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ABSTRACT

Microbes live in dynamic environments that present ongoing challenges to

reproduction and survival. One class of environmental change common in the natural

world is periodic fluctuations such as seasonal changes in temperature, precipitation,

and nutrient availability. Unlike static conditions in which a selective pressure is

continuously experienced by the organism, periodically fluctuating conditions cycle

between different selective pressures resulting in complex evolutionary dynamics.

Whereas evolutionary dynamics in static environments have been extensively

characterized using experimental evolution, the empirical study of how fluctuating

environments impact the dynamics and outcomes of evolution remains largely

unexplored. In this thesis, I address the questions of how fluctuating environments

affect population diversity, fitness dynamics, and mutation supply using the budding

yeast Saccharomyces cerevisiae. In chapter 1, I review literature detailing how

fluctuating environments influence adaptive evolution in microbes. In chapter 2, I test

the effect of fluctuations in nutrient concentration with different periods using a synthetic

population comprising thousands of different genotypes to show that environmental

fluctuations result in the maintenance of increased genetic diversity in comparison to

static conditions. I demonstrate that this feature is driven by fluctuating conditions

enriching for genotypes with neutral fitness and a class of genotypes that follows a

sinusoidal growth dynamics. In static conditions, diversity is reduced as a result of

strong selective sweeps in which a few highly fit genotypes rapidly rise to high

frequency. In chapter 3, I used experimental evolution of clonal populations in which de
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novo mutation is the sole source of heritable variation, to study how environments that

fluctuate in nutritional quality affect the dynamics of copy number variants (CNVs). I

describe the identification of a subpopulation that acquires CNVs at multiple loci

uniquely in fluctuating environments. In chapter 4, I present the development of a new

lineage tracking molecular barcoding scheme that imposes a reduced genetic load on

cells compared with existing DNA lineage tracking systems. Together, these studies

underscore the importance of understanding how periodically fluctuating environments

determine evolutionary outcomes and the principles that govern these effects. The

implications of these findings are summarized and discussed in Chapter 5.
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Chapter 1: Introduction

1.1 Abstract

There is no environment that is truly static and as such microbes have adapted to

respond to fluctuations through a number of mechanisms that maximize their fitness.

Fluctuations are defined by several characteristics such as their predicitiblity, frequency,

and magnitude, that determine the strategy that is best suited as a response. Here, I

review the existing literature on fluctuating selection with a focus on microbial

populations and budding yeast and with the goal of identifying similarities and

differences between varieties of fluctuating selection in the context of evolution. I focus

on the effects of fluctuating environments on genetic diversity from the perspective of

experimental studies and the theoretical evolutionary framework.

1.2 Fluctuating selection is universal in the natural world

Fluctuating selection is of particular interest in the field of evolution as no

environment is truly static and therefore it is impossible to fully understand the

processes and outcomes of evolution without considering temporal changes in

selection. Because of the complexities posed by introducing changes across the

dimension of time, evolution studies have frequently focused on static environments.

The term fluctuating selection encompasses a wide variety of scenarios, which raises

the question of whether having an all encompassing term to describe these diverse

scenarios is useful and if constructing a unified framework is possible.
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Fluctuating selection in its broadest definition encompasses any changes in

either biotic or non-biotic factors that present selective pressures on organismal survival

and reproduction. Non-biotic factors include temperature, chemical concentrations (e.g.

salt), and pH, whereas biotic factors include population density, predation, and sexual

mate availability (Morand and Lajaunie 2018). Environmental variability can either be

spatial, such as in the case of chemical gradients that are frequently found in natural

environments such as soil sediments, or can be temporal, such as with tidal regions on

coastlines (Oliveira de Santana et al. 2021). Spatial heterogeneity frequently results in

niche specialization in populations, which effectively allows different genotypes to

consistently only experience one dimension of the environment (Levins 1968). Here, I

focus on the impacts of temporal fluctuations on microbial populations to understand

defining characteristics and their effects on the process of selection and outcomes of

evolution.

1.3 Characteristics of temporally fluctuating environments

1.3.1: Predictability: Foreseeing an upcoming environmental change is beneficial

during cellular decision-making in order to maximize individual fitness. Cells that can

anticipate upcoming stimuli earlier than other cells, have time to ‘prepare’, which can

confer an advantage over ‘unprepared’ cells. One example of anticipatory preparation in

budding yeast was observed in natural isolates grown in a mixture of two different

carbon sources, glucose and galactose. Yeast consume glucose preferentially and

undergo a lag phase before switching to growth on the less preferred carbon source, a

phenomenon known as the crabtree effect. In this study it was found that despite
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consuming glucose first, cells began producing galactose utilization genes hours before

glucose was depleted, effectively rewiring their machinery to rapidly switch to the

utilization of the alternate carbon source upon glucose depletion. This study also

showed that in diverse natural isolates, this response was variable  indicating that such

responses are heritable and vary within species. This suggests that anticipation is not

always the preferred and that different environments may select for different strategies,

or that having a variety of strategies is in itself useful for a species (J. Wang et al. 2015).

Predictability of environmental change is a consequence of either 1) a regularly

repeating pattern of change, or 2) sensing a stimulus that precedes, but is coupled to

that change. A striking example of this later mechanism is the transcriptional coupling of

the heat-shock response regulon to the aerobic functions in Escherichia coli. The

rationale follows that when E. coli cells are outside a host’s body, the temperature is low,

and oxygen is high, but when they enter the animal host’s mouth the temperature is

higher. As E. coli cells go further into the GI tract towards the gut, oxygen levels

decrease. Therefore coupling the transcription of the temperature response and

oxygen-availability response permits cells to only need to sense a signal - change in

temperature -  to modulate a response for an impending change in oxygen availability.

This anticipatory shortcut bypasses the need for sensory information to be relayed into

the cell twice for an appropriate response and eliminates a potential lag phase that may

be associated with cellular remodeling that occurs as a direct response to changes in

oxygen (Tagkopoulos, Liu, and Tavazoie 2008).
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On the other hand, random fluctuations frequently require some probabilistic

behavioral response such as the diversification of strategies, which generally achieves

lower fitness gains for a population. In the absence of predictive information, cells must

blindly diversify their response instead, which means that several strategies that

individuals will try are destined to fail resulting in a guaranteed cost. The ability to

predict change allows cells to focus their resources on a single strategy which severely

decreases any associated cost if the prediction is correct.

1.3.2: Frequency: Another important characteristic of change is how often it

occurs, which can have profound effects on an organism’s fitness and optimal strategic

response (Walworth et al. 2020). The most obvious way in which frequency is important,

is that the most recurrent fluctuations in nature are likely to be experienced more by

cells meaning that they will have a greater fitness effect whether the fluctuation is

stressful, and therefore costly, or a surplus of a resource and therefore beneficial. For

example, microbes exposed to harsh conditions frequently encounter changes in

temperature, oxidative stress, and heavy metals, all of which increase protein misfolding

rendering them nonfunctional or malfunctioning requiring a coping mechanism. The

heat-shock response, which is conserved across all domains of life, increases the

number of molecular chaperones to alleviate the negative effects of stressors on

proteins. On the other hand, cells may adapt to make use of regularly fluctuating

resources such as in the case of cyanobacteria’s dependence on sunlight and are tuned

to the diurnal light cycle to photosynthesize and fix carbon. However, it has also been

shown that the frequency of fluctuation is important for the dynamics in which evolution
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proceeds as well as for its outcomes. In E. coli, populations exposed to either rapid or

sparse antibiotic pulses are more likely to develop resistance through selective sweeps

in comparison to pulses happening at intermediate length intervals (Lin and Kussell

2016). Frequency alone cannot determine the strength of selection as the magnitude of

the event can affect fitness differentially.

1.3.3: Magnitude: The magnitude of environmental change relates to whether a

change occurs in a mild or severe burst. Magnitude pertains to variables that are

continuous, such as nutrient concentration, as opposed to discrete, such as nutrient

quality. For example, a recurrent burst in nutrient concentration, could significantly relax

selective pressure for cells in comparison to recurrent mild changes in concentration

which may have a minimal effect on fitness. In contrast, if a nutrient source becomes

depleted, which could lead to starvation and death, it imposes a large fitness effect, and

therefore adapting a response mechanism regardless of frequency of occurrence is

essential. Indeed microbes have ubiquitously evolved numerous adaptive strategies to

mitigate the effect of starvation and to survive cycles of depletion and surplus of

nutrients. It has been suggested that using the response parameters of an organism to

a stimulus allows for back-tracing and the determination of the environmental

characteristics in which the organism has evolved (Tagkopoulos, Liu, and Tavazoie

2008). Sporulation and quiescence are two widely used strategies across the microbial

kingdom to cope with nutrient depletion. While these are extremes in magnitude of a

fluctuation, realistically, they likely occur less frequently than mild to moderate changes.

As such, microbes have evolved a tight gene network of interaction to modulate the

5

https://paperpile.com/c/EL9Zm7/rVjhe
https://paperpile.com/c/EL9Zm7/rVjhe
https://paperpile.com/c/EL9Zm7/WmJW
https://paperpile.com/c/EL9Zm7/WmJW


nutrient-availability to growth-response to respond to mild-moderate fluctuations in

concentration.

1.3.4 Interaction of simultaneous fluctuations: Each different characteristic of

fluctuating environments independently poses significant challenges for a cell; however,

in natural environments cells face fluctuations comprising a mixture of these

characteristics such that a fluctuation may be recurrent at regular intervals but vary in

magnitude. Yeast in natural environments for example, have to manage changes in

temperature that cycle between night and day while simultaneously having to manage

changes in nutrient availability as well as pH level, each of which fluctuates at a different

rate, magnitude and level of predictability. This poses a significant challenge in

decision-making in resource allocation for cells especially when energy is a limited

resource. Modular gene expression networks are an important system to integrate

different types of simultaneous fluctuations, and are likely an adaptation to allow rapid

coupling and decoupling of modules to respond to environmental fluctuations. The study

of how microbes respond, adapt, and evolve in fluctuating environments remains in its

infancy and extensive research is required to understand the underlying principles.

1.4 Adaptive strategies in periodically fluctuating environments

Environmental fluctuations pose an enormous challenge for the survival of

microorganisms since the majority are single-celled and are non-motile and directly

exposed to the surrounding environment. As such several strategies have been evolved

to deal with a variety of fluctuations that fall under one of four classes.
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1.4.1: Sense-and-response: Sense-and-response refers to strategies in which

cells actively monitor their external environment and relay information to alter gene

expression and cellular functions. Sense-and-response strategies don’t require previous

expectations of how the environment will change allowing them to be broadly useful for

a variety of factors. This strategy, however, comes at the price of energy being used for

constitutive sensing and it also results in a lag in response that is associated with the

time needed to relay sensory information and appropriately remodel the cell.

Many mechanisms have been evolved to sense the environment. In bacteria, the

two-component regulatory system which is composed of a membrane-bound histidine

kinase that senses the environment and a response regulator that mediates the cellular

response. S. cerevisiae has nutrient-sensing systems that rely on transceptors,

membrane-bound receptors that are homologous to nutrient transporters some of which

maintain their transporting functionality while it is lost in others. Four main transceptors

are responsible for nutrient-sensing in budding yeast, Ssy1, Snf3, Rgt2, and Mep2 (Lin

and Kussell 2016; Chantranupong, Wolfson, and Sabatini 2015). Snf3 senses low levels

of glucose (Bisson et al. 1987) and Rgt2 senses high levels of glucose (Bisson et al.

1987; Ozcan et al. 1996). Ssy1 detects amino acids and activates a signalling pathway

which upregulates amino acid metabolism genes. MEP2 is known for its role in sensing

and importing ammonium into the cell. Additionally, it controls pseudohyphal growth in

low-ammonium conditions enabling nutrient scavenging (Lorenz and Heitman 1998).
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In addition, the cell also has internal sensors. For example, in the absence of

internal glucose, the SNF1 complex is activated to regulate the expression of cellular

machinery responsible for the carbon stress response such as metabolic enzymes

involved in fatty acid metabolism and carbohydrate storage (Walworth et al. 2020;

Persson et al. 2020). In a similar vein, the target of rapamycin complex 1 (TORC1) is a

regulator of growth in response to nitrogen availability. TORC1 is linked to a variety of

cellular mechanisms that are essential for growth, including ribosomal proteins. This

high degree of connectivity is useful in coordinating different processes in response to

nutrient availability, however, this also results in significant costs to the cell highlighting

some of the disadvantages of sense-and-response strategies.

The Environmental Stress Response (ESR) is another example of how the

environment can trigger responses that result in extensive transcriptional and

translational remodelling of the cells  requiring the re-allocation of energy and

resources. Another way in which sense-and-response strategies can impose a cost is

because they usually have a lag phase, the time from initial environmental sensing to

the completion of cellular response. Lag phases are well studied in microbes such as

with the lac operon in which E. coli grown on glucose and then switched to lactose have

a phase of slowed growth, or such as with the Crabtree effect in which yeast is known to

consume glucose preferentially and undergo a lag phase before switching to growth on

ethanol. This has also been observed in response to changes in environmental nitrogen

in which yeast growing on a poor nitrogen source and then switched to a rich nitrogen

source undergo a period of a slowed growth in which extensive transcriptional
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remodelling takes place, including changes in RNA degradation rates of nutrient

transporters such as the amino acid transporter, GAP1, and the proline transporter,

PUT4 (D. Miller, Brandt, and Gresham 2018; Airoldi et al. 2016).

1.4.2: Memory: The idea that an organism can learn from the previous

environment and use that knowledge to prepare for an upcoming change is important in

the context of changing environments. Memory responses and their benefits have been

observed in multiple microorganisms. In E. coli, cells that are grown in glucose and then

switch to growth on lactose exhibit a lag phase. However, if these same cells are

exposed to glucose and then lactose again, the lag phase is shortened in comparison to

cells that have never been exposed to glucose before (Lambert and Kussell 2014). This

response shows that cells that have been exposed to an environment before have kept

a memory so that now they are better equipped to deal with similar conditions in the

future. This response is mediated at the molecular level by a slowed degradation rate of

the protein lacY which is one of the core components of the lac operon that is

responsible for lactose metabolism in E. coli. This system is a great model for studying

how molecular memory works in microorganisms to increase fitness and support for this

model has been identified in yeast as well (Razinkov et al. 2013). Similarly in yeast,

galactose elicits a memory response as well in individuals that have been previously

grown in galactose and then switch to glucose and then galactose again. Additionally, a

more nuanced type of memory is one in which being exposed to a mild stress allows

protection from a more lethal stress in the future (Berry and Gasch 2008).
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1.4.3 Biological clocks: The most well-known biological clock is the

circadian clock which regulates the internal cellular environment with the day and night

light cycle. Circadian rhythms have been observed in animals, plants, insects, and

microbes. Cyanobacteria are a class of photosynthesizing bacteria that benefit from

having a circadian rhythm because they rely on the presence of light to generate

energy. Recent evidence also suggests that the gut microbiome helps regulate the

intestinal circadian rhythm (Mukherji et al. 2013) and that the relative abundance and

composition of the gut microbiome exhibit diurnal oscillations which in turn help maintain

the host’s gut circadian rhythm (Thaiss et al. 2014, 2016).

True circadian rhythms in budding yeast have been elusive, however, there is

evidence for clock-like oscillatory behavior which occurs over timescales smaller than

24 hours, termed ultradian rhythms (Mukherji et al. 2013; Robertson et al. 2008; Tu et

al. 2005). Additionally, budding yeast have been shown to be entrained by 24-hour

temperature oscillations. After such a regime, RNA expression of the two permeases,

MEP2 and GAP1 oscillated at a similar interval to the entrainment length

(Eelderink-Chen et al. 2010). Evolving biological clocks seems to be the optimal solution

to environmental fluctuations that occur at regular intervals and are very predictable as

they improve upon the sense-and-response strategies by not  requiring a constitutive

sensor and therefore using less energy. Clocks however are very susceptible to

situations in which environments do not reliably oscillate at repetitive intervals, such

scenarios would more closely resemble random fluctuations.

10

https://paperpile.com/c/EL9Zm7/9rju
https://paperpile.com/c/EL9Zm7/ymQB+EcCx
https://paperpile.com/c/EL9Zm7/9rju+9SBE+y1hn
https://paperpile.com/c/EL9Zm7/9rju+9SBE+y1hn
https://paperpile.com/c/EL9Zm7/dbo8


1.4.4: Diversification: Fluctuations that are more challenging to predict

require a different cellular approach to maximize fitness. A common approach is for

individuals in a population to use an assortment of strategies to increase the probability

that one would be suitable to increase fitness. This can manifest by individuals either

randomly switching between different responses following some probabilistic value, or

through different individuals consistently displaying diverse responses. This adaptation

can either manifest through phenotypic diversification, in which cells are isogenic but

expression is stochastic, or through genetic diversity, in which a variety of genotypes

that express different phenotypes are maintained within a population.

Phenotypic diversification: At the individual level, noisy gene expression is an

important way in which variation is achieved. In S. cerevisiae, it has been observed that

many genes with TATA boxes have noisy expression, and these genes are associated

with the stress response (Gasch et al. 2000). Mutations in TATA boxes that decrease

the noisiness of gene expression also decrease fitness in stressful conditions

highlighting the importance of variation in responding to environmental change (Gasch

et al. 2000; Blake et al. 2006). Galactose utilization genes are another example in which

the level of noise is an important mode of regulation. When cells are grown in galactose

alone, Gal genes show less noisy expression, however, growth in mixtures of galactose

and glucose results in their bimodal expression which further supports that tuning the

noise of gene expression is important in responding to environmental nutrient content

(Healey, Axelrod, and Gore 2016) .
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In isogenic populations, having a variety of phenotypes increases the robustness

of the population in the face of environmental change which results in an increase in

fitness of all the individuals. Bet-hedging has been observed in many instances in

microbes. Stochastic switching in gene expression ensures that within clonal

populations there remains subpopulations that display altered behaviors. One example

is that of persister cells in genetically identical E. coli that encounter antibiotics. In

nutrient rich environments a fraction of cells have been observed to grow at a slower

rate than the average. These subpopulations, however, are able to withstand harsh

environments in which antibiotics are administered that kill faster growing cells (Bigger

1944; Veening, Smits, and Kuipers 2008). A similar trend has been identified in S.

cerevisiae in which a fraction of slow growing cells in nutrient-rich conditions can

withstand heat shock and continue to proliferate despite the death of other cells that can

ordinarily grow rapidly in nutrient rich conditions (Levy, Ziv, and Siegal 2012). These

examples show how genetically identical populations can rely on phenotypic variation to

survive in response to environmental stressors.

Genetic diversification: Populations also maintain a basal level of genetic

variants, a phenomenon driven by the combination of new mutations and the strength of

selection imposed by external forces. During experimental evolution it has been

observed that several microbial species evolve a hypermutator genotype, an individual

in which a mutation results in an increased error rate during replication. During the

long-term evolution Lenski experiments, certain lineages of E. coli adapted by selecting

for hypermutators (Sniegowski, Gerrish, and Lenski 1997) in which the mutation rate is
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under selection and methyl-mismatch repair genes such as mutS are inactivated

resulting in an increased error rate per replication cycle (Rosche and Foster 1999; Kang

et al. 2019). This has also been observed during serial passaging of Cryptococcus

neoformans, a fungal species that is a human pathogen. A D270G amino acid

substitution in the exonuclease proofreading domain of DNA polymerase POL3 n

(Magditch et al. 2012; Boyce et al. 2020) resulted in an increased mutation rate and

increased likelihood of phenotypic switching which enabled spontaneous resistance to

the chemical FK506 (Magditch et al. 2012). Increasing the error rate of the polymerase

to increase the genetic diversity of a population has also been observed in poliovirus

and further suggests that such an adaptation is important in adaptation to environmental

change. Despite this, hypermutators have not been observed to arise and reach

measurable frequencies during experimental evolution in S. cerevisiae although this is

likely due to the observation that haploid hypermutators do not have a fitness advantage

over nonmutator genotypes (Thompson, Desai, and Murray 2006).

While hypermutators generally increase mutation rate across the entire genome

without locus-specific bias, increased mutation rates at a  genetic locus with potential

large-fitness effects may be beneficial. Mutation hotspots have been identified that

result from specific genetic architectures, such as tandem repeats, Z DNA (McKinney et

al. 2020), tRNA sequences, and long-terminal repeats. Copy number variants (CNVs),

amplifications or deletions of a DNA locus, are frequently flanked by these architectures.

The ribosomal DNA locus which is composed of a repeating array of 100-200 copies of

a ~9.1Kb repeat unit, can expand and shrink during replication cycles in response to
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environmental signals through the co-opting of extrachromosomal circles (Mansisidor et

al. 2018) suggesting that CNVs are readily employed for rapid intergenerational

adaptation. The copper-inducible CUP1 array of 2-20 copies of a ~2Kb repeat unit is

another case in which the connection between environment signalling and number of

gene copies has been established in which tandem repeats can expand or shrink in

response to copper availability (Salim et al. 2021).

CNV generation in continuous culture using chemostats has been extensively

studied using nutrient transporters as models of evolution. Under static nutrient-limiting

conditions the transporters GAP1, MEP2, PUT4, SUL1 and DUR3 have been shown to

undergo amplification when haploid S. cerevisiae is grown in conditions limited for the

respective nutrient that they import (Hong and Gresham 2014; Payen et al. 2014;

Gresham et al. 2008). These studies have focused on understanding how CNVs are

generated and have discovered novel mechanisms such as Origin-Dependent

Inverted-Repeat Amplification (ODIRA) as well as implicating previously known

mechanisms such as non allelic homologous recombination and chromosomal

translocations. Another goal has been to understand the dynamics in which they are

generated and selected and their architectural diversity. It has been observed that

during experimental evolution in static conditions, CNV generation and selection occurs

in a highly repeatable manner and are produced through a variety of mechanisms in the

population (Lauer et al. 2018; Spealman, Burrell, and Gresham 2020). Because of the

large fitness effect of CNVs, their rapid generation, and their reversible nature, further
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studies to understand the dynamics of their evolution in fluctuating environments is

essential.

One additional way in which genetic diversity can be achieved in microbes is

through hybridization. This is possible in microorganisms that can exist as diploids.

Hybridization allows microbes to carry two versions of an allele, theoretically allowing for

their survival in multiple conditions. In a study in which a Saccharomyces cerevisiae x

Saccharomyces uvarum hybrids was created having two versions of the PHO8 gene,

the high affinity phosphate transporter, it was observed that experimental evolution in

low temperatures selected for the loss of heterozygosity and the maintenance of two

copies of the cryotolerant parent (Smukowski Heil et al. 2019). These results suggest

that whether the environment is static or fluctuating affects the outcomes of evolution

and that hybridization may indeed be a rapid mechanism in which a microorganism

generates diversity in its population to rapidly adapt to change.

1.5: Theoretical aspects of fluctuating selection

In the evolutionary framework, it is frequently stated that genetic variation is

important for adapting to environmental change. This view is of course evolving as new

studies identify new cellular levels at which phenotypic variation can be generated,

however, the field of evolution is primarily focused on the study of allele frequency

changes and as such many of the hypotheses are rooted in gene-based explanations.

To understand the role of genetic variation in adaptation to change, fluctuating selection

must first be defined. Fluctuating selection refers to a selective force that varies in
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direction over a period of time. While this chapter has extensively described the effect of

abiotic fluctuations on how cells respond, to comprehensively understand the principles

that govern fluctuating selection, biotic factors will be considered as well.

Frequency-dependent selection is a primary mode of fluctuating selection that changes

in response to organismal influence. It occurs when the size of the population directly

impacts the strength and direction of selection on the population; in other words it is

when the rate of growth of the population is proportional to its size.

A classic example in population genetics of frequency-dependent selection is the

predator-prey model based on hare and lynx populations that were observed to oscillate

in coordination (Hewitt 1921). These observations were the basis for the Lotka-Volterra

equations that predict oscillations in species abundance based on predator-prey

interactions. Increases in predator frequency result in decreases in prey frequency

which in turn result in starvation of the predator and decreasing its population size. This

decrease in predator frequency then again results in a relaxation of selection on the

prey and an increase in its population size. Microbial species recapitulate these

interactive evolutionary dynamics in a number of ways.

Microbes are spatially connected and constantly in competition with each other

and their frequencies can have important effects on neighboring cells. Competition can

occur for environmental resources whereby an increase in frequency of one genotype

can deplete resources for others. Another way in which microbes interact is through the

release of metabolites that either negatively or positively affect the growth rate of
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adjacent cells. An example of the exertion of negative effects on neighboring cells

includes antibiotics that some fungal species are known to produce. This can also occur

within species such as with toxic waste products such as ethanol in some bacterial

species that limit their own growth after a certain density threshold. An example of

positive effects include mutualistic interactions whereby two microbial species rely on

the byproducts the other species produces as a nutritional source for growth and

survival. These different types of interactions can result in fluctuating selection.

How these interactions affect biodiversity is of deep interest in microbiome

studies aimed at understanding the determinants of community composition. One such

example is portrayed in E. coli communities in which three distinct populations stably

coexist over small spatial distances resulting in the maintenance of diversity within the

community in what is known as rock-paper-scissors games. In this model, competition

drives the oscillating dynamics of abundance in which each genotype transiently rises to

the highest frequency until another genotype outcompetes it temporarily (Kerr et al.

2002).

A longstanding question in the field of evolutionary biology is how fluctuating

selection impacts the trajectory and outcomes of evolution. Several hypotheses have

been proposed to predict outcomes and explain observations. Theodosius Dobzhansky

originally coined the ‘balance hypothesis’ which suggested that genetically polymorphic

loci maintained their variation in a population by selecting for heterozygotes (Hedrick

2007). The term ‘balancing selection’ has evolved to generally be defined as any type of

selection that maintains polymorphism in a population. The role of temporally fluctuating

17

https://paperpile.com/c/EL9Zm7/F0oF
https://paperpile.com/c/EL9Zm7/F0oF
https://paperpile.com/c/EL9Zm7/vHKP
https://paperpile.com/c/EL9Zm7/vHKP


environments in imposing balancing selection has become better understood through a

variety of studies. Experimental and observational studies have shown that periodic

fluctuations that occur as a result of seasonal changes or nutrient content can select for

the coexistence of genotypes specialized to each of the experienced environments

(New et al. 2014; Bergland et al. 2014) an ecological phenomenon known as the

“Temporal Storage Effect” (Chesson 1994; Letten et al. 2018; Tan et al. 2017). In this

scenario, it is frequently observed that specialists oscillate in frequency over the period

of change as they encounter the preferred condition followed by the reversal of direction

in selection when they encounter the less preferred condition. While it is frequently

stated that genetic variation is important for the adaptation of a population to

environmental change, the forces that maintain genetic diversity in a population are less

well understood. These studies suggest that fluctuating conditions can play a role by

imposing a form of balancing selection. By contrast, a neutralist view aims to explain the

maintenance of variation in fluctuating environments by a combination of other

processes such as the continual generation of mutation in a population and the

introduction of variation through migration (Bertram and Masel 2019)Hedrik et al. 1976;

(Bertram and Masel 2019).

1.6 Conclusion

Studying how fluctuating environments influence the dynamics and outcomes of

evolution is essential for our basic understanding of adaptation as well as for a variety of

applications. In an environment that is constantly in flux, understanding the imposed

selection allows us to understand how modern-day organisms evolved. Additionally the
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principles of how temporal changes determine outcomes in evolution can be used as

tools. For example, Pseudomonas aeruginosa, a human pathogen, has been shown to

respond differentially depending on the regime of antibiotic administration. Antibiotics

given in a fluctuating regime were less likely to result in the evolution of resistance in P.

aeruginosa than if the antibiotics were administered continuously (Melnyk et al. 2017).

Other potential applications include developing regimes for evolving microbial strains for

fermentation during beer brewing as well as for the production of synthetic materials.

Understanding the principles of evolution in fluctuating environments still requires

extensive study as most of the conclusions thus far have been heavily based on either

theoretical work or observational hypotheses from the natural world. Systematic

experimental studies aimed at deciphering and quantifying the parameters that

determine the outcomes of evolution are still lacking. This thesis aims to tackle some of

the numerous questions about fluctuating environments by describing a series of highly

controlled experimental studies and the significance of their results.
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Chapter 2: Fluctuating environments maintain genetic diversity

through neutral fitness effects and balancing selection

This chapter is based on the research paper “Fluctuating environments maintain genetic
diversity through neutral fitness effects and balancing selection” by Farah
Abdul-Rahman, Daniel Tranchina and David Gresham, which has been published on
bioRxiv and submitted to the journal Molecular Biology and Evolution. I generated all of
the data for Figures 1, 2, 3, 4, and 5. I generated all supplementary figures presented
here except for supplementary figure 1, which Daniel Tranchina performed the analysis
for and generated. I collaborated with Daniel Tranchina on performing data analysis
throughout the manuscript. I wrote the first draft of the manuscript text with edits from
David Gresham and Daniel Tranchina.

2.1: Abstract

Genetic variation is the raw material upon which selection acts. The majority of

environmental conditions change over time and therefore may result in variable

selective effects. How temporally fluctuating environments impact the distribution of

fitness effects and in turn population diversity is an unresolved question in evolutionary

biology. Here, we employed continuous culturing using chemostats to establish

environments that switch periodically between different nutrient limitations and

compared the dynamics of selection to static conditions. We used the pooled

Saccharomyces cerevisiae haploid gene deletion collection as a synthetic model for

populations comprising thousands of unique genotypes. Using barcode sequencing

(barseq), we find that static environments are uniquely characterized by a small number

of high fitness genotypes that rapidly dominate the population leading to dramatic

decreases in genetic diversity. By contrast, fluctuating environments are enriched in

genotypes with neutral fitness effects and an absence of extreme fitness genotypes

contributing to the maintenance of genetic diversity. We also identified a unique class of

genotypes whose frequencies oscillate sinusoidally with a period matching the
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environmental fluctuation. Oscillatory behavior corresponds to large differences in short

term fitness that are not observed across long timescales pointing to the importance of

balancing selection in maintaining genetic diversity in fluctuating environments. Our

results are consistent with a high degree of environmental specificity in the distribution

of fitness effects and the combined effects of reduced and balancing selection in

maintaining genetic diversity in the presence of variable selection.

2.2: Introduction

The dynamics of adaptive evolution in genetically heterogeneous populations

depend on the strength of selection and the distribution of fitness effects among

genotypes (Bell 2008). How selective environmental conditions and genetic variation

contribute to evolutionary dynamics is one of the central questions in evolutionary

biology. In genetically heterogeneous populations the fitness of different genotypes

varies and selection acts to increase the relative abundance of advantageous

genotypes. In the simplest scenario, comprising a single fitness component (i.e. a single

selective force) and single variant differences between genotypes, the distribution of

fitness effects can reliably predict the dynamics of adaptive evolution. However, the

impact of variable selective conditions, that result from fluctuations in the environment,

on the distribution of fitness effects and the corresponding impact on genetic diversity is

poorly understood.

In natural and engineered environments, organisms frequently encounter

fluctuating selection in the form of physical or biotic factors (Bell 2010; Nguyen,

Lara-Gutiérrez, and Stocker 2020). Fluctuations in environmental conditions may occur
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with a regular period, such as diurnal fluctuations or aperiodically, such as with the

random temperature variations that occur throughout the day. Periodic environmental

fluctuations comprise an enormous range of timescales and patterns ranging from

hours, as is the case with the gut microbiome (Schlomann and Parthasarathy 2019), to

millenia, such as the timing between glacial periods. The prevalence of periodic

fluctuations at different time scales in diverse environments suggests that our

understanding of how evolution has shaped extant organisms and our ability to predict

the future outcomes of adaptation requires understanding how organisms respond to

environmental change.

The molecular basis of adaptation depends on the selective regime of the

fluctuating environment. Regularly repeating and predictable fluctuations have been

shown to select for anticipatory strategies such as a memory-dependent response

(Razinkov et al. 2013; Lambert and Kussell 2014) or programmed oscillatory behavior

(Johnson and Golden 2006). Conversely, fluctuations that occur at random intervals

may favor strategies that don’t rely on forecasting future environmental conditions, such

as sense-and-response (Uschner and Klipp 2014) or bet-hedging strategies (Childs,

Metcalf, and Rees 2010; Olofsson, Ripa, and Jonzén 2009). The frequency of

environmental fluctuation with respect to generation time is also a key determinant of

adaptive strategies; if the fluctuations are extremely rapid with respect to generation

time, an organism may sense a time averaged condition, whereas extremely slow

oscillations with respect to generation time may result in organisms experiencing

effectively static conditions (Lin and Kussell 2016; Cvijović et al. 2015). Moderate
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fluctuations that fall between the two extremes and with periods less than the

generation time likely apply selective pressure on regulatory pathways requiring an

organism to respond to environmental change on the individual level.

A variety of theoretical expectations underlie the selective dynamics of genotypes

in fluctuating environments. Balancing selection, generally defined as any type of

selection that maintains polymorphism in a population, can explain the maintenance of

genetic diversity in temporally varying environments. For example, fluctuations with

periods over multiple generations can select for the coexistence of genotypes

specialized to each of the two environments (New et al. 2014; Bergland et al. 2014) an

ecological phenomenon known as the “Temporal Storage Effect” (Chesson 1994; Letten

et al. 2018; Tan et al. 2017). In the extreme case, antagonistic pleiotropy, in which an

allele that is beneficial in one condition is deleterious in another, can manifest between

the different phases of a periodically fluctuating environment. By contrast, a neutralist

view aims to explain the maintenance of variation in fluctuating environments by a

combination of other processes such as the continual generation of mutation in a

population and the introduction of variation through migration Hedrik et al. 1976;

(Bertram and Masel 2019). Theoretical analyses of fluctuating environments have

suggested that the efficiency of selection can be reduced in variable environments

(Cvijović et al. 2015). It has also been proposed that varying environments themselves

can trigger increased mutation rate and thereby increase population diversity (Nelson

and Masel 2018), or act as catalysts for evolution through more efficient phenotypic

exploration (Kashtan, Noor, and Alon 2007).
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Empirical approaches to studying selection in fluctuating environments present

several challenges. In natural environments, experimental variables are difficult to

control. Experimental evolution in a lab setting provides a potentially powerful approach

and as such a number of studies have investigated the effect of fluctuating

environments on adaptive evolution using experimental evolution of microbes (Cooper

and Lenski 2010). In general, experimental microbial evolution studies have focused on

genetically homogeneous populations and the effect of de novo mutation. However, a

small number of studies have made use of genetically heterogeneous populations to

address effects of environmental fluctuations (Salignon et al. 2018). To the best of our

knowledge, all studies of microbial evolution reported to date have used batch culture,

which requires serial passaging and population bottlenecking, adding additional

variables to the study design. The precise control of selection in batch culture is also

challenging because nutrient concentration changes continuously with population

expansion even when the culture medium is unchanged (Li et al. 2018).

To study the effect of environmental fluctuations on the dynamics of adaptive

evolution, we used the chemostat to establish different selective regimes and study their

effect on population genetic diversity and the distribution of fitness effects in

Saccharomyces cerevisiae. We used synthetic populations consisting of the pooled

nonessential haploid gene deletion library (~4,000 unique genotypes) and quantified

population composition using barcode sequencing (barseq). We characterized

fluctuating environments in the chemostat using both experimental studies and
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mathematical modeling. We find that environments, in which nutrient concentration

fluctuates, maintain greater genetic diversity than static environments. Increased

genetic diversity in fluctuating environments results from the absence of a small number

of highly fit and specialized genotypes that rapidly dominate populations evolving in

static conditions and an enrichment in fluctuating environments of genotypes with

neutral fitness effects. Many genotypes show non-linear and non-monotonic responses

(log abundance versus time) to both static and fluctuating selection, but fluctuating

environments uniquely select for a class of genotypes with oscillatory growth behavior.

Oscillatory behavior contributes to large short term fitness effects that are not observed

over the long term. Our study highlights the importance of environmental variability in

evolutionary dynamics and provides a framework for modeling evolutionary scenarios

that better reflect natural environments.

2.3: Results

The empirical study of adaptive evolution requires consideration of both the

selective conditions and the heritable variation in a population. In this study, we

combined continuous culturing using chemostats and the Saccharomyces cerevisiae

haploid non essential gene deletion collection to study the effect of temporally

fluctuating selection on standing genetic variation.
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Figure 2.3.1. Periodically fluctuating environments in the chemostat. (A) We used
chemostat cultures to study evolutionary dynamics in static and fluctuating conditions.
(B) Populations were cultured in either carbon-limited media, nitrogen-limited media, or
media that switched between the two nutrient limiting conditions every 30 hours (i.e. a
period of 60 hours). All selections were maintained for a total of 240 hours. (C) An
ordinary differential equation model was used to determine the expected concentrations
of glucose (white), the sole carbon source, and ammonium sulfate (black), the sole
nitrogen source, in the culture vessels in the absence of cellular consumption. (D) We
experimentally measured glucose (white) and ammonium sulfate (black) concentrations
in each of the culture vessels to determine the contribution of cellular consumption to
environmental nutrient concentrations.
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2.3.1 Modeling nutritional fluctuations in chemostats

Chemostats operate through continuous addition of fresh medium and removal of

culture at the same rate (Figure 2.3.1A). We focused on two static conditions, carbon

limitation (low carbon, high nitrogen) using glucose as the sole carbon source and

nitrogen limitation (high carbon, low nitrogen) using ammonium sulfate as the sole

nitrogen source. We constructed a periodically fluctuating condition in which the

medium was switched between the two nutrient limiting conditions (Figure 2.3.1B). In

this switch condition, the feed media alternates between the carbon limiting and

nitrogen limiting media every 30 hours and the change in the feed media is

instantaneous. We used the standard chemostat model (Novick and Szilard 1950;

Monod 1950) to predict changes in nutrient concentration for single-nutrient limitation.

We extended this model (methods) to incorporate temporal fluctuations in nutrient

concentration and constrained cellular growth with a parameter for a second nutrient

(Boer et al. 2010) to account for both changes in carbon and nitrogen concentrations.

We first modelled nutrient concentrations in the chemostat in the absence of cells

to study the effect of dilution alone. Whereas a single limiting nutrient results in a

constant nutrient concentration, switching the media results in oscillations in nutrient

concentration in the growth vessel that follow first-order (exponential) kinetics despite

instantaneous switches in the feed media (Figure 2.3.1C). We then inoculated

chemostats with a single wildtype genotype and measured ammonium-sulfate and

glucose concentrations in each of the culture vessels during steady-state cellular growth

to determine the effect of cellular consumption on nutrient concentration in the
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chemostat (Figure 2.3.1D). As expected, in all cases cellular consumption results in

reduced nutrient concentrations in the chemostat. In the switch condition we find that

the ammonium sulfate concentration oscillates between maximal and minimal levels

that are equivalent to those observed in the two static conditions. By contrast, the

maximal glucose concentration in the switch condition is reduced compared to glucose

levels observed in static nitrogen limitation once the oscillations commence. This

suggests that cells that have been previously exposed to growth-limiting levels of

glucose exhibit increased glucose consumption in glucose rich conditions compared

with cells that have not previously experienced growth-limiting glucose concentrations.

This memory-like response may be due to the sustained expression of high affinity

glucose transporters, induced by exposure to growth limiting glucose concentrations in

the previous phase, persisting into the ammonium-sulfate limited phase (Rintala et al.

2008; Buziol et al. 2008).

We also considered an additional type of fluctuating environmental condition that

differs in frequency and form. This fluctuation consisted of growth in steady-state

ammonium-sulfate limiting conditions to which a bolus of 80uM nitrogen, in the form of

either ammonium-sulfate or glutamine, was provided every three hours. This minor

environmental perturbation, which we refer to as a “pulse” has previously been

employed in studying transcriptional responses to environmental perturbation (Ronen

and Botstein 2006; Airoldi et al. 2016). Prior mathematical modeling of chemostat

pulses indicates that they result in a transient perturbation of the environment that

rapidly returns to the steady-state condition (Airoldi et al. 2016).
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Figure 2.3.2. Fluctuating selective conditions maintain greater genetic diversity
than static selective conditions. A single-gene deletion library containing ~4000
distinct gene knockout mutants was grown for 240 hours (approximately 40
generations) in static carbon-limitation, static nitrogen-limitation, and switching
conditions in biological triplicate. Populations were sampled every 24 hours for a total of
10 timepoints. Barseq was used to estimate relative genotype abundance at each time
point (methods). (A) Population diversity and genotype fitness were computed based
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on changes in mutant abundance across time (Appendix). (B) The changes in
Shannon’s diversity index show a clear reduction in population diversity over time in
static conditions, but not in a fluctuating environment. (C) The distribution of growth
rates, relative to the arithmetic mean over all genotypes, for ~4000 genotypes in each
condition estimated over the complete 240 hours of growth and (D) the change in the
population proportion within each growth rate bin between t = 0 and t = 240 hours.

2.3.2 Selection on heterogeneous populations in a chemostat

We sought to quantify the dynamics of thousands of genotypes in static and

fluctuating environments using chemostats. Classical chemostat theory holds that

through the process of continuous growth and dilution, a chemostat attains a steady

state in which the growing population size is constant and the concentration of the

growth rate limiting nutrient is constant (Monod 1950; Novick and Szilard 1950;

Kubitschek 1970). At steady-state, the population mean exponential growth-rate

constant (λ) is equal to the chemostat dilution rate (β). However, competition for the

limiting resource between the thousands of genotypes present in our experiments

means that growth rates differ between genotypes. In our experiment, the growth rate of

an individual genotype i, λi, is defined as the fitness of genotype i. Fitness differences

across genotypes result in corresponding changes in population proportions over time.

Intuitively, one might think that the changing proportions of genotypes would preclude

constancy of the population growth rate. How can the constancy of population growth

rate in the chemostat (λ = β)  be reconciled with the presence of thousands of distinct

genotypes with different fitness effects?

To address this question we modelled the growth of 4,000 genotypes in a

nutrient-limited chemostat based on a straightforward extension of the two-genotype
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model of competitive growth in a chemostat from (Dean 2005) (Table 2.6.1). As with

Dean’s two-genotype model, we find that the total population size and concentration of

the limiting nutrient do in fact change as selection acts on the different genotypes.

However, these changes are negligible after an initial transient period. We find that in

the case of a static environmental selection in the chemostat, the genotype proportions

change until a steady state is ultimately achieved in which only a single growth rate

constant remains in the chemostat. In this new steady-state condition the population

size is increased and the growth limiting nutrient concentration is decreased relative to

the initial conditions (Supplemental figure 2.6.1). As the preceding period during which

selection takes place is not a true steady-state, we refer to the selection during this time

period as occurring in quasi steady-state conditions.

We also applied the Price equation in the continuous form (Day et al. 2020) to

this scenario and found that the population growth rate cannot be exactly constant until

the overall steady state condition above is achieved (Supplemental figure 2.6.1).

Examination of the Price equation shows that evolution of the population growth rate is

driven by the variance of the growth rate and the rates of change of genotype fitness

(Table 2.6.2).

2.3.3 Fluctuating environments maintain greater genetic diversity

The distribution of fitness effects (DFE) quantitatively describes the proportion of

variants in a population that are advantageous, neutral or deleterious, compared to the

arithmetic mean fitness of the population. The shape of the DFE is influenced by several
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factors including the type of species, population size, and genome size (Eyre-Walker

and Keightley 2007). Whereas both theoretical (Connallon and Clark 2015) and

experimental (Hietpas et al. 2013; Cooper and Lenski 2010; Blundell et al. 2017) studies

have investigated the effect of a variety of environments on the DFE, the effect of

temporal environmental variation on the DFE remains largely unknown. Moreover, the

consequences of variable selection on the maintenance of genetic diversity is poorly

understood.

To address the effect of variable selection on the DFE and genetic diversity we

used an isogenic single-gene deletion library to compare selection in static and

fluctuating environments. The presence of unique molecular barcodes enables

identification of ~4000 genotypes using quantitative DNA barcode sequencing (barseq)

(Delneri 2010). We used the haploid gene deletion collection and barseq to quantify

population diversity and genotype fitness over approximately forty generations (240

hours) of sustained selection (Figure 2.3.2A). By replicating selection experiments and

limiting their duration, our approach minimizes the potential confounding effect of de

novo mutations. Assuming a rate of 2.7 x 10-3 mutations/genome/replication (Drake et

al. 1998) we would expect 0.108 mutations/ genome over 40 generations. Consistent

with this expectation, after filtering sequencing libraries (Figures 2.6.2A and 2.6.2B,

Table 2.6.1), replicate populations showed high within-condition correlation indicating

that de novo mutations did not play a significant role in selection dynamics. A small

number of replicate experiments with low correlation were excluded from further
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analysis (Supplemental figure 2.6.2C). Following quality control, our study comprised

278 barseq libraries.

To test the effect of environmental variability on population diversity we estimated

the normalized abundance of each genotype at each time point in each condition

(Appendix). We quantified the temporal change per unit time (in hours) rather than per

generation to enable direct comparison between conditions as population growth rates

in fluctuating chemostats are not necessarily determined by the dilution rate as they are

in static conditions. We quantified population diversity using Shannon’s diversity index,

which takes into consideration the richness of genotypes and the evenness of their

abundances. We find that the static carbon-limiting and nitrogen-limiting conditions

display rapid declines in diversity in comparison to the switch condition (Figure 2.3.2B).

To test the generality of this conclusion we applied the same analysis to the two pulse

conditions. In the presence of pulsed perturbations, populations also maintained greater

genetic diversity across time suggesting that this feature may be generalizable to

different frequencies and forms of environmental fluctuation (Supplemental figure

2.6.3). We found that diversity estimates are not significantly affected by barcode library

size (pearson r = 0.106, p-value = 0.218) (Supplemental figure 2.6.4) excluding

confounding effects of library size on diversity metrics. In addition, population richness

does not appear to undergo large changes over time in any selection regime suggesting

that differences in diversity are largely driven by changes in evenness (Supplemental

figure 2.6.5). All selections resulted in some degree of genotype extinction, defined by
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the absence of a genotype in a one or more terminal time points. We did not identify a

common set of extinct genotypes across all conditions (Supplemental figure 2.6.6).

To test if differences in the rate of change in genetic diversity are associated with

differences in fitness effects we computed the DFE for each condition. To quantify

fitness over a given time interval (t1, t2) we use the temporal mean growth rate per cell

minus the arithmetic mean over all genotypes. This is given by the difference between

the log of normalized abundance at the two time points divided by the time difference

(Appendix). By using the chemostat, the population exponential growth rate constant is

set at 0.12 hr-1, which is equal to the population mean growth rate over all genotypes to

the extent that the total number of cells in the chemostat remains constant (Appendix.

We calculated average genotype fitness using the first (t = 0 hours) and last (t = 240

hours) time point. The DFEs in each condition have similar distributions characterized

by a unimodal distribution centered around neutral relative fitness (Figure 2.3.2C). The

DFE in all three conditions comprises primarily neutral genotypes with tails reflecting

deleterious and beneficial genotypes relative to the mean population fitness. This

property also holds for pulse fluctuations (supplemental figure 2.6.7). Whereas

measures of dispersion for each DFE are similar between conditions, contrary to

previous predictions (Connallon and Clark 2015), static conditions are distinguished by

the presence of individual genotypes with extreme fitness effects (Table 2.6.2). Thus,

the distinguishing feature of the DFE, calculated over the entire period of selection, in

static populations is the occurrence of extreme high fitness genotypes that are not
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observed in fluctuating selections. This observation is consistent with theoretical

analysis using the Price equation (Appendix)

The presence of a single particularly high fitness genotype results in a distinct

population composition following 240 hours of selection. In both static selection

conditions, a single highly fit genotype comprises over 50% of the population at this

terminal timepoint (Figure 2.3.2D). By contrast, the maximal frequency of the highest

fitness genotype is only 3% in the switch condition (Table 2.6.2). In pulse fluctuations,

the increased frequency of a small number of genotypes in the populations is apparent;

however, this effect is reduced compared with static conditions (Figure 2.6.7 and Table

2.6.2). These results point to a clear causal relationship between the presence of a

single high fitness genotype and a rapid reduction in genetic diversity in static

environments in which a single dominant selective pressure acts.

To test the generality of our observations we analyzed the dataset of Salingon et

al. (Salignon et al. 2018) who studied the single-gene deletion library in two types of

fluctuating environments using serial batch cultures and bottlenecking. In one of the

fluctuating conditions (temporal variation in methionine concentration) we observed the

same trend as our study. However, in the case of environments that fluctuate in salt

concentration we find the opposite trend (Figure 2.6.8). In this case, it is possible that

specific gene deletions (e.g. CIN5Δ/Δ, YOR028WΔ/Δ, SRFI1Δ/Δ) are uniquely able to

respond to the fluctuation in salt concentration. Alternatively, the distinct nature of the

environmental change in our study, which changes gradually in the case of the switch or
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transiently in the case of the pulse, compared with the instantaneous change of

Salingon et al’s experimental design may be an important factor. This is consistent with

prior work suggesting that gradually changing environments result in greater clonal

interference than instantaneously changing environments in which mutations of large

beneficial effect are more likely to fix early (Morley and Turner 2017).
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Figure 2.3.3. Diverse temporal trajectories of genotypes in different selective
conditions. Temporal dynamics of genotypes across time fit to (A) non-significant, (B)
linear, (C) quadratic, (D) cubic and (E) periodic models across time. (F) The distribution
of temporal dynamics in each condition. Abundance changes are categorized as
positive or negative based on the change in average growth rate between t = 0 and t =
240. Model fits for periodic models were defined as positive or negative on the basis of
phase.
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2.3.4 Genotypes exhibit distinct frequency dynamics

Whereas it has been widely demonstrated that cells exhibit rapid transcriptional

(Spies et al. 2019; Airoldi et al. 2016; Ronen and Botstein 2006; Gasch et al. 2000) and

physiological responses to changes in the environment (Bresson et al. 2020), the

sensitivity of growth rate to environmental changes is less well studied. We sought to

quantitatively describe the high resolution changes in genotype frequency across time

for each genotype in each condition. The temporal dynamics of a genotype in a

population is a result of both the externally imposed environmental selective pressure

and the response to selection by all genotypes in the population. To characterize the

dynamics of each genotype we performed hierarchical model fitting for each genotype

using a model in which the log of the normalized barcode count from all ten time points

is a polynomial function of time (Appendix). We explored the suitability of four distinct

models of log normalized abundance versus time - linear, quadratic, cubic, and periodic.

We quantified their applicability by starting with the most complex model and performing

iterative model simplification using the log ratio of maximum likelihood test (Appendix).

We observed multiple distinct genotype dynamics. We find that between 10% -

30% of genotypes (Figure 2.3.3F) do not show a significant change in normalized

abundance (Figure 2.3.3A) over the duration of the experiment. For these genotypes,

the growth rates are not significantly different from the arithmetic mean over all

genotypes. The prevalence of these genotypes is consistent with the greatest density of

genotypes falling around a relative fitness of zero (Figure 2.3.2C). Although the mean

relative growth rate is zero by our definition of relative growth rate, the concentration of
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the distribution around zero relative growth rate is not guaranteed or predictable. Many

genotypes show log-linear behavior across time (Figure 2.3.3B) indicating sustained

positive or negative selection. Whereas static conditions in which selection is constant

may be expected to result in such behavior, we find that almost a quarter of all

genotypes also exhibit log linear behavior in the switch condition (Figure 2.3.3F). Such

genotypes that are unaffected by alternations in the environment may be indicative of

generalists. We identified non-monotonic genotype dynamics in all three conditions

(Figure 2.3.3F). Quadratic behavior (Figure 2.3.3C) indicates an accelerating or

decelerating growth rate per cell, whereas cubic (or sigmoidal) behavior (Figure 2.3.3D)

reflects two reversals in the sign of fitness over the course of the experiment. A similar

diversity of behaviors is found in the two pulse conditions (Supplemental figure 2.6.9A)

Our frequent sampling regime enables detection of genotype growth rate

dynamics with high resolution. To that end, we tested whether genotypes show

oscillatory behavior across the experiment (Table 2.6.1). We detect evidence for strong

enrichment of periodically oscillating changes in genotype growth rate per cell (Figure

2.3.3E) that is unique to the switch condition (Figure 2.3.3F and Supplemental figure

2.6.9A). In these genotypes the growth rate per cell oscillates with a period that

matches the period of environmental change imposed by switching the feed media to

the chemostat. These genotypes include both positive and negative phases (i.e. with

180 degree difference). This behavior suggests a class of genotype that is acutely

sensitive to variation in the environmental condition. To the best of our knowledge, there

are few cases in which such oscillations in genotype frequencies have been observed.

39



One notable case is the oscillatory behavior of genotypes that has been observed over

seasonal fluctuations in Drosophila populations (New et al. 2014; Bergland et al. 2014),

Machado et al. 2018). In addition, high resolution sequencing of the ‘Lenski lines’

identified genotype oscillations in evolving Escherichia coli populations; however, this

behavior eluded explanation (Good et al. 2017). Our finding suggests that such

oscillations are potentially diagnostic of periodic variation in the environment. The 700

genotypes that comprise this class do not show significant enrichment for specific

functions.

Non-monotonic behavior of genotypes may be the result of biological phenomena

(e.g. environmental variation, genotype interactions, and density-dependent selection)

or a consequence of data analysis methods. To test whether the highest frequency

genotypes impact the apparent dynamics of other genotypes in the population, we

computationally removed their barcodes from sequencing data, and repeated our

complete analysis. We find that excluding the top performing genotype has a minimal

effect on the identified non-monotonic growth behavior of the remaining genotypes

(Supplemental figure 2.6.9B). As expected, the same manipulation has drastic effects

on diversity metrics in static conditions, but only a minimal effect on the results observed

for fluctuating conditions (Supplemental figure 2.6.3).

Fluctuating environments are enriched for genotypes that do not show a

significant change in growth rate in comparison to other conditions (Figure 2.3.3F and

Supplemental figure 2.6.9A). This observation along with the unique oscillating
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genotypes point to two ways in which greater diversity is maintained in fluctuating

conditions: 1) a larger fraction of genotypes have neutral fitness effects and 2) large

fitness effects over short time spans undergo reversals in the direction of selection

before they have a chance to dominate the population or go extinct.

2.3.5 Environmental fluctuations select for specific mutant classes

To identify the biological pathways and processes that contribute to increased

fitness in each condition we performed gene set enrichment analysis (GSEA)

(Subramanian et al. 2005) using the ranked fitness measurements for each condition.

We find that constant carbon limitation selection results in the positive selection of gene

deletion mutants with functions in carbon metabolism (Supplemental figure 2.6.10).

The highest fitness genotype is deletion of MTH1, which has previously been reported

as a target of selection in experimental evolution in glucose limited chemostats (Kvitek

and Sherlock 2011). In static nitrogen limited chemostats, we find enrichment for

genotypes with functions in nitrogen metabolism (Supplemental figure 2.6.10). The

highest fitness genotype is deletion of GAT1, which we have previously identified as

conferring a fitness advantage in ammonium-limited chemostats (Hong and Gresham

2014; Hong et al. 2018). Interestingly, in our previous studies we identified GAT1

hypomorphs as beneficial, but de novo null mutations in GAT1 were not identified.

We identified enrichment for distinct gene functions that are unique to the switch

condition. Specifically, deletions in genes that encode components of the endoplasmic

reticulum associated degradation (ERAD) pathway including HRD1, HRD3, USA1, and
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DER1 exhibit uniquely high fitness in the switch condition (Supplemental figure

2.6.11). The ERAD complex is responsible for degrading misfolded proteins in the

endoplasmic reticulum (ER). Loss of ERAD function may be uniquely beneficial in

fluctuating conditions as decreased rates of protein degradation may facilitate

persistence of proteins across conditions thereby serving as a type of ‘memory’

response.

The periodic addition of excess nutrients in the pulse conditions results in the

enrichment of unique classes of genotype function in addition to functions that are

shared with the static conditions (Supplemental figure 2.6.10). This suggests that

these transient environmental perturbations serve to both reduce the strength of

selection and select for a unique class of genotypes.
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Figure 2.3.4. A subset of genotypes have a predictive relationship between
fluctuating and static selective conditions. (A) The correlation in temporal mean
growth rate per cell of genotypes between the two static conditions is low. There is
intermediate correlation between the temporal mean growth rate per cell of the Switch
condition and C-lim (B) and N-lim (C). The relationships between temporal mean growth
rate per cell in the switch conditions and the average of the temporal mean growth rate
per cell for the two static conditions has the highest correlation (D). Point colors indicate
the model fit of the genotype as described in figure 3.

2.3.6 Fitness relationships between conditions
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The fitness of a given genotype varies as a function of selection. We asked whether

genotype behaviour under static selective conditions is predictive of fitness in a

fluctuating environment. We find that the correlation between relative fitness in the two

static conditions is low (Figure 2.3.4A). The correlation between relative fitness in the

carbon limited and switch condition (Figure 2.3.4B) and between the nitrogen limited

and switch condition are somewhat higher (Figure 2.3.4C). We tested the simple model

that fitness in a fluctuating environment is the mean of fitness in the two corresponding

static conditions. We found that the correlation between the relative fitness in the switch

condition and the mean of relative fitness in nitrogen limited and carbon limited

conditions was only slightly increased compared with the correlation between each

static condition and the switch condition fitness estimates (Figure 2.3.4D) .
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Figure 2.3.5. The switch condition uniquely results in short term fitness changes
that are not detected over larger timescales. (A) Piecewise (temporal mean) relative
fitness measurements were calculated by obtaining the difference between log
normalized abundance at consecutive time points and dividing by the difference in time.
Violin plots represent the distributions of piecewise fitness in each condition. (B) The
variance of fitness measurements in each condition shows unique trends over time. (C)
The distribution of piecewise fitness values according to best model fit. (D) Heatmap of
scaled piecewise fitness for all periodically oscillating genotypes in the switch condition
falling into four defined clusters. GO-terms that are enriched in each cluster are labeled
on the right hand side.

2.3.6 Switching conditions harbor the highest short-term growth rates

To further understand how genotype behavior is affected in fluctuating conditions

we compared short term fitness effects with long term fitness effects. Because we

identified non-monotonic growth behavior, we calculated the piecewise fitness, defined
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as the mean relative fitness values between consecutive time points, in the static and

switch conditions. We find that whereas the temporal average relative fitness across the

full time course shows minimal differences in DFE between conditions (Figure 2.3.2C),

the piecewise DFE is highly dynamic between timepoints and conditions (Figure

2.3.5A). Whereas static conditions select for genotypes with the highest average growth

rate across the full time course, the switching environment results in the largest

short-term fitness values. We computed the variance in fitness at each time point and

found that static conditions have a unique U-shaped variance pattern in contrast with

the switch condition which showed oscillating piecewise fitness variance (Figure

2.3.5B). The large differences in variance in fluctuating conditions are explained by the

behavior of the periodically oscillating genotypes which have the highest piecewise

fitness values across all growth behaviors (Figure 2.3.5C). Periodically oscillating

genotypes are not a uniform group as we identified four clusters of genotype behaviors.

Three of the four clusters have unique overrepresented GO-terms suggesting functional

coherence among these genotypes (Figure 2.3.5D).

2.4: Discussion

In this study, we investigated the effect of fluctuating environments on genetic

diversity and the distribution of fitness effects. We find that population diversity is greatly

reduced in static environments compared with fluctuating environments. Our results

support the idea that static environments impose stronger selection whereas fluctuating

environments reduce the efficiency of selection (West and Mobilia 2020). By testing two

distinct classes of environmental fluctuation we demonstrate that this result holds for

two different types of environmental fluctuations.
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We find that the maintenance of genetic diversity in fluctuating environments is a

result of a combination of factors. First, genotypes with neutral fitness effects are

enriched in fluctuating environments. Second, the presence of a unique class of

genotypes that oscillate in frequency in fluctuating environments. Although this class

includes genotypes with the highest and lowest short-term fitness effects the periodic

reversal in the direction of selection ensures their maintenance at intermediate

frequencies in the population, consistent with balancing selection. Third, the absence of

genotypes with extreme long term fitness effects in fluctuating environments in contrast

to static environments that are characterized by a single genotype with a large positive

fitness effect that rapidly increases in frequency in the population. There has been

considerable debate whether genetic diversity is primarily maintained through neutral

fitness effects or through balancing selection (Hedrick et al. 1976). We have found that

in the case in which new mutation does not occur, both balancing selection and neutral

fitness effects contribute to the maintenance of genetic diversity in fluctuating

environments.

Finally, we show that average fitness over long time spans can conceal the large

variety of genotype behaviors in a population. Typically, fitness is estimated assuming

monotonic behavior (Wiser and Lenski 2015) although a few studies have recently

identified curvilinear dynamics (Schlecht et al. 2017). Our results suggest that the

assumption of monotonic behavior is incorrect especially when considering population

dynamics encompassing hundreds of unique genotypes, which is more representative
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of dynamics in natural populations (Wiser and Lenski 2015; Landis et al. 2021). This is

the case even in static selective conditions. More complex selective regimes that result

from environmental fluctuations can result in more complex genotype dynamics as

illustrated by the unique class of oscillating genotypes identified in our study.

2.5: Methods

2.5.1 Media

For all experiments, media consisted of defined minimal media supplemented

with salts, metals, minerals, vitamins (Saldanha, Brauer, and Botstein 2004; Brauer et

al. 2008; Airoldi et al. 2016). For glucose-limited media we added 0.08% glucose and

37mM ammonium-sulfate. For ammonium-sulfate-limited media we added 2% glucose

and 400uM ammonium-sulfate. Static conditions used a single media source throughout

the experiment. For the switch condition, we used a tube connecting the two feed media

to a culture and alternated between the two media sources every 30 hours by manually

clamping one inlet and opening the other. For pulse experiments we used the

automated Sixfors chemostat system to deliver a bolus of either 40uM L-glutamine

(PulseGln) or 40uM ammonium-sulfate (PulseAS) every three hours throughout the

experiment.

2.5.2 Experimental measurements of model parameters

Measurements were taken at time points 2.5 prior to switch, then at 17, 35 , 44,

59.5, and 75.5 hours relative to the end of the first N-lim phase. This sampling scheme

was chosen to capture the dynamics right after the first switch. Glucose was measured
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using the r-Biopharm Glucose kit. Ammonia was measured using the QuantiFluo™

Ammonia/Ammonium Assay Kit. Cell density and cell size was measured using a

Coulter Counter.

2.5.3 Mathematical modeling of chemostat growth in fluctuating

environments

Population growth rate and the rate of change in the limiting nutrients glucose,

and ammonium-sulfate were modeled using the following system of ordinary differential

equations.

With the following parameters: D, the dilution rate of the culture (culture volumes/hr); X

is the cell density (cells/mL), Y is the yield (cells/mL/mole of the limiting nutrient), umax is

the maximal growth rate constant (hr-1), R is the concentration (uM) of the limiting

nutrient in the medium, and S (uM) is the growth limiting nutrient concentration in the

chemostat. Equation (1) describes the changes in ammonium-sulfate concentration over

time. Equation (2) describes the change in glucose concentration over time. Equation

(3) describes the change in cell density over time. To study the effect of our
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experimental design for switching environments we performed numerical calculations

with cell number (X) set to zero.

2.5.4 Culturing conditions

Library construction was performed as described in (Sun et al. 2020). An aliquot

(1.7x109 cells/mL) of the pooled prototrophic gene deletion collection (VanderSluis et al.

2014) was thawed and 118uL were inoculated into triplicate chemostats with 200mL

media for each condition. We estimate that this results in inoculation of the culture with

10^4 cells of each of the 10^3 genotypes. Cultures grew in r batch mode overnight at

30℃ to allow cells to reach high density (3E7 cells/mL). The first sample was collected

and then the media feed pumps were turned on and tuned to a dilution rate of 0.12-hr to

switch cultures to continuous growth. Samples were collected every 24 hours by

passive sampling from the chemostat outlet for a total of 240 hours. Cell pellets were

stored in -80C in a cell storage solution (0.9M sorbitol, 0.1M EDTA, 0.1M Tris). DNA

extractions were performed using the Hoffman Winston DNA prep (Hoffman and

Winston 1987). PCR amplification of barcodes of each sample was performed by using

a universal primer and an indexed primer (Robinson et al. 2013). The P5 illumina

adapter was incorporated to all samples. Barseq libraries were sequenced on a 1x75 bp

run on a Illumina NextSeq500.

2.5.5 Analysis of Barseq data

Barseq analysis was performed as previously described (Robinson et al. 2013).

Briefly, barcode sequencing reads were matched to their corresponding genotypes
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using Barnone . Reads with base pair mismatches greater than 0 were excluded from

the analysis. Libraries with less than 100,000 total read counts were removed

(Supplemental figure 2.6.1A). Uptags and downtags for each genotype were summed

and genotypes with aggregate counts across all conditions with less than 1000 were

also removed (Supplemental figure 2.6.1B). DEseq2 was used to normalize libraries

(Love, Huber, and Anders 2014).

2.5.6 Mathematical modeling of genotype behavior

A detailed description of methods used for both data analysis and theoretical studies is

provided in the supplemental methods. Throughout, we define the following terms:

● Growth rate: the change in population size between 2 time points, divided by

time.

● Instantaneous growth rate: the derivative dn/dt.

● Per capita (per cell) rate of change: growth rate normalized by population size

and accounted for by both cell divisions and cell death.

● Per capita (per cell) growth rate: same as per capita (per cell) rate of change

where cell death is negligible.

● Piecewise growth rate: the growth rates between all consecutive timepoints

based on the predicted values.
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2.6 Supplementary figures

Figure 2.6.1. Modelling the growth of four thousand genotypes in the chemostat. (A) In
the presence of thousands of genotypes the chemostat attains a quasi-steady state. (B) The
total population size undergoes non-zero, but negligible, changes as selection acts on the
population. (C) Individual genotype population sizes undergo large changes in frequency
despite the relative invariance of total population size. (D) Dynamics of the top ten lineages.
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Figure 2.6.2. Barseq library quality control. (A) The complete distribution of library sizes
before filtering is shown. The dashed line indicates libraries with less than 100,000 reads that
were excluded from subsequent analysis. (B) The distribution of aggregate counts per genotype
across all libraries. The dashed line indicates genotypes with less than 1,000 aggregate reads
that were excluded from subsequent analyses. (C) Pairwise Pearson correlation coefficients
between all samples at the first (t = 0) (left panel) and final time point (t = 240) (right panel).
Replicates with correlation coefficients less than 0.6 were removed before proceeding with
analysis.
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Figure 2.6.3. Maintenance of genetic diversity in different fluctuating selections. (A)
Quantification of the dynamics of genetic diversity in other selective conditions. (B)
Quantification of the dynamics of genetic diversity after excluding the highest fitness genotype in
each condition.
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Figure 2.6.4. Library size does not affect diversity estimates. Plot showing the relationship
between Shannon’s diversity index and adjusted library size.
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Figure 2.6.5. The rate of change in total strain number across all conditions.
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Figure 2.6.6. Strain extinction profiles in each condition. Extinct strains in the final time point
(t = 240) are shared between subsets of conditions. Degree refers to the number of conditions
that share a set of extinct genotypes.
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Figure 2.6.7. Change in percent population proportion for pulse conditions.
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Figure 2.6.8. Diversity measurements of experiments from the Salingnon et al. dataset.
Barseq was performed on the haploid gene deletion yeast library in conditions fluctuating
between high (S) and low methionine (N) concentrations (left) and conditions fluctuating
between salt (S) and no salt (N) concentrations (right).
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Figure 2.6.9. Genotype dynamics in static and fluctuating environments. (A) Extended
summary of growth behavior including the two additional pulse conditions. (B) Reanalysis
following removal of the highest fitness genotype does not alter the distribution of model fits.

60



Figure 2.6.10. Gene set enrichment analysis (GSEA) of fitness effects in each condition.
The top and bottom eight significantly (p-value < 0.05) represented GO terms for each condition
are shown. Set size refers to the number of genes contained in a category.
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Figure 2.6.11. Deletion of the ERAD genes uniquely results in increased fitness in
fluctuating environments. DER1, YOS9, HRD3, USA1, HRD1, and CUE5 gene deletions
show consistent significant fitness increase in the switch condition but variable responses in
carbon and nitrogen limiting conditions.
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Table 2.6.1. Pairwise correlation matrix of counts across all conditions

This table was not included in this thesis because it is a very large dataset. For access it
can be found in the supplementary material for this manuscript posted on bioRxiv.

Table 2.6.2. DFE statistical measurements

Condition Mode Median Mean Max Min Range Variance

Clim 0.0077 -0.0031 -0.0027 0.0478 -0.0271 0.0749 6.53E-05

Nlim 0.0124 -0.0003 -0.0007 0.0435 -0.0439 0.0874 8.64E-05

Switch 0.0047 0.0005 -0.0018 0.0265 -0.0504 0.0769 9.53E-05

PulseAS 0.0020 0.0031 0.0027 0.0278 -0.0176 0.0455 4.29E-05

PulseGln -0.0026 -0.0004 -0.0012 0.0361 -0.0415 0.0776 6.94E-05
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Chapter 3: The dynamics of copy number variants in fluctuating
environments.

This chapter is based on the research paper “The dynamics of copy number variants in
fluctuating environments” by Farah Abdul-Rahman, Angela Hickey and David Gresham,
which is in preparation. I generated all of the data for the Figures and Tables, wrote the
manuscript text, and generated all of the supplementary figures presented here. Future
and ongoing work generating data for this project is performed in collaboration with
Angela Hickey.

3.1: Abstract

Microbes live in dynamic environments that pose ongoing challenges for

reproduction and survival. Unlike static conditions in which a selective pressure is

continuously experienced by the organism, fluctuating conditions cycle between

different selection pressures resulting in complex evolutionary dynamics. Copy number

variants (CNVs) are a class of mutation in which a genomic locus varies in repeat

number. CNVs are widespread across all domains of life and have been implicated in

diseases such as cancer. Despite the prevalence of fluctuating selection in natural

environments, it is not well understood how variable selection influences the dynamics

and diversity of CNVs in evolving populations. To study the generation and selection of

CNVs, we evolved budding yeast populations over hundreds of generations in

chemostats alternating between two conditions limited for nitrogen in the form of either

glutamine or proline. Previously, we have found that genes encoding a glutamine

transporter (GAP1) and proline transporter (PUT4) undergo duplication in chemostats

limited for their respective nitrogen source. However, the evolutionary outcome of

populations that undergo fluctuations between the two conditions is unknown. We

developed a dual-fluorescence CNV reporter system for the two transporter genes
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enabling inexpensive and rapid detection of duplications or deletions at the two loci

simultaneously. We find that static conditions strongly select for transporter duplication

with highly repeatable dynamics, whereas fluctuating environments result in greater

variation between replicate populations and a lower frequency of CNVs at both loci.

Our study highlights the impact of variable selection on evolutionary outcomes and

suggests that CNVs are frequently associated with negative pleiotropy, which constrains

their role in the absence of a single strong selective force.

3.2: Introduction

Changes in nutrient availability occur frequently in nature. Single-celled

organisms are especially exposed to harsh fluctuations in the environment since they

generally do not possess higher level structures and systems found in multicellular

organisms that buffer transient perturbations. Fluctuations in nutrient availability can

either be spatial such as through static chemical gradients, or temporal such as with

seasonal changes. Changes in nutrient availability are widespread and can be the result

of seasonal temperature change which influences the survival of plants, animals, and

microbes. Additionally interspecies competition for available nutrients in non-motile

organisms can result in boom and bust cycles, a phenomenon commonly observed in

microbes.

Phenotypic variation is beneficial for populations that encounter environmental

change by increasing the likelihood that an individual in that population expresses a

phenotype that is beneficial in the new environment. Such variation can be generated

either at the genetic level through DNA mutations or through variable gene expression
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in genetically identical populations (Frank 2013). Genetic variation arises through the

accumulation of mutations across several replication cycles, especially in instances in

which selection is relaxed and a greater variety of mutations is maintained. This is

generally considered to be a slower mechanism of generating phenotypic diversity since

it relies on longer time lines which are dictated by the generation time of an organism

(Matic 2019). Generation of heritable variation can be accelerated by increasing the

mutation supply rate such as in hypermutator strains in Escherichia coli (Sniegowski,

Gerrish, and Lenski 1997) in which mutation rate is under selection and

methyl-mismatch repair genes such as mutS are inactivated resulting in an increased

error rate per replication cycle (Rosche and Foster 1999; Kang et al. 2019).

Non-heritable variation in expression, on the other hand, is the result of noise in gene

expression resulting in stochastic behavior. Examples of this include stochastic switches

in which isogenic individuals in a population turn on or turn off a gene with some

probability, resulting in a phenotypically heterogeneous population.

Mutations are generated at different rates as a result of genomic context, location

in the genome, and the molecular mechanisms responsible for generating them. Single

nucleotide variants (SNVs) for example are the most frequently occurring class of

mutation in the genome as they result from errors in DNA replication (Hong and

Gresham 2014). Copy number variants (CNVs) are a class of mutation in which a

genomic locus varies in repeat number either through duplication or deletion. There are

a number of ways in which a single gene can be duplicated or deleted ranging from

duplication of the gene itself to duplication of the entire chromosome or genome.
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Chromosome or genome scale changes in copy number results from errors in

disjunction during mitosis or meiosis. CNVs at individual loci can be generated by errors

in recombination (Brewer et al. 2015). In addition, there are multiple

replication-dependent mechanisms that generate CNVs including polymerase slippage,

genomic rearrangement, and the reintegration of extracellular circles (Møller et al.

2015). Several DNA architectures can increase the likelihood of replication-dependent

errors, such as long-terminal repeats, stretches of poly-A regions, and microhomology

(Lauer et al. 2018). CNVs may lead to rapid and reversible genetic adaptations with

large fitness effects that can be instrumental in adapting to recurring environmental

change.

CNVs have been extensively studied in Saccharomyces cerevisiae. For example

the ribosomal DNA locus which is composed of a repeating array of 100-200 copies of a

~9.1Kb repeat unit, can expand and shrink during replication cycles in response to

environmental signals (Mansisidor et al. 2018) suggesting that CNVs facilitate rapid

adaptation. The copper-inducible CUP1 array of 2-20 copies of a ~2Kb repeat unit is

another example in which environmental conditions appear to stimulate the formation of

this adaptive class of variation (Salim et al. 2021). In static nutrient-limited chemostats,

CNVs are a common adaptive response. Transporter genes that are known to undergo

gene amplification in response to sustained nutrient stress include the sulfur transporter

SUL1 (Payen et al. 2014), the ammonium-sulfate transceptor, MEP2, the proline

transporter, PUT4, the urea transporter DUR1,2 and the amino acid transporter, GAP1

(Lauer et al. 2018; Hong and Gresham 2014). The amplification of these transporter
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genes likely increases the number of expressed transporters providing a strong

competitive advantage in low nutrient environments.

Gene amplifications can impose a fitness cost as they may result in increased

gene expression burden, genomic instability or dosage imbalance of components of

protein complexes. Although selective conditions may promote the maintenance of a

particular CNV, once the selection is removed the CNV may be subject to strong

negative selection resulting in its rapid loss from the populations. To study how variable

selection impacts the dynamics with which de novo CNVs are generated and selected

we studied CNV dynamics in conditions that periodically fluctuate between different

selections.

3.3: Result

To study the dynamics of copy number variant (CNVs) generation and selection

in fluctuating environments we combined continuous culturing using chemostats and a

dual-fluorescence CNV reporter in Saccharomyces cerevisiae. By alternating between

two different nitrogen-limiting conditions that each selects for gene duplication at a

unique genetic locus encoding a specific nutrient transporter, we established a model

for studying the effects of fluctuating selection on the structure, diversity and dynamics

of CNV-mediated evolution.
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Figure 3.3.1. The establishment of a model system for studying adaptive
evolution of CNVs in fluctuating selection. (A) Six strains were constructed with the
constitutively expressed fluorescence reporter genes mCitrine and mCherry and the
antibiotic markers kanMX and hygR. Two experimental strains were constructed in
which mCitrine was inserted adjacent to GAP1 and mCherry was inserted adjacent to
either MEP2 or PUT4. Four control strains were constructed with either one or two
copies of mCitrine or mCherry inserted at neutral loci. The fluorescence profiles of each
engineered strain is shown on the left for both fluorophores. Quantitative analysis of
fluorescence confirmed that fluorescent gene copy number corresponds with
fluorescence level. (B) Experimental evolution was performed using chemostats in
continuous mode in replicates of six different conditions. Three conditions were
inoculated with the GAP1-MEP2 CNV reporter and three were inoculated with the
GAP1-PUT4 CNV reporter. Both strains were also inoculated in two separate vessels of
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static glutamine-limitation. The GAP1-MEP2 CNV reporter was inoculated in four
vessels with static ammonium-sulfate-limitation, and four vessels that alternated
between glutamine-limitation and ammonium-sulfate-limitation every eight generations.
The GAP1-PUT4 CNV reporter was inoculated in four vessels with static
proline-limitation, and four vessels that alternated between glutamine-limitation and
proline-limitation every eight generations. Experimental evolution was performed for 250
generations for all conditions.

3.3.1 Fluorescence is a proxy measurement for gene copy number at

two distinct loci

We have previously developed a fluorescent CNV-reporter by inserting a

constitutively expressed mCitrine gene adjacent to GAP1, and found single cell

fluorescence to be a reliable reporter for changes in gene copy number during

experimental evolution. Here, we extended this reporter system to allow simultaneous

detection of CNVs at two genomic loci that are known to frequently undergo copy

number variation. We constructed two dual-fluorescence reporter strains in which

mCitrine was inserted adjacent to GAP1, and mCherry was inserted adjacent to either

MEP2, or PUT4. We also constructed haploid control strains with either one copy or two

copies of either mCitrine or mCherry inserted at neutral loci and found that copy number

can be inferred on the basis of fluorescence for both CNV reporters (Figure 3.3.1A).

We performed experimental evolution in either static conditions limited for a

single nitrogen source, or fluctuating conditions in which the media alternated

periodically between two different types of nitrogen-limitation. The period of fluctuation

was chosen based on the fact that many mechanisms that generate CNVs are DNA

replication-based. Therefore, fluctuations that are greater than generation time are more

likely to be meaningful intervals for the generation and selection of CNVs. For the
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GAP1-PUT4 CNV-reporter, the static conditions used were either glutamine-limitation or

proline-limitation, and for the GAP1-MEP2 CNV-reporter, the static conditions were

either glutamine-limitation or ammonium-sulfate-limitation. The fluctuating environments

for each genetic background alternated between the two respective static conditions

every eight generations. All populations were evolved for a total of 250 generations

(Figure 3.3.1B) with an effective population size of about Ne ≈ 3 × 107.

3.3.2 Periodic fluctuations in nitrogen quality do not alter cell size and

density

Chemostats have been largely used for studying steady-state growth in static

conditions. We have found that maintaining a constant limiting nitrogen concentration

while alternating between nitrogen sources does not affect population density or size.

Therefore, population growth rate, and therefore generation time, can be directly

estimated from the culture dilution rate using standard chemostat theory. Using flow

cytometry we also monitored forward scatter, a proxy for cell size, to determine whether

fluctuations in nitrogen source result in changes in cell physiology. In instances when

yeast cells are switched from growth on a less preferred nutrient source to a more

preferred source, changes in cell size have been observed, however, in our experiments

we did not find that cell size was significantly altered in fluctuating conditions (Figure

3.7.2).
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Figure 3.3.2. A dual-fluorescence CNV-reporter system simultaneously tracks
evolutionary dynamics of CNVs at two loci in static and fluctuating conditions.
Two dual-reporter strains were experimentally evolved in chemostats in 5 different
conditions over 250 generations; three static conditions which were glutamine-limitation
(Gln), proline-limitation (Pro), and ammonium-sulfate-limitation (AS), and two fluctuating
conditions alternating between either Gln and Pro or Gln and AS. Two replicate
populations were established with the PUT4-GAP1 CNV reporter and two with the
MEP2-GAP1 CNV reporter. For all other conditions, the genetic background of the CNV
reporter is indicated in the top left corner, and four replicate populations were
established. The left-hand axis indicates the mean fluorescence level of mCitrine in
each population and the right-hand axis indicates the mean fluorescence level of
mCherry in each population. The horizontal dashed gray lines represent the mean
fluorescence for the mCitrine and mCherry controls for 2-copy, 1-copy and 0-copies
respectively from from top to bottom.
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3.3.3 CNV evolutionary dynamics are condition- and genetic locus-

dependent

Mean CNV reporter fluorescence for a population provides an overview of CNV

dynamics in each condition for the three distinct genetic loci under study. As previously

observed, GAP1 duplications in glutamine-limitation predictably emerge and increase in

frequency consistently across replicate populations as evidenced by the sharp increase

in mean mCitrine population fluorescence starting around generation 70. This behavior

occurs in four populations, two of which are founded by the GAP1-PUT4 CNV reporter

and the other two founded by the GAP1-MEP2 CNV reporter suggesting that the

addition of a second fluorescent CNV reporter at a second locus does not impact the

dynamics of GAP1 CNV evolution in an appreciable manner. In static proline-limitation,

two populations undergo a decrease in mean mCitrine fluorescence to levels similar to

control strains that have no mCitrine suggesting that GAP1 deletions have increased in

frequency. This is consistent with a trade-off between fitness in glutamine-limitation and

fitness in proline-limitation potentially mediated by the presence of GAP1. In contrast,

GAP1 does not seem to have a similar fitness trade-off in ammonium-sulfate-limitation

in which none of the populations undergo increases or decreases in mCitrine

fluorescence. Assuming that the mutation rate of GAP1 is constant between conditions,

these results indicate that the selective pressure is the primary determinant of the

observed dynamics.

In static ammonium-sulfate-limitation, the absence of increases in mean mCherry

fluorescence suggests that MEP2 does not undergo copy number increases at
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appreciable frequencies. In contrast, in proline-limitation mean mCherry fluorescence

increases indicating that PUT4 increases in copy number. Mean fluorescence for both

the GAP1 reporter in glutamine-limitation and for PUT4 in proline-limitation exceeds

mean fluorescence levels of the 2-copy controls which suggests that increases in copy

number greater than two-fold underly the observed dynamics. PUT4 dynamics are

unique in comparison to GAP1 in that they show a sharp decline in copy number after

generation 200, which could indicate that new mutations have arisen that confer greater

fitness for cells in the population or that having such a high abundance of PUT4

transporters in the population results in a depletion of environmental proline, resulting in

a circumstance in which increased copy number of PUT4 no longer confers a fitness

advantage and is possibly deleterious. While the externally imposed environmental

condition is static (i.e the concentration of proline is provided at an invariant rate), this

may be an example of fluctuating selection that is mediated by the evolution in the

population gene pool, which gradually shifts the selective pressure from the ability to

scavenge nitrogen to pressure elsewhere, potentially towards metabolism or other

processes downstream of nutrient import.

The relationship between fluctuating conditions and static conditions is complex.

Environmental fluctuations do not simply result in an average of dynamics of the two

corresponding static conditions. For example, in one population fluctuating between

glutamine-limitation and proline-limitation, the GAP1 mean fluorescence of the reporter

oscillates in frequency, whereas in other populations it appears as though the fluctuation

reduces the rate at which CNVs increase in frequency. In some populations undergoing
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fluctuating selection there is no apparent increase in GAP1 CNVs.  Similarly, fluctuating

between glutamine- and ammonium-sulfate limitation results in either transient

increases in GAP1 amplifications or a complete absence of amplifications.

Figure 3.3.3. Muller plots of copy number variants detected using the GAP1-PUT4
CNV reporter. The proportion of the populations containing zero, one, two and three
plus copy number of either GAP1 or PUT4 is displayed. Green represents GAP1 CNvs
detected using the mCitrine CNV reporter and red represents mCherry signal reporting
on PUT4 CNVs.
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3.3.4 Different gene copy numbers per cell are the drivers of

adaptation at different temporal phases

Mean fluorescence gives a general summary of CNV frequency in a population,

however, it is not informative about the diversity of classes of CNVs that contribute to

the dynamics. To assess the contribution of individual CNV classes we used single-cell

fluorescence profiles from flow cytometry analysis. We used the constructed fluorescent

controls to define the fluorescent signal from zero, one, two, and three plus copies of a

particular reporter. Muller plots were generated by assigning the parental strain to one

copy of each allele tracked by either mCitrine or mCherry. In static glutamine-limitation,

the initial rise in GAP1 CNV frequency is a result of individuals with two copies of the

allele, followed by a second wave of selection for individuals with three copies or more.

While both conditions undergo complete sweeps of two or more GAP1 CNVs, the

decrease in total signal observed in replicate 2 relative to replicate 1, is explained by the

smaller proportion of three plus GAP1 CNVs. We also found that a subpopulation with

two copies of PUT4 arose in replicate 2 towards the end of the experiment suggesting

that either PUT4 CNVs have a previously unrecognized advantage in glutamine-limiting

environments, or that PUT4 duplications occur frequently and may have risen in

frequency as a result of a hitch-hiking event.
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3.3.5 A dual-color CNV reporter increases precision in detecting true

CNV events

Changes in gene copy number in haploid yeast occur through mechanisms such

as DNA polymerase slippage and nonhomologous end-joining. During experimental

evolution, however, haploid yeast cells are known to self-diploidize to generate

MATa/MATa and MATɑ/MATɑ genotypes (Venkataram et al. 2016) and in some

instances spontaneous mating type switching results in a MATa/MATɑ genotype in

otherwise clonal haploid populations (Harari, Ram, and Kupiec 2018). It is difficult to

distinguish between an increase in fluorescence that is due to changes in copy number

in haploid cells and an increase in fluorescence due to diploidization without performing

additional assays that measure DNA content. Using two fluorescent gene reporters on

different chromosomes results in a correlation between changes in mCitrine and

mCherry fluorescence when both chromosomes are amplified as a result of the same

mutational event such as the likely diploidization and the less likely whole genome

duplication. In replicate 4 of the fluctuating condition between glutamine-limitation and

ammonium-sulfate-limitation and in replicate 2 of the static ammonium-sulfate-limiting

conditions, fluorescence in two loci mirror one another and are likely diploidization

events (Figure 3.3.2).

77

https://paperpile.com/c/EL9Zm7/mJMv
https://paperpile.com/c/EL9Zm7/g7mfi


Figure 3.3.4. The proportion of CNV specialists, and generalists in the GAP1-PUT4
CNV reporter. Specialists A are individuals with amplifications of GAP1, Specialists B
are individuals with amplifications of PUT4, and Generalist defines individuals with
amplifications of both GAP1 and PUT4. The frequency of each strategy is shown across
250 generations with the top panel showing adaptation in glutamine-limitation, the
bottom panel in proline-limitation and the middle panel in fluctuations between the two.

3.3.6 Fluctuating environments select for CNV-generalists

Understanding the change in copy number variation at two distinct loci is

informative; however, understanding how CNVs within individual cells interact is

informative about the evolutionary strategies co-opted in a population. Since CNVs can
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readily form, they may be a rapid way in which an individual can switch back and forth

between being a specialist and a generalist. We predicted that static conditions would

select for specialists, i.e. individuals with increases in transporter gene copy number at

a single locus that import the respective limiting nutrient. We found that in

glutamine-limitation GAP1-CNV specialists rise to frequency as expected. However, we

also find that CNV-generalists, in which individuals with increased copy number of both

GAP1 and PUT4, also increase in frequency in two replicate populations and comprise

~20-25% of individuals with GAP1 CNVs at the final timepoints. This indicates that the

initial rise in GAP1 CNVs is determined by the rise in GAP1 specialists, whereas, at

later stages GAP1-PUT4 generalists play a significant role in increasing CNV allele

frequency. This result is unexpected as there is no known reason for which increased

PUT4 copy number would result in increased fitness during glutamine-limitation (Figure

3.3.4). Interestingly, in two other glutamine-limiting populations in which the

GAP1-MEP2 CNV reporter was used, a similar trend is observed despite the absence of

MEP2 CNVs in ammonium-sulfate-limitation (Figure 3.7.4).

In static proline-limiting conditions, PUT4-CNV specialists arise in all four

replicate populations to frequencies between 30-75% of the population. Unlike the static

glutamine-limiting condition, CNV generalists were not observed. The fluctuating

environment shows the most heterogeneity in adaptive response. In replicate 1 the

PUT4-CNV specialists reach the highest frequency at around 20%. In replicate 2 the

GAP1-CNV specialist reaches the highest frequency at around 50%, however, this class

of variation  follows an oscillatory trajectory, consistent with specialist behavior in which
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increases occur when  glutamine is the sole nitrogen source and decreases occur when

proline is the sole nitrogen source. Replicate 3 showed a sharp increase in frequency of

the GAP1-PUT4-CNV generalist to a frequency of 80% suggesting that this strategy is

beneficial under selection in fluctuating environments. Replicate 4 showed no visible

increases in frequency in alleles for either GAP1 or PUT4 suggesting that adaptation

has proceeded through a different mutational path, potentially SNVs.

These results suggest that static environments select for greater repeatability of

outcome in comparison to fluctuating environments likely both in terms of the types of

mutations that arise, as well as the selective pressure imposed despite the fluctuating

environment being the same across four replicates and being periodic in nature.

3.4: Future and ongoing work

3.4.1 Fluctuating selection results in greater diversity

Several additional pieces of work must be undertaken in order to complete this

study and these experiments are described below.

1) DNA has been sampled from the first experimental evolution, described in

detail in this chapter, for whole population whole genome sequencing. I have performed

sequencing for a fraction of the samples, however, additional sequencing must be

performed to address questions about which mutations such as indels and SNVs and

other structural variants exist in the population and how they vary over time. This will
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also inform CNV dynamics as other mutations may be responsible for the changes in

frequency and fitness of CNVs as evolution progresses.

2) While I was able to observe the dynamics of CNV frequency changes, it

remained unclear whether the rise in frequency was due to strong selection or

recurrence in mutation. It was also unclear whether reversion events were occuring,

especially in fluctuating environments, in which one population underwent oscillations in

CNV frequency. To address these questions unique barcodes were inserted by using

the Levy barcoding system. Since we had previously observed negative fitness effects

resulting from the placement of the barcode landing pad adjacent to the DUR1,2 locus,

for these experiments the landing pad was moved to the neutral locus, URA3, and

500,000 unique barcodes were inserted into the two experimental dual-CNV reporter

strains. The long-term experimental evolution experiments we performed again but with

the barcoded strains and DNA was sampled for barcode sequencing once a week. So

far, I have identified that in time point zero we have barcode diversity that falls in the

range of 60,000 - 200,000 barcodes per population, however, this experiment is ongoing

and results will be completed in the near future. Additionally, in these new experiments I

have added two additional static conditions with mixed nitrogen sources which are

either proline + glutamine-limitation or ammonium-sulfate + glutamine-limitation. The

goals of adding these conditions is to understand whether the temporal element of

being exposed to one nitrogen source versus two nitrogen sources is the important

factor in the dynamics and outcomes of evolution or whether static conditions that
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deliver the same amount of nitrogen on average despite being static are responsible for

the evolutionary dynamics that were observed.

3) The second long-term experimental evolution run performed which included

barcodes will be important for additional analyses. I plan to map the trajectories of the

unique barcodes in each population. I will investigate whether there is a

condition-dependent effect on the maintenance of diversity, as was seen in Chapter 2,

or not. Using barcoding data I will be able to quantify the fitness of each lineage in each

population. Additionally, by combining fluorescence-activated cell sorting (FACS) with

barcode sequencing I will be able to probe which specific class of CNVs is associated

with which barcodes. For example by sorting cells that only have amplifications in GAP1

versus cells that only have amplifications in PUT4 versus cells that have both, I would

be able to understand whether CNV reversions occur or not. If the same barcodes

consistently make up one of the CNV classes through the 250 generations of the

experiment, then this would support that reversions minimally contribute to the

dynamics of CNV evolution.

4) Finally, I discuss the different classes of CNV individuals including GAP1-CNV

specialists, PUT4-CNV specialists, and GAP1-PUT4-CNV generalists. While I

hypothesize that having amplifications in both GAP1 and PUT4 results in genotypes that

are beneficial under both glutamine-limitation and proline-limitation (i.e. generalists) this

needs to be validated. I plan to isolate potential CNV-specialists and potential

CNV-generalists and to perform fitness assays in three static conditions,
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glutamine-limitation, proline-limitation, and glutamine + proline-limitation, and a

condition fluctuating between glutamine-limitation and proline-limitation to understand

the fitness effects of the different combinations of CNVs in cells.

3.5: Discussion

In this study we investigated the effect of environments that fluctuate periodically

in nitrogen quality on the generation and selection of CNVs. We find that static

conditions result in more repeatable dynamics with stronger selection in which CNVs

rise in a frequency within the first 100 generations. These dynamics, however, were

locus-dependent as they were observed for GAP1 and PUT4, but not for MEP2.

We also found that fluctuating environments resulted in less predictable

dynamics in which there was greater variation between population replicates. In some

populations CNVs did not seem to be the main drivers of evolution, whereas in others

CNV frequency oscillated periodically, likely matching the fluctuations in media type.

And in one population we observed increases in CNVs at the two loci that were under

fluctuating selection.

By classifying individuals with CNVs at two loci as generalists and individuals

with CNVs at one locus as specialists, we observed that static conditions reliably

selected for specialists, with the exception of glutamine-limitation in which it appeared

that a proportion of the population was composed of generalists. Further

characterization of these genotypes is required to determine whether these increases in
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allele number are a result of diploidization or if they are true amplification at both loci.

Finally we find that in fluctuating environments some populations have changes in CNV

specialist frequency and in one population CNV generalists reach up 80% of the

population suggesting that adaptation progresses through several different routes

during environmental fluctuations which may be determined by which mutations occur

first early during evolution.

This study sheds light on the important effect of CNV formation during evolution

in temporarily fluctuating conditions and suggests that further studies are required to

understand the contribution of other types of mutation in determining the different

possible routes in which evolution can progress.

3.6: Methods

3.6.1 Media and growth conditions

Nitrogen-limiting media (glutamine, proline, and ammonium-sulfate) contained

800 μM nitrogen regardless of molecular form and 1 g/L CaCl2-2H2O, 1 g/L of NaCl, 5

g/L of MgSO4-7H2O, 10 g/L KH2PO4, 2% glucose and trace metals and vitamins as

previously described (Hong and Gresham 2014). Media with two nitrogen sources

contained 400uM nitrogen of each source to a total of 800uM nitrogen.

We inoculated the dual-fluorescent CNV reporter strains into 20-mL ministat

vessels (A. W. Miller et al. 2013). For static conditions either glutamine-, ammonium

sulfate-, or proline limited media was continuously pumped into vessels. For fluctuating

conditions in which we alternated between two media types every 48 hours, we
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manually switched media type by connecting two media carboys to each ministat vessel

and using plastic clamps to close one inlet and open the other. Control populations

containing either one or two copies of the CNV reporter replacing neutral loci (HO and

YLR122/23C) were also inoculated in ministat vessels for each media condition.

Ministats were maintained at 30°C in aerobic conditions and diluted at a rate of 0.12

hour−1 (corresponding to a population doubling time of 5.8 hours). Steady-state

populations of 3 × 107 cells were maintained in continuous mode for 250 generations

(60 days). Every _ generations, we archived 2-mL population samples at −80°C in 15%

glycerol, and 2mL in storage solution (0.9M sorbitol, 0.1M EDTA, 0.1M Tris).

3.6.2 Strain construction

We used FY4, haploid and diploid derivatives of the reference strain S288c, for

all experiments. S1 Table is a comprehensive list of strains constructed and used in this

study. To generate dual-fluorescent CNV-reporter strains, we used the CNV-reporter

strain generated in (Lauer et al. 2018) with the constitutively expressed mCitrine gene

marked by the KanMX G418-resistance cassette (TEFpr::KanMX::TEFterm) inserted

adjacent to the GAP1 locus as our base strain. We constructed a plasmid using gibson

assembly where the cassettes were generated by PCR amplification of the entire

mCitrine plasmid with the exclusion of the mCitrine ORF and the PCR amplification of

the ORF of mCherry from a plasmid from___. We performed high-efficiency yeast

transformation (Gietz and Schiestl 2007) with the mCherry gene under control of the

constitutively expressed ACT1 promoter (ACT1pr::mCherry::ADH1term) and marked by

the HygR G418-resistance cassette (TEFpr::HygR::TEFterm) and inserted it either
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adjacent to PUT4 (integration coordinates, Chromosome XIII: 000–000), or MEP2

(integration coordinates, Chromosome XIII: 000–000). For 1-copy control strains, either

the mCitrine or mCherry reporter was integrated at one of two neutral loci: either

replacing HO (YDL227C) on Chromosome IV or replacing the dubious ORF,

YLR122/23C, on Chromosome XII. To generate either 2-copy mCitrine or mCherry

haploid controls, we mated the 1-copy controls, sporulated and dissected the resulting

diploids. PCR and Sanger sequencing were used to confirm integration of the CNV

reporters at each location.

For lineage tracking, we constructed a strain containing a landing pad and the

dual-fluorescence CNV reporters by reconstructing the landing pad (LP) plasmid by

replacing the kanMX marker with natMX. We PCR amplified the LP fragment using

primers with 40bp homology to the upstream and downstream region of URA3. A high

efficiency transformation was performed to integrate the cassette replacing the URA3

gene. Transformants were plated on natMX plates to select for positive transformants.

Transformants were confirmed by replica plating on 5-FOA plates and through colony

PCR of the 5’ and 3’ junctions, and subsequent sanger sequencing of the products.

Whole genome sequencing of these strains was also performed. We introduced a

library of random barcodes (Levy et al. 2015) by transformation and selection in liquid

agar. mCitrine controls were used from Lauer et al. 2018, and mCherry controls were

designed using an mCherry-hyg strain by making primers with 40bp homology to

amplify the DNA fragment. A high efficiency yeast transformation was performed.
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3.7: Supplementary figures

Figure 3.7.1. Control strains experimentally evolved in three distinct conditions
for 250 generations. Control strains include either 1 copy mCitrine, 1 copy mCherry, 2
copies mCitrine, or 2 copies of mCherry inserted at neutral loci. The red line represents
mCherry fluorescence levels, and the green line represents mCitrine fluorescence
levels.

87



Figure 3.7.2. Forward scatter, a proxy measurement for cell size, shows minimal
change across conditions. (A) Mean forward scatter across experimental evolution
time is shown for each condition which is made up for replicate populations. (B)
Boxplots of mean forward scatter for static proline-limitation (Pro) and
glutamine-limitation (Gln) and fluctuating between proline-limitation and glutamine
limitation with the anova test performed pairwise for all three conditions, n = 52. (C)
Boxplots of mean forward scatter for static ammonium-sulfate-limitation (AS) and
glutamine-limitation (Gln) and fluctuating between proline-limitation and
glutamine-limitation with the anova test performed pairwise for all three conditions and a
t-test to determine significance, n = 52.

88



Figure 3.7.3. Muller plots of copy number mutations in the GAP1-MEP2 CNV
reporter. The proportion of zero, one, two and three plus copy number of either GAP1
or MEP2 is visualized in muller plots. The green muller plots represent mCitrine and by
proxy GAP1 and the red muller plots represent mCherry and by proxy MEP2.
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Figure 3.7.4. Plots showing proportion of CNV specialists, and generalists in the
GAP1-MEP2 CNV reporter. Specialists A are individuals with amplifications of GAP1,

Specialists B are individuals with amplifications of MEP2, and Generalist defines
individuals with amplifications of both GAP1 and MEP2. The frequency of each strategy

is shown across 250 generations with the top panel showing adaptation in
glutamine-limitation, the bottom panel in ammonium-sulfate-limitation and the middle

panel in fluctuations between the two.
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Chapter 4: Constructing a new lineage tracking barcode system

This chapter is based on work performed with Dr. Chris Jackson.

4.1: Abstract

Lineage tracking is a useful method for the study of adaptive evolutionSynthetic

barcodes are random DNA sequences that are heritable and when inserted into the

genome of individual cells in isogenic populations, allow the identification of

descendents of particular ancestral cells for hundreds of generations. Recently Levy et

al. developed a synthetic DNA barcode system for use in Saccharomyces cerevisiae

and it has been widely used to address  important evolutionary questions about the

dynamics of clonal interference and genetic diversity in evolving microbial populations.

Although the Levy system has been effective in pioneering the use of barcoding in

microbial populations, we have observed that it causes a fitness reduction as a result of

positional effects and genetic load. Here we present the development of a novel

CRISPR-based barcoding system that is simple to use and minimizes negative fitness

effects.

4.2: Introduction

Tracking how mutations arise and are selected in populations poses several

technical challenges that have hindered the study of adaptive evolution. The dynamics

of evolution are a product of both the mutation rate and selection coefficients, making it

difficult to tease apart the respective contributions of each process. Historically, the
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dynamics of evolution have been tracked through the measurement of phenotypic and

morphological traits. However, traits that can be traced to multiple genetic loci have

made these measurements susceptible to erroneous conclusions. In the age of

genomics in which high throughput DNA sequencing is used to identify specific

mutations, our ability to tease apart genetic loci in polygenic traits has significantly

improved. However, tracking the frequency of a mutation does not distinguish between

mutation recurrence and selection.

DNA barcodes are stretches of DNA sequence that can be used as unique

cellular identifiers and have been implemented in a variety of experimental designs.

DNA barcodes are at the foundation of how phylogenetic relationships are resolved.

Carl Woese was the first to apply the use of DNA “barcodes” in conjunction with DNA

sequencing, when he constructed the tree of life using the endogenous variable region

of rDNA, a DNA sequence that is ubiquitous across all domains of life. In recent

decades the use of synthetic DNA barcodes, which are artificially engineered DNA

sequences, has exploded in a variety of applications including, genetic screens,

multiplexing of sequencing samples (Lyons et al. 2017) and lineage tracking (Lyons et

al. 2017; Levy et al. 2015).

Levy et al. developed a method in which individual cells in a population are

uniquely tagged with synthetic DNA barcodes that are integrated into the genome.

When the barcoded population is propagated over hundreds of generations under a

selective pressure, each lineage can be identified and tracked as populations adapt.
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Tracking lineages over generations opens the door to studying the dynamics of

evolution with unprecedented precision. Combining barcode sequencing with

whole-genome DNA sequencing distinguishes between whether mutations have arisen

recurrently or whether a single sweep is responsible for the increase in frequency of a

particular mutation. DNA barcodes also allow for the study of how diversity in a

population changes over time (Blundell et al. 2017) and the performance of pooled

fitness assays of evolved individuals instead of classic pair-wise fitness assays (Blundell

et al. 2017; Venkataram et al. 2016). The use of DNA barcodes during experimental

evolution permits the high-resolution visualization of the process of adaptation and the

tackling of several age-old questions about adaptive evolution processes.

Figure 4.2.1 Levy et al’s barcoding system. (A) 12,718 additional base pairs are
inserted and retained in the genome for successful barcoding. Features are annotated
including BC2 which is the site of the 26bp unique DNA barcode. (B) The region that
contains the DNA barcode required for lineage tracking.
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Levy et al.’s barcoding system works using a two-step transformation in which a

“landing pad”, which includes the Cre recombinase and half of URA3, is first integrated

into the genome in a region adjacent to DUR1,2. A plasmid library with a backbone

including the second half of URA3 and an integrated barcode with high complexity is

then transformed into the Saccharomyces cerevisiae strain. The galactose-inducible

Cre recombinase, a bacteriophage topoisomerase that catalyzes the site-specific

recombination of DNA between loxP sites, is activated by the addition of galactose. Cre

mediates the integration of the unique barcodes demarcated the loxP site in the landing

pad. While the DNA barcode is only 26bp long resulting in minimal alterations to the

genome, the entire cassette is maintained in the genome, representing  over 12kb of

additional DNA (Figure 4.2.1). The location of such a large construct can have

significant positional effects. Indeed, we have found that yeast cells barcoded with this

system are unable to grow in media with urea as the sole nitrogen source likely a result

of a perturbation to the adjacent Urea metabolism genes including the Urea amidolyase

encoded by Dur1,2, which degrades urea to CO2 and NH3.
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Figure 4.2.2 Fitness assays of two genotypes barcoded with the Levy barcoding
system. Growth curve assays were performed in triplicate for three different strains in
batch proline-limiting media.

We have attempted to alleviate this issue by moving the Levy barcoding system

to the neutral URA3 locus (Chapter 3). We constructed two strains DGY2543 and

DGY2546 (described in detail in Chapter 3), each with a different genetic background,

which were barcoded with the Levy system at the URA3 locus. Doing so showed a

slight but noticeable defect during growth in proline-limitation in comparison to the

wild-type strain further underscoring the importance of creating a less burdensome

barcoding system. This effect was evident both in showing an increased lag phase and

a lower growth rate during exponential phase (Figure 4.2.2). While barcoding is an

important tool for studying the dynamics of evolution, there remain multiple issues that

must be addressed to ensure the creation of a versatile and non-deleterious barcoding

system.
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In this chapter, I describe construction of a novel barcoding system for lineage

tracking during experimental evolution, with the goal of creating a system that minimizes

genetic load, with minimal positional-effects, and is simple to construct and use.

4.3: Results

One of the issues with inserting synthetic DNA barcodes into genomes is that the

ability to target them efficiently into a specific location requires the insertion of other

regulatory genetic material. In the Levy barcode system, a ‘landing pad’ is inserted

through homologous recombination adjacent to DUR1,2, which is used to target the

insertion of the plasmid barcode library to that location by Cre-lox. The edited locus after

the completion of transformation, includes many regulatory elements for the process,

including a full Cre ORF, a truncated Cre ORF, and numerous unessential drug markers,

one of which is the E. coli drug marker AmpR. The location and size of additional DNA

are deleterious in certain conditions. To bypass this issue we designed a system that

results in a cleanly barcoded region at a neutral locus in the genome.

4.3.1 Overview of new barcode lineage tracking system

CRISPR/Cas9 has been widely used for targeted genome editing because of its

high efficiency. CRISPR systems are composed of two components: 1) a guide RNA

(gRNA) sequence that is complementary to the region that is the target of editing and 2)

CAS9, the protein that cleaves the DNA that the gRNA targets enabling the

insertion/deletion of DNA. Transfection of CAS9 is either stable or transient and is
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frequently delivered by a vector (H. Wang, La Russa, and Qi 2016). It is attractive to

have a stable system when cell lines must be propagated, however, in instances where

CAS9 will be used once to edit the genome, it is preferable to delete or suppress its

expression afterwards as off-target effects are known to occur in the presence of

constitutively expressed CAS9.

We designed a barcoding system in which CAS9 is galactose-inducible, to

minimize off-target effects when it is inactivated. CAS9 is integrated into the genome at

the neutral locus YPRCdelta15, which is an inactive retrotransposon that has lost

functionality. A “suicide casette”, containing the gRNA sequence adjacent to its target

sequence, an exogenous sequence from Bacillus subtlis, is inserted replacing the URA3

locus. CAS9 mediates the insertion of a cassette from a high-complexity plasmid library

with a unique barcode adjacent to the wild type URA3 sequence replacing the original

“suicide casette” restoring wild type function of URA3 and resulting in a DNA barcode

that is ~20bps in size with no additional surrounding sequence coding for regulatory

machinery with the exception of the inducible CAS9 and nourseothricin resistance drug

marker (NatR) at YPRCdelta15 which is 5,642 bps long, less than half the size of the

levy barcoding system (Figure 4.1.1).
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Figure 4.3.1 Lineage barcoding design overview. (1) + Neurseothricin selection for
the insertion of NatR-Cas9 cassette at YPRCdelta15 neutral locus. (2) + 5-FOA
selection for the gRNA suicide casette at the URA3 locus. (3) - URA3 selection with
galactose enables Cas9 to excise the gRNA suicide casette and replace with the unique
lineage tracking barcode plasmid library.

4.3.2 Constructing a Gal-inducible Cas9 yeast strain

We constructed a Gal-inducible CAS9 plasmid by Gibson assembly of the native

yeast GAL1,10 promoter, the CAS9 coding sequence, and a constitutively expressed

NatMX cassette (Figure 4.3.2A). We performed selection on media with Nourseothricin

and identified five potential transformants. We performed a confirmation PCR using a

three-primer design (Figure 4.3.2B) and isolated the strain DGY2280. We sought to

validate whether CAS9 expression was functioning as expected and as such we grew
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DGY2280 in galactose and glucose as the control and performed a western blot with an

anti-CAS9 antibody. We found that protein expression of CAS9 was minimal at time

zero in both conditions but in galactose expression was strongly expressed after 8

hours confirming that CAS9 is inactive in the absence of galactose and is activated in

the presence of galactose. Cas9 is around 160 kDa in size and while our gel is not able

to fully resolve this size, we do see the band between 150-250 kDa as expected in a gel

with low resolution. There was a band that is believed to be noise in the western blot

which ran at around 60kDa and was present in both conditions across all timepoints

(Figure 4.3.2C). We found no noticeable growth effects as a result of the genetic

manipulation (Figure 4.3.2D).
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Figure 4.3.2 Insertion of galactose-inducible Cas9 at a neutral locus. (A)
Assembled plasmid with the NatMX cassette, gal promoter, and Cas9 coding sequence.
(B) PCR gel of potential transformants with the Cas9-NatMX cassette inserted at the
YPRCdelta15 locus in lanes A, B, C, E and F. Lane D is a negative control where the
Cas9-NatMX cassette was not inserted and lane G is a negative control with no DNA
template. (C) Anti-Cas9 western blot of a time series where DGY2280 is grown on
either glucose or galactose. (D) Growth curves of wildtype yeast and DGY2280 in YPD
+ 2% glucose.

4.3.3 Constructing gRNA plasmids

To construct the gRNA “suicide cassette” plasmid we assembled the base

plasmid, DGP353, with GFP flanked by two different exogenous sequences from

Bacillus subtilis as orthologous gRNA targets that are unique and absent from the yeast

genome to minimize accidental DNA cleavage in other locations in the genome. To
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ensure that the gRNA efficiently targets it’s complementary sequence, we designed

three different gRNAs targeting unique regions in the B. subtilis sequence. In addition,

we designed a negative control comprising a gRNA that is not complementary to the B.

subtilis sequence or any other sequence in the yeast genome. To ensure that the gRNA

does not have off-target effects, growth rate will also be compared to DGY2280 the

strain without a gRNA. The four different double stranded gRNAs were each

independently inserted into DGP353 to make four plasmids, in which successful

insertion replaced GFP and resulted in non-fluorescent E. coli (Figure 4.3.3B). With

these constructions I have laid the foundation for the creation of a new barcoding

system, however, several steps remain to be performed to complete and test this

system.

Figure 4.3.3 Golden gate performed to create the gRNA plasmid. (A) DGP353 is the
plasmid constructed with the base suicide casette which includes GFP before the gRNA
sequence is inserted replacing GFP. (B) Golden gate assembly is used to replace GFP
in DGP353 with four different potential gRNAs and a water control. Successful
replacements, circled with red, result in colonies that do not glow under blue light.

4.4 Future work: Creation of a high-complexity barcode plasmid library
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In the future, the PCR amplification of each of the “suicide cassettes” must be

performed and followed by the transformation of each cassette independently into

DGY2280 using 5-FOA selection to select for successful integration (Figure 4.3.1).

This would result in three potential barcoding strains and a control strain.

Figure 4.4.1 Completion of the barcode system. (A) The construction of the plasmid
library requires a backbone with AmpR for ampicillin selection E. coli and wildtype
URA3 for selection during transformation into yeast. 100,000 DNA barcode oligos are
inserted into the backbone through restriction digest and ligation (B) The plasmid library
is the transformed into four different yeast strains with either gRNA 1, gRNA 2, gRNA 3,
and the negative gRNA with no complementation in the genome.

A plasmid library will be constructed by synthetically ordering one hundred

thousand unique degenerate oligonucleotides that are 20 base pairs long. These

oligonucleotides will be inserted into a plasmid upstream of the wildtype URA3 gene. A

golden gate cloning reaction using a Type IIs restriction enzyme in a cyclic reaction with

T4 DNA polymerase will insert the degenerate library into the URA3 replacement

cassette to create a high complexity barcode library. This library will be transformed into

E. coli and grown out in a 1L soft agar selection media, which allows bacterial colonies

to grow in three dimensions without clonal interference (Figure 4.4.1A). The plasmid
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library will be extracted with a standard maxiprep and transformed into the four

constructed yeast strains in the presence of galactose to activate the transcription of

Cas9. Each yeast strain has one of the four gRNA sequences, three that are expected

to have a complementary sequence as part of the “suicide casette” that is transformed

into the yeast, and a fourth that is expected to not have a genomic complementary

sequence and there would act as negative control (Figure 4.4.1B). gRNAs might have

lowered efficiency of reaction despite having a complementary sequence which is why it

is important to test three different sequences. The control is important to set a baseline

transformation efficiency that is not dependent on the CRISPR/Cas9 system and

complementarity. Transformation efficiency will be assessed by observing the

percentage of transformed cells that result in colony forming units on the URA- selective

plates. Strains will then be tested for barcode complexity by performing amplicon

sequencing on the Illumina NovaSeq6000 platform and counting unique barcodes by

using the Bartender algorithm. The strain with the highest transformation efficiency and

DNA barcode complexity can then be used for lineage tracking experiments. Once the

these initial experiments are performed and it is known which gRNA plasmid results in

the greatest barcode complexity, future experiments in which lineage tracking may be

performed in strains with different genetic backgrounds, the process would only require

the three-step transformation using the single efficient “suicide casette”.

4.5: Discussion

We have laid the foundation for the creation of a new barcode lineage tracking

system that is minimally invasive and in theory can be easily constructed in any yeast
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strain. By combining the Gal-inducible Cas9 with a 3-step transformation it is possible to

establish this novel barcoding system.

4.6: Conclusion

Lineage tracking is a powerful method to tackle questions about the laws of

evolution. The present theoretical framework surrounding evolution in fluctuating

environments is based on a combination of decades of hypotheses, indirect

observations of the outcomes of evolution, and mathematical modelling, with a dearth of

real examples of evolution observed in real-time. With the rapid technological advances

of synthetic biology and next generation sequencing it has become possible to directly

track the dynamics of the molecular bases of evolution with unprecedented precision.

The use of synthetic DNA barcodes allows researchers to have experimental models of

evolution in changing environments to make the leap from purefly theoretical

hypotheses of how adaptation occurs to an understanding rooted in empirical evidence.

The use of DNA barcodes is not only useful in experimental models but is also

imperative in studying evolution in natural populations such as in models of the gut

microbiome, which would have medical implications by informing the design of

probiotics and antibiotics. DNA barcodes are also useful when used in bacterial systems

that are known to undergo both vertical gene transfer through replication, and horizontal

gene transfer through conjugation and other within generation methods of sharing DNA.

The dynamics of horizontal gene transfer have been especially challenging to study

since they occur over very rapid timescales and can be elusive to detection through
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DNA sequencing alone. The useful applications of synthetic DNA barcodes for lineage

tracking highlight the importance of the development of an easy to use system with

minimal fitness consequences.

4.7: Methods

4.7.1 Construction of plasmids

Three plasmids were constructed to DGP352, DGP353, DGP354 (Table 4.1). All

plasmids were cloned using Gibson assembly in a pUC19 backbone and constructions

were confirmed using sanger sequencing. DGP352 was constructed by combining GAL

promoter driving Cas9 expression and NatR from the same bidirectional promoter. NAT

is from DGP328. Cas9 from DGP290. Gal1/10pr from genomic DNA. NAT terminator is

tPRM9 from yeast genomic DNA. DGP353 was constructed by combining a sequence

from Bacillus subtilis taken from DGP104. The B. subtilis sequence is interrupted by a

sequence from DGP290 that contains the promoter elements required for gRNA

expression and a GFP gene. The GFP can be excised using BsmBI to insert specific

gRNAs. DGP354, DGP355, DGP356, DGP357 were constructed by using DGP353 as

the base plasmid and using golden gate assembly to replace GFP with the respective

guide RNA. gRNAs were prepared by annealing complementary primers by heating in a

heat block to 95C for 5 minutes and then removing the heat block to allow for slow

cooling for 45 minutes. Four gRNAs were designed where three were positive tests that

are targeted to different locations in the B. subtilis sequences and one gRNA is the

negative control constructed to target no sequence.
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Table 4.6.1. Plasmids used in this chapter

Plasmid Number Plasmid Name

DGP352 pUC19-GAL1-Cas9

DGP353 pUC19-gRNA-SUICIDE

DGP354 pUC19-gRNA1

DGP355 pUC19-gRNA2

DGP356 pUC19-gRNA3

DGP357 pUC19-gRNA-negative
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Chapter 5: Conclusion

5.1 Summary

In this dissertation, I have sought to understand the impact of fluctuating

environments on the course and outcomes of adaptive evolution in S. cerevisiae. The

selective pressure that fluctuating environments impose is complex and challenging to

study. Here, I used chemostats to undertake experimental evolution which has the

benefit of controlling for variables external to changes in nutrient content, such as

growth rate and population size. By combining experimental evolution in the lab with

molecular biology and next generation sequencing I was able to identify principles that

govern selection in environments that fluctuate periodically in nutrient concentration and

in nutrient quality.

In chapter 2, I addressed the question of how periodic fluctuations in nutrient

concentrations impact populations with pre-existing genetic variation. I used a synthetic

population comprising isogenic cells that differ by single gene deletions at all

nonessential genes in S. cerevisiae. I fluctuated the concentration of both carbon and

nitrogen reciprocally over four periods and tracked the frequencies of ~4000 unique

genotypes in each population. I found that even over short-term selection, the effect of

periodically fluctuating environments on population diversity is profound. In three

periodically fluctuating environments, that different either in the magnitude of the

fluctuation or in the quality of nutrient, increased diversity was maintained in comparison

to two static environments. Previously, the effects of environmental fluctuations have

been contradictory and ambiguous, however, our study offers a highly controlled
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experiment that shows definitively that fluctuating selection results in the maintenance

of greater genetic diversity in comparison to static conditions regardless of the

magnitude of the fluctuation and over multiple types of nutrients.

I showed that the maintenance in diversity is driven by two main factors 1)

weakened selection and 2) genotypes that oscillate in frequency of abundance. By

performing mathematical modeling of the growth dynamics of each of the ~4000

genotypes I was able to identify several growth behaviors that are condition-dependent.

Contrary to the classical approach in which microbial fitness is measured assuming

monotonic behavior, when polynomial models were fit to growth, a large proportion of

genotypes were found to follow either quadratic or cubic behavior. Surprisingly, I also

found oscillating genotypes with a period that matched that of the fluctuation period

uniquely in fluctuating environments. Fluctuating conditions harbored the greatest

proportion of genotypes that showed neutral growth. These two behaviors resulted in

the maintenance of a greater number of unique genotypes in the population which

effectively maintained greater diversity. From this lab-controlled experiment with

high-resolution sampling I was able to show how periodically fluctuating selection can

result in the maintenance of genetic diversity and the forces that result in this

phenomenon.

In Chapter 3, I  performed a study to determine whether diversity is maintained

under fluctuating selection over long-term adaptive evolution in which populations have

an opportunity to generate de novo mutations. I focused on a single class of mutations,
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copy number variants (CNVs), that are known to be under strong selection in static

nutrient-limited chemostats. I expanded an established CNV-reporter assay by

implementing the use of two fluorophores which enabled that tracking of copy number

variation at two distinct genomic loci simultaneously. I constructed strains in which the

amino acid permease GAP1 had mCitrine inserted adjacent to it and either the proline

transporter PUT4 or the ammonium-sulfate transporter MEP2 had mCherry inserted

adjacent to them. By performing long-term experimental evolution over 250 generations

of these clonal populations in static and fluctuating conditions I was able to reveal

dynamics of selection that were unique between conditions and genetic loci.

Fluctuating conditions resulted in less predictable and repeatable dynamics of

CNVs whereas static conditions showed greater repeatability between replicate

populations. I observed the generation and selection for genotypes that had

amplifications at two different loci resulting in CNV generalists in fluctuating conditions.

Contrary to expectation, in static glutamine-limitation CNV generalists also arose to

significant frequencies in the population, but this was not observed in the other two

static conditions. These results suggest that fluctuating conditions select for greater

diversity outcomes at least from the perspective of strategies that are CNV dependent,

however, it remains unclear whether including the analysis of other mutations such as

single nucleotide variants, would support this conclusion. Further experiments that

include the use of whole population sequencing to identify other mutations in the

population, as well as the use of synthetic DNA barcodes for lineage tracking, will reveal

the effects of fluctuations on diversity during long-term experimental evolution.
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In Chapter 4, I introduced a new DNA barcoding system for performing lineage

tracking that is versatile, easy to use, and minimally invasive. I have established the

experimental foundations for the system and mapped out the required future

experiments to validate its success. I showed that the use of an inducible CRISPR/Cas9

system to increase the efficiency of incorporation of a complex DNA barcode library

would be an improvement from currently existing technology both by decreasing the

size of exogenous DNA sequence inserted by more than half, and by reducing the

negative effects on fitness that are due to positional effects.

5.2 Future directions

In this thesis I have described the use of several important tools for the study of

adaptive evolution in a laboratory setting. I have made improvements on these

pre-existing tools which extend their utility for addressing questions that have previously

been challenging to tackle. One of the largest challenges of the study of adaptive

evolution in microbes is the ability to track genetic and phenotypic variation at the

individual level. Next generation sequencing enables detection of genetic mutations that

exist in a population, but without performing single-cell sequencing it is impossible to

know which mutations exist within the same individual cell or come from the same

lineage. Single-cell sequencing remains expensive and currently is limited by the

number of single cells that can be simultaneously sequenced which makes it prohibitive

to use to study adaptive changes which requires numerous samplings over time of

populations with millions of individual cells. However, by combining multiple
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technologies, future studies can extract single-cell information at a lower cost.

Using a dual-fluorescence CNV reporter during experimental evolution enables

the accurate reporting on the gene copy number of two loci of interest simultaneously at

low cost. As such combining this assay with multiplexed chemostat arrays enables the

high-throughput testing of CNV evolution under a variety of conditions. It also allows for

the application of sort-seq experiments in which fluorescence can be used as a marker

for subpopulations with different gene copy numbers. Combined with FACS

subpopulations can be isolated and further analyzed by NGS experiments such as

whole genome sequencing or RNAseq to decipher which mutations are unique to this

subpopulation or whether there are unique patterns of expression characterizing it.

Using a two-color system expands the questions that can be addressed about

experimental evolution in microbes. While the focus in this thesis has been on

understanding changes in gene copy number in haploid cells, this system has important

applications in diploids as well. A dual color system can be used to detect changes in

gene allele number in heterozygotes to understand how hybrids evolve and to observe

the process of loss of heterozygosity for example and the implications of the

environment in this process. Another application is aimed at understanding whether

CNVs can have a direct and proportional effect on transcription or whether cells buffer

DNA copy number changes. By using one fluorophore as a CNV-reporter at a locus of

interest and a second fluorophore as a transcriptional reporter with the promoter of the

locus of interest then it is possible to couple information on DNA copy number with
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expression information to detect changes during experimental evolution.

While the focus of this thesis has been on microbial evolution the utility of this

assay can easily be extended to other organisms and systems as well. CNVs are

implicated in different types of cancers and the use of a dual-CNV reporter to

understand tumor evolution would have important implications on developing regimes

for the administration of therapeutics. Because of the versatility of fluorescent reporters

and their use in many model organisms, the extension of this assay is expected to be

seamless.
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S1 Mathematical and Statistical Methods

S1.1 Symbols and notation

Symbols, notation and mathematical expressions used in this section are summarized in Table S1.

S1.2 Basis of barcode count normalization

S1.2.1 Dynamics of genotypic populations

In the chemostat, a genetically homogeneous population of size n grows through cell division at a rate

given by n′(t) = λ(t)n(t), where λ(t) is the instantaneous, time-dependent, growth rate per cell; i.e.,

λ(t) = n′(t)/n(t). We assume here that there is no cell death. If there were, λ could be taken to mean the

net rate of change per cell due to cell division and cell death. Each genotypic population in the chemostat is

identified by its unique DNA barcode. Our normalization method allows us to estimate, for each genotypic

population, the time average of its growth rate per cell (fitness), λi(t), between any 2 time points, minus

the arithmetic mean over all genotypes. Furthermore, with generalized linear model fitting, we will be able

to estimate λi(t) itself, minus the arithmetic mean. The normalization method is based on the population

dynamics below.

In the chemostat, with m genotypes, the number of cells with genotype i at time t, ni(t), changes

according to

d

dt
ni = [λi(t) − β]ni, or (S1a)

d

dt
log(ni) = λi(t) − β, (S1b)

S1



Expression Definition

λi(t) instantaneous growth rate per cell and our measure of fitness at time t for

sub-population with genotype i, as identified by its unique DNA barcode

Λi(t) =
∫ t

0
λi(t

′) dt′ integrated fitness, for genotype i, over time interval (0, t)

(1/t)
∫ t

0
λi(t

′) dt′ temporal mean of fitness, for genotype i, over time interval (0, t)

m number of genotypes in the chemostat

µa
λ(t) = 1

m

∑m
k=1 λk(t) arithmetic mean, over genotypes, of instantaneous fitness at time t

µa
Λ(t) = 1

m

∑m
k=1 Λk(t) arithmetic mean of integrated fitness over time interval (0, t)

ni(t) size (or density) of sub-population with genotype i at time t

N(t) =
∑m
i=1 ni(t) total number of cells (or density) in the chemostat at time t

pi(t) proportion of cells of genotype i at time t

λrel
i (t) = λi(t) − µa

λ(t) relative (to arithmetic mean) fitness of genotype i at time t

Λrel
i (t) = Λi(t) − µa

Λ(t) relative integrated fitness for genotype i over time interval (0, t)

(1/t) Λrel
i (t) temporal mean of relative fitness for genotype i over time interval (0, t)

µλ(t) =
m∑
i=1

λi(t) pi(t) population mean of fitness at time t

σ2
λ(t) =

∑m
i=1 pi(t)

[
λi(t) − µλ(t)

]2
population variance of fitness at time t

Table S1: Definition of symbols and mathematical expressions

where β is the dilution rate constant.

In our study, the growth rate per cell λi(t) is empirical. Our experimental plots of log normalized barcode

count versus time (Figure 3) show a rich variety of time courses in which many growth rates per cell are

clearly not constant. We show below in our computational modeling (S1.6.2) that an extension of standard

mathematical model for the chemostat [10] with heterogeneous populations [2], in which growth rate per

cell depends instantaneously on the limiting nutrient concentration, S(t), cannot account for the complex

dynamics of cell numbers that we observe here (see Figure 3 and S1.6.2).

In our normalization method, the dilution rate constant β plays no role. Ignoring β and integrating

Eq. (S1a) gives

ni(t) = ni(0) exp
{

Λi(t)
}
, where (S2a)

Λi(t) =

t∫
0

λi(t
′) dt′. (S2b)

Because Λi(t) in Eq. (S2b) is the integral of the instantaneous fitness (growth rate per cell) for genotype i,

(1/t)Λi(t) is the temporal mean fitness over the time interval (0, t).
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The instantaneous fitness λi(t) and the time average fitness (1/t) Λi(t) are quantities we would like to

estimate directly form our sequencing counts, but we don’t know of any normalization method that can

isolate these quantities. However, our normalization will allow us to determine for each genotype the fitness

relative to the arithmetic mean over all genotypes. We define the relative fitness, λrel
i (t), as

λrel
i (t)

def
= λi(t) −

1

m

m∑
k=1

λk(t), (S3)

and the time-average relative fitness, (1/t)Λrel
i (t), as

1

t
Λrel
i (t)

def
=

1

t

Λi(t) −
1

m

m∑
k=1

Λk(t)

 (S4)

S1.2.2 Dynamics of barcode tags

We assume that an effluent-sample from the chemostat that is used for sequencing has the same proportions

of populations as those found in the chemostat.

We combine up- and down-tags [3] in our count of tags from each genotype. The proportion of barcode

tags corresponding to genotype i depends on all ni(t) and all “yield coefficients”, αk, for k = 1, 2, . . . ,m,

where m is the total number of genotypes. The yield coefficient 0 ≤ αi ≤ 2 can be thought of the average

number of tags per cell contributed by a cell in population i. Based on our counts of up- and down-tags

for each genotype in each sequencing run, and sometimes finding discrepant values, it appears that the αi

differ from DNA barcode to DNA barcode. In our method of normalization and inference relative genotype

abundance across time, the αi will play no role. However, they do contribute conceptually to the development

of our normalization method.

The average average number of detected barcode tags per cell depends on the probability per cell of

2 non-disjoint events, Ui — the up-tag from a cell in population i is detected, Di — the down-tag is

detected — and their complements, U ′
i and D′

i. One tag is captured in the event (Ui ∩D′
i); similarly, one

tag is captured in the event (Di ∩ U ′
i); and two tags are detected in the event (Ui ∩ Di). Consequently,

αi = 1 · P (Ui ∩D′
i) + 1 · P (Di ∩ U ′

i) + 2 · P (Ui ∩Di) = P (Ui) + P (Di).

We assume that the number of sequencing tags from population i in a sequencing sample depends on the

proportion of detectable tags i among the whole population of detectable tags in the sequenced sample, and

on the library size L.

With these assumptions, the expected number of barcode tags from population i in a library at time t,

µi(t), is given by

µi(t) =
αini(t)

m∑
k=1

αknk(t)
L. (S5)

The library size, L whose estimate is not relevant in our normalization method. In analogy with RNA-seq

methods [4, 5, 9], we model the random integer number of detected tags from population i, Yi, as a negative
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binomial random variable with mean µi and a size parameter ai, which is estimated in DESeq2 [4]. The

motivation is that sampling noise alone would make the joint probability mass function of [Y1, Y2, . . . , Ym]

multinomial, which is very well approximated by a product of independent Poisson probability mass functions,

as long as no particular genotype accounts for a sizable fraction of tags. However, in addition to the sampling

noise, there are other sources of noise, such as the random number tags from populations of low number,

stemming from the random number of such cells, deviations of αi from the population average from replicate

to replicate for fixed i, and experimental noise. In this case, the additional sources of noise imply that

an overdispersed Poisson model is in order. The obvious choice, in analogy with RNA-seq, is the negative

binomial.

S1.3 Normalization of barcode counts

We propose a normalization of counts, yi, for genotype i in a library, by a factor, s(t), that is given by

the geometric mean of counts over all genotypes in the library. This normalization method does not give

a quantity for each genotype that is directly related to its proportion in the overall population. Such a

normalization method is not appropriate for inference of instantaneous growth rates per cell (fitness), or

time-average fitness. The reason is that, while the numerator term in a proportion is determined in simple

way as a function of time that is dependent on the instantaneous fitness, the denominator term is a function

of time that depends on each of the individual population sizes as a function of time, rather than constant.

As shown below, the utility of our normalization is that it allows one to easily compute, for each genotype

i, the time average fitness between any 2 time points, minus the arithmetic mean of this quantity over all

genotypes in Eq. (S4). We refer to this as the relative temporal-mean fitness, where the term relative signifies

relative to the arithmetic mean over genotypes. The same sort of definition of terms applies to instantaneous

fitness and instantaneous relative fitness.

The reasoning behind our normalization stems from the fact that the geometric mean, over all genotypes,

of population sizes, changes as an exponential function of time. To illustrate this idea, we consider the

special case of growth rate constants per cell that are independent of time, and we ignore dilution. The well
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known argument is as follows  m∏
j=1

nj(t)

nj(0)

1/m

=

 m∏
k=1

exp{λk t}

1/m

(S6a)

=

exp

 m∑
k=1

λk t




1/m

(S6b)

= exp


 1

m

m∑
k=1

λk

 t
 (S6c)

= exp
(
µa
λ t
)
, (S6d)

where µa
λ is defined implicitly by Eqs. (S6c) and (S6d) as the arithmetic mean of λk over all k (genotypes).

In the case where we have time-dependent growth rates per cell, λi(t), and dilution rate, β, the geometric

mean of the population sizes is given by

[ m∏
k=1

nk(t)

nk(0)

]1/m

= exp

 1

m

m∑
k=1

Λk(t) − β t

 (S7a)

= exp
(
µa

Λ(t) − β t
)
, (S7b)

where µa
Λ(t) is defined implicitly by Eqs. (S7a) and (S7b) at the arithmetic mean of Λk(t) over all k. Recall

that Λk(t) is the integrated fitness of population k over the time interval (0, t).

What do we get when we normalize counts yi(t) by

s(t)
def
=

 m∏
k=1

yk(t)

1/m

, (S8)

the geometric mean over k of counts yk(t)? To answer this question, first, we treat the normalization factor,

s(t), as a known parameter, rather than a random variable. This is the customary treatment of normalization

factors in high throughput sequencing (e.g., DESeq2 [4], edgeR [5, 9], and limma [8]). Second, for sake of

exposition only, we go further and replace s(t) by the geometric mean over k of the expected values of the

counts, µk(t), rather than the actual counts. With this normalization, Eq. (S2a) for ni(t), and Eq. (S5) for
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µi(t), the normalized count simplifies, and it has an expected value given by

µ
i
(t)

s(t)
≈ µi(t)[

m∏
k=1

µk(t)

]1/m
(S9a)

=
αi ni(t)[

m∏
k=1

αk nk(t)

]1/m
(S9b)

=
αi ni(0)[

m∏
k=1

αk nk(0)

]1/m
exp

[
Λi(t) − µa

Λ(t)
]

(S9c)

= exp
(
γi + Λi(t) − µa

Λ(t)
)
, (S9d)

where

γi
def
= log

αi ni(0)[
m∏
k=1

αk nk(0)

]1/m
(S10)

is the log of the normalized count at t = 0.

S1.3.1 Time-average relative fitness and inter-population differences between time-average

fitness

It is convenient to give the expected normalized count for population i a name,

zi(t)
def
=

µi(t)

s(t)
. (S11)

From Eq. (S9d) one can see that the time-average relative fitness over time interval (0, t), as defined in

Eq. (S4), is given by
1

t
Λrel
i (t)

def
=

1

t

[
Λi(t) − µa

Λ(t)
]

=
log zi(t) − log zi(0)

t
.

(S12)

Similarly, the time-average relative fitness over any time interval t1 < t < t2 is given by

log zi(t2) − log zi(t1)

t2 − t1
,

the difference of log normalized count at times t2 and t1, divided by the time difference. The instantaneous

relative fitness for genotype i is given by

λrel
i (t) =

d

dt
log zi(t). (S13)

One can compute the difference between the time-average fitness for 2 genotypes, i and j, from their

relative time-average fitness (because the arithmetic average term is common to all genotypes in the chemo-

stat):
1

t

[
Λi(t) − Λj(t)

]
=

1

t

[
Λrel
i (t) − Λrel

j (t)
]

(S14)
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S1.4 Polynomial modeling

We found that many of our normalized bar counts could not be accounted for by a model in which the growth

rate per cell is constant over time. This would not be surprising if the thousands of interacting genotypes

in the chemostat at once condition the growth medium beyond affecting the concentration of the common

limiting nutrient, S(t). If so, we expect a variety of time courses of λi(t). One can think of these behaviors,

in the context of the standard chemostat model [10], as an extension in which the maximum growth rate

per cell, λmax
i , and the half-saturation constant, Ki in the Monod growth rate function, are both functions

of times, so that

λi(t) = λmax
i (t)

S(t)

Ki(t) + S(t)
. (S15)

Our informal inspection of many normalized bar counts as a function of time suggested the possibility

that the log of normalized counts could be fit by simple polynomial functions in t. Consequently, we modeled

the exponential argument in Eq. (S9d), for the normalized count,

γi + Λi(t) − µa
Λ(t),

by a polynomial in t, up to 3rd order; i.e,

µi(t)

s(t)
= exp

(
γi + Λi(t) − µa

Λ(t)

)
(S16)

≈ exp
(
b0 + b1t+ b2t

2 + b3t
3
)

(S17)

In the absence of terms higher than first order in the exponential argument in Eq. (S17), the coefficient b1

is the fixed relative growth rate per cell in population i, λrel
i .

We used DESeq2 to compute the b-coefficients in Eq (S17). Eq. (S17) is a standard generalized linear

model with a log link function. Recall that we assume that the random barcode count Yi(t) is distributed as

a negative binomial random variable with mean µi(t) and shape parameter ai (inverse of dispersion, as the

term is used in DESeq2 [4]). We started our model fitting with the 3rd order model and performed sequential

model simplification by comparing the order-k model to the order-(k − 1) model. For the comparison, we

used the log ratio of maximum likelihoods test in DESeq2 [4], which gives a p-value and an adjusted p-value

(False-Discovery Rate, FDR) for each simplification. All simplifications with an adjusted p-value greater

than 0.1 were accepted in each round of simplifications. If bk was found to be significant, we did not test

model simplifications at levels below k. The reason is that, if orthogonal polynomials [6] in t were used as

the basis for polynomial modeling, rather than powers of t, the orthogonal polynomial with highest order k,

would, in general, include all powers less than k.
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S1.5 Fourier modeling for periodic environments

For our experiments with fluctuating environments, the chemostat input was switched periodically, in a

square-wave manner, between two limiting nutrients, with period T = 60 hr. The corresponding frequency

of the switching is f = 1/T . If we assume that the two limiting nutrients in the chemostat also fluctuate

periodically at with same period, as confirmed in Fig. 1C, we expect to find some genotypes whose instan-

taneous growth rates per cell respond with periodic fluctuations, also with the same period. According to

Fourier theory, a periodic function of t for 0 < t < T can be expressed as a sum of sinusoidal components at

integer multiples of the fundamental (input) frequency, f = 1/T .

We explored a model in which we assumed that the dynamics underlying λi(t) are slow enough, so that

λi(t) is well approximated by a constant plus a single sinusoidal component at the fundamental frequency,

f = 1/T . A mathematical formulation for this class of models is

1

n

d

dt
n =λ0 + λ1 cos (2πft+ θ), or (S18a)

d

dt
log n =λ0 + λ1 cos (2πft+ θ), (S18b)

where λ0 and λ1 are coefficients to be fit, and θ is the phase angle of the sinusoid. The solution to Eq. (S18b)

is

log
n(t)

n(0)
=λ0 t + λ1

1

2πf
[ sin (2πft+ θ) − sin θ ]

= − λ1

2πf
sin θ + λ0 t + λ1

1

2πf
sin (2πft+ θ)

(S19)

Consequently we modeled the argument of the exponential in the equation for µi(t)/s(t) (expected value of

normalized count) Eq. (S9d), for fluctuating environments, as

γi + Λrel
i (t) ≈ b0 + b1t+ b2 sin (2πft) + b3 cos (2πft). (S20)

In Eq. (S20) we have used the trigonometric identity,

b2 sin (2πft) + b3 cos (2πft) =
√
b22 + b23 sin (2πft+ θ),

where
√
b22 + b23 is the amplitude of the sinusoidal component of the response, and θ is the phase lag (angle)

relative to the fundamental component of the periodic switching of the input limiting nutrient. The phase

lag θ is given by arctan (b2/b3). We computed arctan (b2/b3) from the fitted parameters b2 and b3 by using

the atan2 function in R, which keeps track of the quadrant in which θ lies.

We tested the null hypothesis of no sinusoidal component (log maximum likelihood test), and we used the

same FDR as that used in the polynomial modeling. We found roughly 700 out of roughly 4000 genotypes

with significant sinusoidal fluctuation in the instantaneous growth rate per cell (minus the arithmetic mean).

See Fig. 3E for an example of such a genotype.
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Failure to reject the null hypothesis for a genotype made that genotype a candidate for a polynomial

model. For sake of simplicity, we did not consider mixtures of 2nd or 3nd degree polynomials with an

additional sinusoidal component.

S1.6 Expectations for a chemostat with heterogeneous populations and fixed

limiting-nutrient input: theory and computational modeling

S1.6.1 Theoretical results on the possibility of fixed cell number and the coexistence of several

genotypes with differing growth rate constants in the steady state

Our experimental results, with steady influx of a single limiting nutrient to the chemostat, show that, after

a brief transient period before our experimental clock time t = 0, both the total cell number, N(t), and

the concentration of limiting nutrient, S(t) (Figure 1D, left panel), appear to be constant. Meanwhile, the

population proportions evolve, with decreasing Shannon diversity index (Figure 2B). At t = 240 hr, a single

genotype accounts for large proportion of total cells (Figure 2C). Because our experimental time period was

only 240 hr (roughly 40 generations), one might inquire about the ultimate fate of cell number and population

proportions, assuming that a steady state is achieved.

Although a straightforward extension of the basic chemostat model [10] for numerous heterogeneous

populations (genotypes) in the chemostat [2] cannot reproduce the rich dynamical behavior we see in our

experiments (S1.6.2), it is helpful to state the model equations here as a way of anchoring our thoughts. In

the case of heterogeneous populations, the chemostat equations become,

d

dt
N =

[
µλ(t) − β

]
N (S21a)

d

dt
S = (S0 − S)β − N

Y
µλ(t) (S21b)

λi(t) =λmax S(t)

Ki + S(t)
, (S21c)

where: N(t) is the total number of cells (per unit volume in this context); S(t) is the concentration of

limiting nutrient; Y is the yield constant (see below); Ki is the concentration of limiting nutrient that gives

half the maximal growth rate constant for population i; λmax is the maximal growth rate constant, assumed

to be the same for all populations, for sake of simplicity; and µλ(t) is the population-mean growth rate per

cell at time t, as defined in Eq. (S25) below.

It is worth noting that, in principle, a steady state for a chemostat with multiple populations and steady

nutrient input to the chemostat is not guaranteed to exist. We show below that, if a true steady state is

achieved, it is one in which only a single growth rate constant remains in the chemostat. In other words,

the coexistence of multiple genotypes with different growth rate constants is not possible in a true steady

state. Nevertheless, our simulations (S1.6.2) show that N(t) and S(t) can be very closely approximated by
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constants along the way towards the steady state (S1.6.2), even as population proportions evolve towards

an overall steady state in which all but one growth rate constant remains in the chemostat.

The argument for the ultimate steady state, if accessible, is based on evolution equations for total cell

number, N(t), genotype proportions, pi(t), and the population-mean growth rate, µλ(t). (Note absence of

the superscript a, used previously to denote arithmetic mean, as opposed to the population mean.)

As a consequence of the fact that

d

dt
ni(t) = [λi(t)− β ]ni(t), (S22)

the total number of cells in the chemostat,

N(t) =

m∑
i=1

ni(t), (S23)

evolves according to
d

dt
N =

[
µλ(t) − β

]
N. (S24)

In Eq (S24), µλ(t) is the population-mean fitness. It is defined by

µλ(t) =

m∑
i=1

pi(t)λi(t), (S25)

where pi(t) is the proportion of cells of genotype i in the chemostat at time t; i.e.,

pi(t) =
ni(t)

N(t)
. (S26)

The evolution equations for pi(t), are given by taking the derivative of both sides of Eq. (S26) (using the

quotient rule and Eqs. (S22)–(S25)) to obtain

d

dt
pi(t) =

[
λi(t) − µλ(t)

]
pi(t). (S27)

Eq (S27) says that, at every instant, p′i(t) is proportional to pi(t) with a proportionality factor that is the

deviation of fitness λi(t) from the population-mean fitness, µλ(t). The implication is that, for each genotype

i, in the steady state, where p,′ (t) = 0 (by definition of the steady state), either λi = µλ, a single number,

or pi = 0. Consequently, in the steady state, there is either a single λi = µλ (by definition of the mean)

with corresponding pi = 1, or, there are several genotypes, all with the same λi value, equal to µλ (again by

definition of the mean), with a pooled proportion equal to 1. In either case, a single growth rate constant

remains in the steady state (if a steady state is achieved).

In our experiments with a steady input rate of a single limiting nutrient, N(t) appears to be constant, long

before a steady state is achieved. This is inferred from our observation of substantial changes in population

proportions throughout the time course of our experiments, despite the apparent constancy of S(t) and N(t).

What insight can theory give us about this pre-steady-state regime?
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According to Eq. (S24), N ′(t) = 0, implies that µλ(t) = β. By the same reasoning, if N(t) is approx-

imately constant, then µλ(t) ≈ β. This approximate equality can only be maintained in the long run if

µ′
λ(t) ≈ 0.

This consideration motivates a look at the evolution equation for µλ(t) to discover what it is driven by.

The rate of change of µλ(t) is given by taking the derivative of both sides of Eq. (S25) (using the product

rule term by term), as follows:

d

dt
µλ(t) =

d

dt

m∑
i=1

pi(t)λi(t) (S28a)

=

m∑
i=1

[
p′i(t)λi(t) + pi(t)λ

′
i(t)
]

(S28b)

=

[ m∑
i=1

[
p′i(t)λi(t)

]
+

m∑
k=1

pk(t)λ′k(t) (S28c)

=

[ m∑
i=1

{[
λi(t) − µλ(t)

]
pi(t)

}
λi(t)

]
+

m∑
k=1

pk(t)λ′k(t) (S28d)

=

[{ m∑
i=1

pi(t)λ
2
i (t)

}
− µ2

λ(t)

]
+

m∑
k=1

pk(t)λ′k(t) (S28e)

=σ2
λ(t) +

m∑
k=1

pk(t)λ′k(t). (S28f)

Eq (S28) says that the population-mean fitness at each time t changes at a rate given by the instantaneous

population-variance of fitness, σ2
λ(t) plus the population-mean rate of change of the fitness. Eq (S28) is a

special case of the Price equation [7] in the continuous-time form [1], in which the numerical value of the

fitness trait is fitness itself. See Eq. 2.4 of [1], with the phenotypic fitness trait quantified by their variable

z and their net reproductive rate r both equal to our fitness λ, and with no instantaneous fitness difference

∆z between parent and offspring upon birth of the offspring. Note also that the covariance term in the Price

equation, cov[z, r] in [1], in our case, becomes cov[λ, λ] = var(λ).

From Eq. (S28) one can see that µ′
λ(t) can be small if both terms on the right-hand side of the equation are

small, or if the terms counterbalance to give a small sum. Further insight is provided below by computational

modeling.

According to Eq. (S28), if a steady state does exist (where, by definition of the steady state, µ′
λ(t) = 0,

and λ′i(t) = 0 for all i), in this steady state,

σ2
λ = 0. (S29)

The variance of fitness λ in the steady state can only be equal to zero if all the λk in a set K for which

pk, 6=, 0, are equal to one and the same value — call it λ∞. Here, we use λ∞ to mean lim
t→∞

λ(t), which could
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also be called λss, to refer to the steady state value. In other words, in the steady sate,

λk =


λ∞ for k ∈ K

0 otherwise

(S30)

In our experimental protocol, it seems that, if there is more than one genotype with λk = λ∞, it is likely

due to a number of gene knockouts that have no fitness phenotype.

Dean [2] discusses the practical circumstances in which multiple genotypes in a chemostat with different

growth rates coexist with a fixed population number N . This regime corresponds to a situation in which

µλ(t) − β ≈ 0, and, nevertheless, pi(t) change slowly to eventually give the true steady state in which only

one growth rate constant per cell remains in the chemostat (illustrated below).

S1.6.2 Computational results on the possibility of fixed cell number and the coexistence of

several genotypes with differing growth rate constants in the steady state

We asked about the extent to which an extension of the standard mathematical model for a chemostat [10, 2],

as given in the system of equations, Eqs. (S21), can account for our experimental findings in chemostats with

steady input of a single limiting nutrient.

We simulated a chemostat with 4,000 populations, each with an independent random growth rate per

cell. The results we report here are generic for heterogeneous populations and not dependent on a large

number of different genotypes.

We found that, following a transient period of roughy 20 generation times (Fig. S1A), S and N eventually

settled down to nearly steady values equal to those in the true overall steady state, S∞ and N∞, respectively

(Fig. S1C). Note that the y-axis for relative S and N values in Fig. S1C spans only roughly 0.99–1.125.

During a 200-generation time period, after the transient, with near constancy of S and N , the population

proportions evolve slowly (Fig. S1D), and the single dominant population achieves a proportion close to 1 at

the end of this time period. Fig. S1B illustrates the dramatic change in the distribution of binned population

proportions between the nominal end of the transient period of 20 generation times (Fig. S1B purple bars)

and end of the simulation time, 220 generation times (Fig. S1B, grey bar). At the endpoint of the simulation

time, only a single gray bar is visible, and the combined proportion genotypes it comprises are accounted for

almost entirely by the winning population (consistent with Fig. S1D). In Fig. S1D the blue bars reflect the

distribution of random λ-values at t = 0, but the λi(S) values are evaluated t at S = S∞. The motivation

is explained below.

Parameter choices for the simulation were made in the following way. The “winning” population is

the one with the smallest value of the half-saturating constant, which we refer to as K1. This single value

of K was chosen deterministically. To do so we first chose the steady-state value of the limiting nutrient
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concentration, S∞ = 0.1. We chose K1 to enforce the constraint that S∞ = εK1, where ε << 1; we chose

ε = 0.1. In other words, the steady-state concentration of limiting nutrient S∞ is small compared to the

half-saturating constant K1. This is the typical setup of the chemostat model. We chose the single λmax

value, across populations, by satisfying the steady state condition, with only genotype 1 remaining in the

chemostat. Namely that the growth rate constant is equal to the dilution rate constant; i.e., λ1(S∞) = β.

This is equivalent to

λmax S∞

K1 + S∞
= β, (S31)

with the result that

λmax =
1 + ε

ε
β. (S32)

We chose the concentration of limiting nutrient in the input growth medium, S0 to be large compared to

the steady-sate value, S∞. In particular, we chose S0 = 10S∞. This choice is also typical for the standard

chemostat model. The steady-state density of cells in the chemostat, N∞, is determined by the yield constant

Y according to
N∞

Y
= S0 − S∞. (S33)

Eq. (S33) reflects the fact that the chemostat model equations can be recast in terms of a normalized cell

“density” given by N/Y . This means that either one can choose N∞, and this determines Y , or one can

choose Y , and this determines N∞. We adopted the former approach and set N∞ to an arbitrary, but

reasonable value of 2.5 × 107/mL, as in Figure 3 of [10]. The distribution of the random λi values at any

value of S is determined, with fixed λmax, by the distribution of Ki values, or vice versa. We know that the

largest λ(t), as t→∞ is

λ1(S∞) = λmax S∞

K1 + S∞
= β. (S34)

And we know that the other λi(S∞) values are less than λ1(S∞). This motivates us to choose λi(S∞) from

a distribution with maximum value equal to β, and a minimum value considerably lower; we took this value

to be equal to 0.1β. We used a truncated gamma density function for sake of convenience, with a shape

parameter equal to 16 (giving a standard deviation of 0.25) and a mean value equal to β/2. For any randomly

chosen λi(S∞) value, the corresponding Ki value is given by

Ki =

(
λmax

λi(S∞)
− 1

)
S∞. (S35)

References

[1] Troy Day, Todd Parsons, Amaury Lambert, and Sylvain Gandon. The price equation and evolutionary

epidemiology. Philos Trans R Soc Lond B Biol Sci, 375(1797):20190357, 04 2020.

S13



[2] Antony M Dean. Protecting haploid polymorphisms in temporally variable environments. Genetics,

169(2):1147–56, Feb 2005.

[3] Daniela Delneri. Barcode technology in yeast: application to pharmacogenomics. FEMS Yeast Res,

10(8):1083–9, Dec 2010.

[4] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion

for rna-seq data with deseq2. Genome Biol, 15(12):550, 2014.

[5] Davis J McCarthy, Yunshun Chen, and Gordon K Smyth. Differential expression analysis of multifactor

rna-seq experiments with respect to biological variation. Nucleic Acids Res, 40(10):4288–97, May 2012.

[6] Sabhash C. Narula. Orthogonal polynomial regression. International Statistical Review / Revue Inter-

nationale de Statistique, 47(1):31–36, 1979.

[7] G R Price. Selection and covariance. Nature, 227(5257):520–1, Aug 1970.

[8] Matthew E Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W Law, Wei Shi, and Gordon K Smyth.

limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids

Res, 43(7):e47, Apr 2015.

[9] Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edger: a bioconductor package for

differential expression analysis of digital gene expression data. Bioinformatics, 26(1):139–40, Jan 2010.

[10] Naomi Ziv, Nathan J Brandt, and David Gresham. The use of chemostats in microbial systems biology.

J Vis Exp, (80), Oct 2013.

S14



Figure S1: Population dynamics in a chemostat with heterogeneous genotype fitness and static

input of limiting-nutrient growth medium (A) Evolution of N(t) and S(t) towards steady state values

starting from initial conditions N(0) << N∞, and S(0) = S0, the concentration of limiting nutrient in the

chemostat input medium. Note that the variable are expressed in relative terms N(t)/N∞, and S(t)/S∞, so

that, as t → ∞, both relative values approach 1. (B) Distribution of λrel values (binned proportions) just

after an initial transient time of 20 generation times (purple bars) and at 200 generation times thereafter

(gray bars). Blue bars reflect distribution of λ values at t = 0, as explained in the text. (C) Relative N(t)

and S(t), showing slow approach towards a value of 1 with very small deviations over a 200-generation time

period following an initial transient period. (D) Slow evolution of population proportions (top 10), while

N(t) and S(t) hardly deviate form their steady-state values.
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