive

(better than WT) and negative (worse than WT) phenotypic read-

outs (fitness in proliferative cells and survival in quiescent cells).

To estimate the expected fitness/survival in double mutant based

on multiplicative model, we take the exp() of the coefficients for

each model to eliminate the discordance of the signs in fitness/

survival. Then, we calculated the expected fitness/survival using

multiplicative model:

f exp
aq ¼ exp ðfqÞ � exp ðfaÞ

Therefore,

e ¼ exp ðfaqÞ � f exp
aq

Sa and Sq are the standard errors of each linear model. The stan-

dard error in expected fitness/survival is calculated by propagating

standard error from each individual model:
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S2aþq ¼ S2a þ S2q

Then, the statistical significance between expected (multiplica-

tive model) and observed model was calculated by Welch’s t-test:

t ¼ faq � faþqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2aq
Naq

þ S2aþq

Naþq

s

where the degrees of freedom associated with this variance esti-

mate is approximated using the Welch–Satterthwaite equation:

t �

S2aq
Naq

þ S2aþq

Naþq

 !2

S4aq

N2
aq Naq � 1
� �þ S4aþq

N2
aþq Naþq � 1
� �

Genetic interaction quantification by using ANCOVA

All libraries were normalized by the common query deletion, which

has the effect of accounting for a global general effect on fitness/

survival that is attributable to the query allele. Therefore, the GIS can

be calculated by looking at the difference between normalized fit-

ness/survival without incorporating the single query mutant pheno-

type,

GIS ¼ faq � fa;

where

faq ¼ lm
�Faq

Fq
�T

�
& fa ¼ lm

� Fa

Fwt
�T

�
;

In this case, the genetic interaction is calculated directly by test-

ing whether the query mutation significantly changes the relation-

ship between time and relative fitness for a given mutant. We

applied ANCOVA using:

lm
�
Fnormed �T � GT�

where Fnormed is the query allele normalized frequency, e.g., Fa/Fwt,

Faq/Fq. T is the scaled time, and GT is the Genotype (e.g., HO,

RIM15). The significance of the interaction term was determined

using a t-test.

Functional annotation with clusterProfiler
Gene Set Enrichment Analysis (GSEA) was applied on the ranked

gene list based on phenotypic difference using clusterProfiler (Yu

et al, 2012). The GO overrepresentation test was applied to signifi-

cantly interacting genes and quiescent specific gene lists using clus-

terProfiler.

Network Construction using Cytoscape 3.7.1
The correlation among genetic interaction profiles was calculated by

metScape 3 Correlation Calculator v1.0.1 using the DSPC method

and then visualized in Cytoscape 3.7.1.

Spatial analysis of functional enrichment (SAFE)
For SAFE, we used all genes without filtering based on statistical

interaction significance (from ANCOVA). The visualization and

local enrichment annotation was performed according to (Barysh-

nikova, 2016).

Expanded View for this article is available online.
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