
METHODS AND RESOURCES

Neural networks enable efficient and accurate

simulation-based inference of evolutionary

parameters from adaptation dynamics

Grace AvecillaID
1,2, Julie N. ChuongID

1,2, Fangfei Li3, Gavin Sherlock3,

David GreshamID
1,2*, Yoav RamID

4*

1 Department of Biology, New York University, New York, New York, United States of America, 2 Center for

Genomics and Systems Biology, New York University, New York, New York, United States of America,

3 Department of Genetics, Stanford University, California, Stanford, United States of America, 4 School of

Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

* dgresham@nyu.edu (DG); yoav@yoavram.com (YR)

Abstract

The rate of adaptive evolution depends on the rate at which beneficial mutations are intro-

duced into a population and the fitness effects of those mutations. The rate of beneficial

mutations and their expected fitness effects is often difficult to empirically quantify. As these

2 parameters determine the pace of evolutionary change in a population, the dynamics of

adaptive evolution may enable inference of their values. Copy number variants (CNVs) are

a pervasive source of heritable variation that can facilitate rapid adaptive evolution. Previ-

ously, we developed a locus-specific fluorescent CNV reporter to quantify CNV dynamics in

evolving populations maintained in nutrient-limiting conditions using chemostats. Here, we

use CNV adaptation dynamics to estimate the rate at which beneficial CNVs are introduced

through de novo mutation and their fitness effects using simulation-based likelihood–free

inference approaches. We tested the suitability of 2 evolutionary models: a standard

Wright–Fisher model and a chemostat model. We evaluated 2 likelihood-free inference

algorithms: the well-established Approximate Bayesian Computation with Sequential Monte

Carlo (ABC-SMC) algorithm, and the recently developed Neural Posterior Estimation (NPE)

algorithm, which applies an artificial neural network to directly estimate the posterior distribu-

tion. By systematically evaluating the suitability of different inference methods and models,

we show that NPE has several advantages over ABC-SMC and that a Wright–Fisher evolu-

tionary model suffices in most cases. Using our validated inference framework, we estimate

the CNV formation rate at the GAP1 locus in the yeast Saccharomyces cerevisiae to be

10−4.7 to 10−4 CNVs per cell division and a fitness coefficient of 0.04 to 0.1 per generation for

GAP1 CNVs in glutamine-limited chemostats. We experimentally validated our inference-

based estimates using 2 distinct experimental methods—barcode lineage tracking and pair-

wise fitness assays—which provide independent confirmation of the accuracy of our

approach. Our results are consistent with a beneficial CNV supply rate that is 10-fold greater

than the estimated rates of beneficial single-nucleotide mutations, explaining the outsized

importance of CNVs in rapid adaptive evolution. More generally, our study demonstrates the

utility of novel neural network–based likelihood–free inference methods for inferring the
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rates and effects of evolutionary processes from empirical data with possible applications

ranging from tumor to viral evolution.

Introduction

Evolutionary dynamics are determined by the supply rate of beneficial mutations and their

associated fitness effect. As the combination of these 2 parameters determines the overall rate

of adaptive evolution, experimental methods are required for separately estimating them. The

fitness effects of beneficial mutations can be determined using competition assays [1,2], and

mutation rates are typically estimated using mutation accumulation or Luria–Delbrück fluctu-

ation assays [1,3]. An alternative approach to estimating both the rate and effect of beneficial

mutations entails quantifying the dynamics of adaptive evolution and using statistical infer-

ence methods to find parameter values that are consistent with the dynamics [4–7].

Approaches to measure the dynamics of adaptive evolution, quantified as changes in the fre-

quencies of beneficial alleles, have become increasingly accessible using either phenotypic

markers [8] or high-throughput DNA sequencing [9]. Thus, inference methods using adapta-

tion dynamics data hold great promise for determining the underlying evolutionary

parameters.

Fitness effects of beneficial mutations comprise a portion of a distribution of fitness effects

(DFE). Determining the parameters of the DFE in a given condition is a central goal of evolu-

tionary biology. Typically, beneficial mutations can occur at multiple loci and thus variance in

the DFE reflects genetic heterogeneity. However, in some scenarios, a single locus is the domi-

nant gene in which beneficial mutations occur, such as the case of mutations in the β-lactamase

gene underlying β-lactam antibiotic resistance or in rpoB underlying rifampicin resistance in

bacteria [10,11]. In this case, different mutations at the same locus confer differential beneficial

effects resulting in a locus-specific DFE. Typically, a DFE of beneficial mutations encompasses

both allelic and locus heterogeneity.

Copy number variants (CNVs) are defined as deletions or amplifications of genomic

sequences. Due to their high rate of formation and strong fitness effects, they can underlie

rapid adaptive evolution in diverse scenarios ranging from niche adaptation to speciation [12–

16]. In the short term, CNVs may provide immediate fitness benefits by altering gene dosage.

Over longer evolutionary timescales, CNVs can provide the raw material for the generation of

evolutionary novelty through diversification of different gene copies [17]. As a result, CNVs

are common in human populations [18–20], domesticated and wild populations of animals

and plants [21–23], pathogenic and nonpathogenic microbes [24–27], and viruses [28–30].

CNVs can be both a driver and a consequence of cancers (reviewed in [31]).

Although critically important to adaptive evolution, our understanding of the dynamics

and reproducibility of CNVs in adaptive evolution is poor. Specifically, key evolutionary prop-

erties of CNVs, including their rate of formation and fitness effects, are largely unknown. As

with other classes of genomic variation, CNV formation is a relatively rare event, occurring at

sufficiently low frequencies to make experimental measurement challenging. Estimates of de

novo CNV rates are derived from indirect and imprecise methods, and even when genome-

wide mutation rates are directly quantified by mutation accumulation studies and whole-

genome sequencing, estimates depend on both genotype and condition [3] and vary by orders

of magnitude [32–39].

Fitness effects of CNVs vary depending on gene content, genetic background, and the envi-

ronment. In evolution experiments in many systems, CNVs arise repeatedly in response to
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strong selection [40–47], consistent with strong beneficial fitness effects. Several of these stud-

ies measured fitness of clonal isolates containing CNVs and reported selection coefficients

ranging from −0.11 to 0.6 [40,47,48]. However, the fitness of lineages containing CNVs varies

between isolates even within studies, which could be due to additional heritable variation or to

differences in fitness between different types of CNVs (e.g., aneuploidy versus single-gene

amplification).

Due to the challenge of empirically measuring rates and effects of beneficial mutations

across many genetic backgrounds, conditions, and types of mutations, researchers have

attempted to infer these parameters from population-level data using evolutionary models and

Bayesian inference [5,6,49]. This approach has several advantages. First, model-based infer-

ence provides estimations of interpretable parameters and the opportunity to compare multi-

ple models. Second, the degree of uncertainty associated with a point estimate can be

quantified. Third, a posterior distribution over model parameters allows exploration of param-

eter combinations that are consistent with the observed data, and posterior distributions can

provide insight into certain relationships between parameters [50]. Fourth, posterior predic-

tions can be generated using the model and either compared to the data or used to predict the

outcome of differing scenarios.

Standard Bayesian inference requires a likelihood function, which gives the probability of

obtaining the observed data given some values of the model parameters. However, for many

evolutionary models, such as the Wright–Fisher model, the likelihood function is analytically

and/or computationally intractable. Likelihood-free simulation-based Bayesian inference

methods that bypass the likelihood function, such as Approximate Bayesian Computation

(ABC; [51]), have been developed and used extensively in population genetics [52,53], ecology

and epidemiology [54,55], cosmology [56], as well as experimental evolution [4,6,57–59]. The

simplest form of likelihood-free inference is rejection ABC [60,61], in which model parameter

proposals are sampled from a prior distribution, simulations are generated based on those

parameter proposals, and simulated data are compared to empirical observations using sum-

mary statistics and a distance function. Proposals that generate simulated data with a distance

less than a defined tolerance threshold are considered samples from the posterior distribution

and can therefore be used for its estimation. Efficient sampling methods have been introduced,

namely Markov chain Monte Carlo [62] and Sequential Monte Carlo (SMC) [63], which itera-

tively select proposals based on previous parameters samples so that regions of the parameter

space with higher posterior density are explored more often. A shortcoming of ABC is that it

requires summary statistics and a distance function, which may be difficult to choose appro-

priately and compute efficiently, especially when using high-dimensional or multimodal data,

although methods have been developed to address this challenge [52,64,65].

Recently, new inference methods have been introduced that directly approximate the likeli-

hood or the posterior density function using deep neural density estimators—artificial neural

networks that approximate density functions. These methods, which have recently been used

in neuroscience [50], population genetics [66], and cosmology [67], forego the summary and

distance functions, can use data with higher dimensionality, and perform inference more effi-

ciently [50,67,68].

Despite being originally developed to analyze population genetic data, e.g., to infer parame-

ters of the coalescent model [60–63], likelihood-free methods have only been used in a small

number of experimental evolution studies. Hegreness and colleagues [5] estimated the rate

and mean fitness effect of beneficial mutations in Escherichia coli. They performed 72 repli-

cates of a serial dilution evolution experiment, starting with equal frequencies of 2 strains that

differ only in a fluorescent marker in a putatively neutral location and allowed them to evolve

over 300 generations. Following the marker frequencies, they estimated from each
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experimental replicate 2 summary statistics: the time when a beneficial mutation starts to

spread in the population and the rate at which its frequency increases. They then ran 500 simu-

lations of an evolutionary model using a grid of model parameters to produce a theoretical dis-

tribution of summary statistics. Finally, they used the one-dimensional Kolmogorov–Smirnov

distance between the empirical and theoretical summary statistic distributions to assess the

inferred parameters. Barrick and colleagues [6] also inferred the rate and mean fitness effect

from similar serial dilution experiments using a different evolutionary model implemented

with a τ-leap stochastic simulation algorithm. They used the same summary statistics but

applied the two-dimensional Kolmogorov–Smirnov distance function to better account for

dependence between the summary statistics. de Sousa and colleagues [69] also focused on evo-

lutionary experiments with 2 neutral markers. Their model included 3 parameters: the benefi-

cial mutation rate and the 2 parameters of a Gamma distribution for the fitness effects of

beneficial mutations. They introduced a new summary statistic that uses both the marker fre-

quency trajectories and the population mean fitness trajectories (measured using competition

assays). They summarized these data by creating histograms of the frequency values and fitness

values for each of 6 time points. This resulted in 66 summary statistics necessitating the appli-

cation of a regression-based method to reduce the dimensionality of the summary statistics

and achieve greater efficiency [65,69]. A simpler approach was taken by Harari and colleagues

[49], who used a rejection ABC approach to estimate a single model parameter, the endoredu-

plication rate, from evolutionary experiments with yeast. They used the frequency dynamics of

3 genotypes (haploid and diploid homozygous and heterozygous at the MAT locus) without a

summary statistic. The distance between the empirical results and 100 simulations was com-

puted as the mean absolute error. Recently, Schenk and colleagues [69] inferred the mean

mutation rate and fitness effect for 3 classes of mutations from serial dilution experiments at 2

different population sizes, which they sequenced at the end of the experiment. They used a

Wright–Fisher model to simulate the frequency of fixed mutations in each class and used a

neural network approach to estimate the parameters that best fit their data. These prior studies

point to the potential of simulation-based inference.

Previously, we developed a fluorescent CNV reporter system in the budding yeast, Saccha-
romyces cerevisiae, to quantify the dynamics of de novo CNVs during adaptive evolution [48].

Using this system, we quantified CNV dynamics at the GAP1 locus, which encodes a general

amino acid permease, in nitrogen-limited chemostats for over 250 generations in multiple

populations. We found that GAP1 CNVs reproducibly arise early and sweep through the popu-

lation. By combining the GAP1 CNV reporter with barcode lineage tracking and whole-

genome sequencing, we found that 102 to 104 independent CNV-containing lineages compris-

ing diverse structures compete within populations.

In this study, we estimate the formation rate and fitness effect of GAP1 CNVs. We tested

both ABC-SMC [70] and a neural density estimation method, Neural Posterior Estimation

(NPE) [71], using a classical Wright–Fisher model [72] and a chemostat model [73]. Using

simulated data, we tested the utility of the different evolutionary models and inference meth-

ods. We find that NPE has better performance than ABC-SMC. Although a more complex

model has improved performance, the simpler and more computationally efficient Wright–

Fisher model is appropriate in most scenarios. We validated our approach by comparison to 2

different experimental methods: lineage tracking and pairwise fitness assays. We estimate that

in glutamine-limited chemostats, beneficial GAP1 CNVs are introduced at a rate of 10−4.7 to

10−4 per cell division and have a selection coefficient of 0.04 to 0.1 per generation. NPE is likely

to be a useful method for inferring evolutionary parameters across a variety of scenarios,

including tumor and viral evolution, providing a powerful approach for combining experi-

mental and computational methods.
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Results

In a previous experimental evolution study, we quantified the dynamics of de novo CNVs in 9

populations using a prototrophic yeast strain containing a fluorescent GAP1 CNV reporter.

[48]. Populations were maintained in glutamine-limited chemostats for over 250 generations

and sampled every 8 to 20 generations (25 time points in total) to determine the proportion of

cells containing a GAP1 CNV using flow cytometry (populations gln_01-gln_09 in Fig 1A). In

the same study, we also performed 2 replicate evolution experiments using the fluorescent

GAP1 CNV reporter and lineage-tracking barcodes quantifying the proportion of the popula-

tion with a GAP1 CNV at 32 time points (populations bc01-bc02 in Fig 1A) [48]. We used

interpolation to match time points between these 2 experiments (S1 Fig) resulting in a dataset

comprising the proportion of the population with a GAP1 CNV at 25 time points in 11

Fig 1. Empirical data and evolutionary models. (A) Estimates of the proportion of cells with GAP1 CNVs for 11 S. cerevisiae populations containing either a

fluorescent GAP1 CNV reporter (gln_01 to gln_09) or a fluorescent GAP1 CNV reporter and lineage tracking barcodes (bc01 and bc02) evolving in glutamine-

limited chemostats, from [48]. (B) In our models, cells with the ancestral genotype (XA) can give rise to cells with a GAP1 CNV (XC) or other beneficial mutation

(XB) at rates δC and δB, respectively. (C) The WF model has discrete, nonoverlapping generations and a constant population size. Allele frequencies in the next

generation change from the previous generation due to mutation, selection, and drift. (D) In the chemostat model, medium containing a defined concentration of a

growth-limiting nutrient (S0) is added to the culture at a constant rate. The culture, containing cells and medium, is removed by continuous dilution at rate D. Upon

inoculation, the number of cells in the growth vessel increases and the limiting-nutrient concentration decreases until a steady state is reached (red and blue curves

in inset). Within the growth vessel, cells grow in continuous, overlapping generations undergoing mutation, selection, and drift. Data and code required to generate

A can be found at https://doi.org/10.17605/OSF.IO/E9D5X. CNV, copy number variant; WF, Wright–Fisher.

https://doi.org/10.1371/journal.pbio.3001633.g001
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replicate evolution experiments. In this study, we tested whether the observed dynamics of

CNV-mediated evolution provide a means of inferring the underlying evolutionary

parameters.

Overview of evolutionary models

We tested 2 models of evolution: the classical Wright–Fisher model [72] and a specialized che-

mostat model [73]. Previously, it has been shown that a single effective selection coefficient

may be sufficient to model evolutionary dynamics in populations undergoing adaptation [5].

Therefore, we focus on beneficial mutations and assume a single selection coefficient for each

class of mutation. In both models, we start with an isogenic population in which GAP1 CNV

mutations occur at a rate δC and other beneficial mutations occur at rate δB (Fig 1B). In our

simulations, cells can acquire only a single beneficial mutation, either a CNV at GAP1 or some

other beneficial mutation (i.e., single nucleotide variant, transposition, diploidization, or CNV

at another locus). In all simulations (except for sensitivity analysis, see the “Inference from

empirical evolutionary dynamics” section), the formation rate of beneficial mutations other

than GAP1 CNVs was fixed at δB = 10−5 per genome per cell division, and the selection coeffi-

cient was fixed at sB = 0.001, based on estimates from previous experiments using yeast in sev-

eral conditions [74–76]. Our goal was to infer the GAP1 CNV formation rate, δC, and GAP1
CNV selection coefficient, sC.

The 2 evolutionary models have several unique features. In the Wright–Fisher model, the

population size is constant, and each generation is discrete. Therefore, genetic drift is effi-

ciently modeled using multinomial sampling (Fig 1C). In the chemostat model [73], fresh

medium is added to the growth vessel at a constant rate and medium, and cells are removed

from the growth vessel at the same rate resulting in continuous dilution of the culture (Fig

1D). Individuals are randomly removed from the population through the dilution process,

regardless of fitness, in a manner analogous to genetic drift. In the chemostat model, we start

with a small initial population size and a high initial concentration of the growth-limiting

nutrient. Following inoculation, the population size increases and the growth-limiting nutrient

concentration decreases until a steady state is attained that persists throughout the experiment.

As generations are continuous and overlapping in the chemostat model, we use the Gillespie

algorithm with τ-leaping [77] to simulate the population dynamics. Growth parameters in the

chemostat are based on experimental conditions during the evolution experiments [48] or

taken from the literature (Table 1).

Table 1. Chemostat parameters.

Parameter Value Source

kA = kB = kC 0.103 mM Airoldi and colleagues (2016) https://doi.org/10.1091/

mbc.E14-05-1013

YA = YB = YC 32,445,000 cells/mL/mM

nitrogen

Airoldi and colleagues (2016) https://doi.org/10.1091/

mbc.E14-05-1013

Expected S at steady state Approximately 0.08 mM Airoldi and colleagues (2016) https://doi.org/10.1091/

mbc.E14-05-1013

μmax 0.35 hour−1 Cooper TG (1982) Nitrogen metabolism in S. cerevisiae
D 0.12 hour−1 Lauer and colleagues (2018) https://doi.org/10.1371/

journal.pbio.3000069

S0 0.8 mM Lauer and colleagues (2018) https://doi.org/10.1371/

journal.pbio.3000069

Expected cell density at

steady state

Approximately 2.5 × 107

cells/mL

Lauer and colleagues (2018) https://doi.org/10.1371/

journal.pbio.3000069

Doubling time 5.8 hours Lauer and colleagues (2018) https://doi.org/10.1371/

journal.pbio.3000069

https://doi.org/10.1371/journal.pbio.3001633.t001
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Overview of inference strategies

We tested 2 likelihood-free Bayesian methods for joint inference of the GAP1 CNV formation

rate and the GAP1 CNV fitness effect: Approximate Bayesian Computation with Sequential

Monte Carlo (ABC-SMC) [63] and NPE [78–80]. We used the proportion of the population

with a GAP1 CNV at 25 time points as the observed data (Fig 1A). For both methods, we

defined a log-uniform prior distribution for the CNV formation rate ranging from 10−12 to

10−3 and a log-uniform prior distribution for the selection coefficient ranging from 10−4 to 0.4.

We applied ABC-SMC (Fig 2A), implemented in the Python package pyABC [70]. We used

an adaptively weighted Euclidean distance function to compare simulated data to observed

data. Thus, the distance function adapts over the course of the inference process based on the

amount of variance at each time point [81]. The number of samples drawn from the proposal

distribution (and therefore number of simulations) is changed at each iteration of the

ABC-SMC algorithm using the adaptive population strategy, which is based on the shape of

the current posterior distribution [82]. We applied bounds on the maximum number of sam-

ples used to approximate the posterior in each iteration; however, the total number of samples

(simulations) used in each iteration is greater because not all simulations are accepted for pos-

terior estimation (see Methods). For each observation, we performed ABC-SMC with multiple

iterations until either the acceptance threshold (ε = 0.002) was reached or until 10 iterations

had been completed. We performed inference on each observation independently 3 times.

Although we refer to different observations belonging to the same “training set,” a different

ABC-SMC procedure must be performed for each observation.

We applied NPE (Fig 2B), implemented in the Python package sbi [71], and tested 2 spe-

cialized normalizing flows as density estimators: a masked autoregressive flow (MAF) [83] and

a neural spline flow (NSF) [84]. The normalizing flow is used as a density estimator to “learn”

an amortized posterior distribution, which can then be evaluated for specific observations.

Thus, amortization allows for evaluation of the posterior for each new observation without the

need to retrain the neural network. To test the sensitivity of our inference results on the set of

simulations used to learn the amortized posterior, we trained 3 independent amortized net-

works with different sets of simulations generated from the prior distribution and compared

our resulting posterior distributions for each observation. We refer to inferences made with

the same amortized network as having the same “training set.”

NPE outperforms ABC-SMC

To test the performance of each inference method and evolutionary model, we generated 20

simulated synthetic observations for each model (Wright–Fisher or chemostat) over 4 combi-

nations of CNV formation rates and selection coefficients, resulting in 40 synthetic observa-

tions (i.e., 5 simulated observations per combination of model, δC, and sC). We refer to the

parameters that generated the synthetic observation as the “true” parameters. For each syn-

thetic observation, we performed inference using each method 3 times. Inference was per-

formed using the same evolutionary model as that used to generate the observation. We found

that NPE using NSF as the density estimator was superior to NPE using MAF, and, therefore,

we report results using NSF in the main text (results using MAF are in S2 Fig).

For each inference method, we plotted the joint posterior distribution with the 50% and

95% highest density regions (HDR) [85] demarcated (Fig 2C, S1 Data in https://doi.org/10.

17605/OSF.IO/E9D5X). The true parameters are expected to be covered by these HDRs at

least 50% and 95% of the time, respectively. We also computed the marginal 95% highest den-

sity intervals (HDIs) [85] using the marginal posterior distributions for the GAP1 CNV selec-

tion coefficient and GAP1 CNV formation rate. We found that the true parameters were
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within the 50% HDR in half or more of the tests (averaged over 3 training sets) across a range

of parameter values with the exception of ABC-SMC applied to the Wright–Fisher model

when the GAP1 CNV formation rate (δC = 10−7) and selection coefficient (sC = 0.001) were

Fig 2. Inference methods and performance assessment. (A) When using ABC-SMC, in the first iteration, a proposal for the parameters δC (GAP1 CNV

formation rate) and sC (GAP1 CNV selection coefficient) is sampled from the prior distribution. Simulated data are generated using either a WF or chemostat

model and the current parameter proposal. The distance between the simulated data and the observed data is computed, and the proposed parameters are

weighted by this distance. These weighted parameters are used to sample the proposed parameters in the next iteration. Over many iterations, the weighted

parameter proposals provide an increasingly better approximation of the posterior distribution of δC and sC (adapted from [68]). (B) In NPE, simulated data

are generated using parameters sampled from the prior distribution. From the simulated data and parameters, a density-estimating neural network learns the

joint density of the model parameters and simulated data (the “amortized posterior”). The network then evaluates the conditional density of model parameters

given the observed data, thus providing an approximation of the posterior distribution of δC and sC (adapted from [50,68].) (C) Assessment of inference

performance. The 50% and 95% HDRs are shown on the joint posterior distribution with the true parameters and the MAP parameter estimates. We compare

the true parameters to the estimates by their log ratio. We also generate posterior predictions (sampling 50 parameters from the joint posterior distribution and

using them to simulate frequency trajectories, ρi), which we compare to the observation, oi, using the RMSE and the correlation coefficient. ABC-SMC,

Approximate Bayesian Computation with Sequential Monte Carlo; CNV, copy number variant; HDR, highest density region; MAP, maximum a posteriori;

NPE, Neural Posterior Estimation; RMSE, root mean square error; WF, Wright–Fisher.

https://doi.org/10.1371/journal.pbio.3001633.g002
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both low (Fig 3A). The true parameters were within the 95% HDR in 100% of tests (S1 Data

in https://doi.org/10.17605/OSF.IO/E9D5X). The width of the HDI is informative about the

degree of uncertainty associated with the parameter estimation. The HDIs for both fitness

effect and formation rate tend to be smaller when inferring with NPE compared to ABC-SMC,

and this advantage of NPE is more pronounced when the CNV formation rate is high (δC =

10−5) (Fig 3B and 3C).

Fig 3. Performance assessment of inference methods using simulated synthetic observations. The figure shows the results of inference on 5 simulated synthetic

observations using either the WF or chemostat (Chemo) model per combination of fitness effect sC and formation rate δC. Simulations and inference were performed

using the same model. For NPE, each training set corresponds to an independently amortized posterior distribution trained on a different set of 100,000 simulations, with

which each synthetic observation was evaluated to produce a separate posterior distribution. For ABC-SMC, each training set corresponds to independent inference

procedures on each observation with a maximum of 10,000 total simulations accepted for each inference procedure and a stopping criteria of 10 iterations or ε< = 0.002,

whichever occurs first. (A) The percent of true parameters covered by the 50% HDR of the inferred posterior distribution. The bar height shows the average of 3 training

sets. Horizontal line marks 50%. (B, C) Distribution of widths of 95% HDI of the posterior distribution of the fitness effect sC (B) and CNV formation rate δC (C),

calculated as the difference between the 97.5 percentile and 2.5 percentile, for each separately inferred posterior distribution. (D) Log ratio of MAP estimate to true

parameter for sC and δC. Note the different y-axis ranges. Gray horizontal line represents a log ratio of zero, indicating an accurate MAP estimate. (E) Mean and 95%

confidence interval of RMSE of 50 posterior predictions compared to the synthetic observation from which the posterior was inferred. Data and code required to

generate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X. ABC-SMC, Approximate Bayesian Computation with Sequential Monte Carlo; CNV, copy

number variant; HDI, highest density interval; HDR, highest density region; MAP, maximum a posteriori; NPE, Neural Posterior Estimation; RMSE, root mean square

error; WF, Wright–Fisher.

https://doi.org/10.1371/journal.pbio.3001633.g003
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We computed the maximum a posteriori (MAP) estimate of the GAP1 CNV formation rate

and selection coefficient by determining the mode (i.e., argmax) of the joint posterior distribu-

tion, and computed the log ratio of the MAP relative to the true parameters. We find that the

MAP estimate is close to the true parameter (i.e., the log ratio is close to zero) when the selec-

tion coefficient is high (sC = 0.1), regardless of the model or method, and much of the error is

due to the formation rate estimation error (Fig 3D). Generally, the MAP estimate is within an

order of magnitude of the true parameter (i.e., the log ratio is less than 1), except when the for-

mation rate and selection coefficient are both low (δC = 10−7, sC = 0.001); in this case, the for-

mation rate was underestimated up to 4-fold, and the selection coefficient was slightly

overestimated (Fig 3D). In some cases, there are substantial differences in log ratio between

training sets using NPE; however, this variation in log ratio is usually less than the variation in

the log ratio when performing inference with ABC-SMC. Overall, the log ratio tends to be

closer to zero (i.e., estimate close to true parameter) when using NPE (Fig 3D).

We performed posterior predictive checks by simulating GAP1 CNV dynamics using the

MAP estimates as well as 50 parameter values sampled from the posterior distribution (S1

Data in https://doi.org/10.17605/OSF.IO/E9D5X). We computed both the root mean square

error (RMSE) and the correlation coefficient between posterior predictions and the observa-

tion to measure the prediction accuracy (Fig 3E, S3 Fig). We find that the RMSE posterior pre-

dictive accuracy of NPE is similar to, or better than, that of ABC-SMC (Fig 3E). The predictive

accuracy quantified using correlation was close to 1 for all cases except when GAP1 CNV for-

mation rate and selection coefficient are both low (sC = 0.001 and δC = 10−7) (S3 Fig).

We performed model comparison using both Akaike information criterion (AIC), com-

puted using the MAP estimate, and widely applicable information criterion (WAIC), computed

over the entire posterior distribution [86]. Lower values imply higher predictive accuracy and a

difference of 2 is considered significant (S4 Fig) [87]. We find similar results for both criteria:

NPE with either model have similar values, although the value for Wright–Fisher is sometimes

slightly lower than the value for the chemostat model. When sC = 0.1, the value for NPE is con-

sistently and significantly lower than for ABC-SMC. When δC = 10−5 and sC = 0.001, the value

for NPE with the Wright–Fisher model is significantly lower than that for ABC-SMC, while the

NPE with the chemostat model is not. The difference between any combination of model and

method was insignificant for δC = 10−7 and sC = 0.001. Therefore, NPE is similar or better than

ABC-SMC using either evolutionary model and for all tested combinations of GAP1 CNV for-

mation rate and selection coefficient, and we further confirmed the generality of this trend

using the Wright–Fisher model and 8 additional parameter combinations (S5 Fig).

We performed NPE using 10,000 or 100,000 simulations to train the neural network and

found that increasing the number of simulations did not substantially reduce the MAP estima-

tion error, but did tend to decrease the width of the 95% HDIs for both parameters (S6 Fig).

Similarly, we performed ABC-SMC with per observation maximum accepted parameter sam-

ples (i.e., “particles” or “population size”) numbers of 10,000 and 100,000, which correspond

to increasing number of simulations per inference procedure, and found that increasing the

budget decreases the widths of the 95% HDIs for both parameters (S6 Fig). Overall, amortiza-

tion with NPE allowed for more accurate inference using fewer simulations corresponding to

less computation time (S7 Fig).

The Wright–Fisher model is suitable for inference using chemostat

dynamics

Whereas the chemostat model is a more precise description of our evolution experiments,

both the model itself and its computational implementation have some drawbacks. First, the
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model is a stochastic continuous time model implemented using the τ-leap method [77]. In

this method, time is incremented in discrete steps and the number of stochastic events that

occur within that time step is sampled based on the rate of events and the system state at the

previous time step. For accurate stochastic simulation, event rates and probabilities must be

computed at each time step, and time steps must be sufficiently small. This incurs a heavy

computational cost as time steps are considerably smaller than one generation, which is the

time step used in the simpler Wright–Fisher model. Moreover, the chemostat model itself has

additional parameters compared to the Wright–Fisher model, which must be experimentally

measured or estimated.

The Wright–Fisher model is more general and more computationally efficient than the che-

mostat model (S1 Table). Therefore, we investigated if it can be used to perform accurate

inference with NPE on synthetic observations generated by the chemostat model. By assessing

how often the true parameters were covered by the HDRs, we found that the Wright–Fisher is

a good enough approximation of the full chemostat dynamics when selection is weak (sC =

0.001) (S8 Fig), and it performs similarly to the chemostat model in parameter estimation

accuracy (Fig 4A and 4B). The Wright–Fisher is less suitable when selection is strong (sC =

0.1), as the true parameters are not covered by the 50% or 95% HDR (S8 Fig). Nevertheless,

estimation of the selection coefficient remains accurate, and the difference in estimation of the

formation rate is less than an order of magnitude, with a 3- to 5-fold overestimation (MAP log

ratio between 0.5 and 0.7) (Fig 4C and 4D).

Inference using a set of observations

Our empirical dataset includes 11 biological replicates of the same evolution experiment. Dif-

ferences in the dynamics between independent replicates may be explained by an underlying

DFE rather than a single constant selection coefficient. It is possible to infer the DFE using all

experiments simultaneously. However, inference of distributions from multiple experiments

presents several challenges, common to other mixed-effects or hierarchical models [88]. Alter-

natively, individual values inferred from individual experiments could provide an approxima-

tion of the underlying DFE.

Fig 4. Inference with WF model from chemostat dynamics. The figure shows results of inference using NPE and either the WF or chemostat (Chemo)

model on 5 simulated synthetic observations generated using the chemostat model for different combinations of fitness effect sC and formation rate δC.

Boxplots and markers show the log ratio of MAP estimate to true parameters for sC and δC. Horizontal solid line represents a log ratio of zero, indicating an

accurate MAP estimate; dotted lines indicate an order of magnitude difference between the MAP estimate and the true parameter. Data and code required

to generate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X. MAP, maximum a posteriori; NPE, Neural Posterior Estimation; WF,

Wright–Fisher.

https://doi.org/10.1371/journal.pbio.3001633.g004
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To test these 2 alternative strategies for inferring the DFE, we performed simulations in

which we allowed for variation in the selection coefficient of GAP1 CNVs for each population

in a set of observations. We sampled 11 selection coefficients from a Gamma distribution with

shape and scale parameters α and β, respectively, and an expected value E(s) = αβ [69], and

then simulated a single observation for each sampled selection coefficient. As the Wright–

Fisher model is a suitable approximation of the chemostat model (Fig 4), we used the Wright–

Fisher model both for generating our observation sets and for parameter inference.

For the observation sets, we used NPE to either infer a single selection coefficient for each

observation or to directly infer the Gamma distribution parameters α and β from all 11 obser-

vations. When inferring 11 selection coefficients, one for each observation in the observation

set, we fit a Gamma distribution to 8 of the 11 inferred values (Fig 5, green lines). When

directly inferring the DFE, we used a uniform prior for α from 0.5 to 15 and a log-uniform

prior for β from 10−3 to 0.8. We held out 3 experiments from the set of 11 and used a 3-layer

neural network to reduce the remaining 8 observations to a 5-feature summary statistic vector,

which we then used as an embedding net [71] with NPE to infer the joint posterior distribution

of α, β, and δC (Fig 5, blue lines). For each observation set, we performed each inference

method 3 times, using different sets of 8 experiments to infer the underlying DFE.

We used Kullback–Leibler divergence to measure the difference between the true DFE and

inferred DFE and find that the inferred selection coefficients from the single experiments cap-

ture the underlying DFE as well or better than direct inference of the DFE from a set of obser-

vations for both α = 1 (an exponential distribution) and α = 10 (sum of 10 exponentials)

Fig 5. Inference of the DFE. A set of 11 simulated synthetic observations was generated from a WF model with CNV selection coefficients sampled from an exponential

(Gamma with α = 1) DFE (true DFE; black curve). The MAP DFEs (observation set DFE, green curves) were directly inferred using 3 different subsets of 8 out of 11

synthetic observations. We also inferred the selection coefficient for each individual observation in the set of 11 separately and fit a Gamma distribution (single

observation DFE, blue curves) to sets of 8 inferred selection coefficients. All inferences were performed with NPE using the same amortized network to infer a posterior

for each set of 8 synthetic observations or each single observation. (A) weak selection, high formation rate, (B) weak selection, low formation rate, (C) strong selection,

high formation rate, (D) strong selection, low formation rate. Data and code required to generate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X.

CNV, copy number variant; DFE, distribution of fitness effects; MAP, maximum a posteriori; NPE, Neural Posterior Estimation; WF, Wright–Fisher.

https://doi.org/10.1371/journal.pbio.3001633.g005
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(Fig 5, S9 Fig). The only exception we found is when α = 10, E(s) = 0.001, and δC = 10−5 (S9

Fig, S2 Table). We assessed the performance of inference from a set of observations using out-

of-sample posterior predictive accuracy [86] and found that inferring α and β from a set of

observations results in lower posterior predictive accuracy compared to inferring sC from a

single observation (S10 Fig). Therefore, we conclude that estimating the DFE through infer-

ence of individual selection coefficients from each observation is superior to inference of the

distribution from multiple observations.

Inference from empirical evolutionary dynamics

To apply our approach to empirical data we inferred GAP1 CNV selection coefficients and for-

mation rates using 11 replicated evolutionary experiments in glutamine-limited chemostats [48]

(Fig 1A) using NPE with both evolution models. We performed posterior predictive checks,

drawing parameter values from the posterior distribution, and found that GAP1 CNV were pre-

dicted to increase in frequency earlier and more gradually than is observed in our experimental

populations (S11 Fig). This discrepancy is especially apparent in experimental populations that

appear to experience clonal interference with other beneficial lineages (i.e., gln07, gln09). There-

fore, we excluded data after generation 116, by which point CNVs have reached high frequency

in the populations but do not yet exhibit the nonmonotonic and variable dynamics observed in

later time points, and performed inference. The resulting posterior predictions are more similar

to the observations in initial generations (average MAP RMSE for the 11 observations up to gen-

eration 116 is 0.06 when inference excludes late time points versus 0.13 when inference includes

all time points). Furthermore, the overall RMSE (for observations up to generation 267) was not

significantly different (average MAP RMSE is 0.129 and 0.126 when excluding or including late

time points, respectively; S12 Fig). Restricting the analysis to early time points did not dramati-

cally affect estimates of GAP1 CNV selection coefficient and formation rate, but it did result in

less variability in estimates between populations (i.e., independent observations) and some reor-

dering of populations’ selection coefficients and formation rate relative to each other (S13 Fig).

Thus, we focused on inference using data prior to generation 116.

The inferred GAP1 CNV selection coefficients were similar regardless of model, with the

range of MAP estimates for all populations between 0.04 and 0.1, whereas the range of inferred

GAP1 CNV formation rates was somewhat higher when using the Wright–Fisher model,

10−4.1 to 10−3.4, compared to the chemostat model, 10−4.7 to 10−4 (Fig 6A and 6B). While there

is variation in inferred parameters due to the training set, variation between observations (rep-

licate evolution experiments) is higher than variation between training sets (Fig 6A–6C). Pos-

terior predictions using the chemostat model, a fuller depiction of the evolution experiments,

tend to have slightly lower RMSE than predictions using the Wright–Fisher model (Fig 6C).

However, predictions using both models recapitulate actual GAP1 CNV dynamics, especially

in early generations (Fig 6D).

To test the sensitivity of these estimates, we also inferred the GAP1 CNV selection coeffi-

cient and formation rate using the Wright–Fisher model in the absence of other beneficial

mutations (δB = 0), and for 9 additional combinations of other beneficial mutation selection

coefficient sB and formation rate δB (S14 Fig). In general, perturbations to the rate and selec-

tion coefficient of other beneficial mutations did not alter the inferred GAP1 CNV selection

coefficient or formation rate. We found a single exception: When both the formation rate and

fitness effect of other beneficial mutations is high (sB = 0.1 and δB = 10−5), the GAP1 CNV

selection coefficient was approximately 1.6-fold higher and the formation rate was approxi-

mately 2-fold lower (S14 Fig); however, posterior predictions were poor for this set of parame-

ter values (S15 Fig), suggesting that these values are inappropriate.
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Experimental confirmation of fitness effects inferred from adaptive

dynamics

To experimentally validate the inferred selection coefficients, we used lineage tracking to esti-

mate the DFE [7,89,90]. We performed barseq on the entire evolving population at multiple

time points and identified lineages that did and did not contain GAP1 CNVs (Fig 7A). Using

barcode trajectories to estimate fitness effects ([89]; see Methods), we identified 1,569 out of

80,751 lineages (1.94%) as adaptive in the bc01 population. A total of 1,513 (96.4%) adaptive

lineages have a GAP1 CNV (Fig 7A).

As a complementary experimental approach, selection coefficients can be directly measured

using competition assays by fitting a linear model to the log ratio of the GAP1 CNV strain and

ancestral strain frequencies over time (Fig 7B). Therefore, we isolated GAP1 CNV containing

clones from populations bc01 and bc02, determined their fitness (Methods), and combined

these estimates with previously reported selection coefficients for GAP1 CNV containing

clones isolated from populations gln01-gln09 [48] to define the DFE.

The DFE for adaptive GAP1 CNV lineages in bc01 inferred using lineage-tracking barcodes

and the DFE from pairwise competition assays share similar properties to the distribution

inferred using NPE from all experimental populations (Fig 7C). Thus, our inference frame-

work using CNV adaptation dynamics is a reliable estimate of the DFE estimated using labori-

ous experimental methods that are gold standards in the field.

Fig 6. Inference of CNV formation rate and fitness effect from empirical evolutionary dynamics. The inferred MAP estimate and 95% HDIs for fitness effect sC
and formation rate δC, using the (A) WF or (B) chemostat (Chemo) model and NPE for each experimental population from [48]. Inference performed with data up

to generation 116, and each training set (marker shape) corresponds to an independent amortized posterior distribution estimated with 100,000 simulations. (C)

Mean and 95% confidence interval for RMSE of 50 posterior predictions compared to empirical observations up to generation 116. (D) Proportion of the population

with a GAP1 CNV in the experimental observations (solid lines) and in posterior predictions using the MAP estimate from one of the training sets shown in panels A

and B with either the WF (dotted line) or chemostat (dashed line) model. Formation rate and fitness effect of other beneficial mutations set to 10−5 and 10−3,

respectively. Data and code required to generate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X. CNV, copy number variant; HDI, highest

density interval; MAP, maximum a posteriori; NPE, Neural Posterior Estimation; RMSE, root mean square error; WF, Wright–Fisher.

https://doi.org/10.1371/journal.pbio.3001633.g006
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Discussion

In this study, we tested the application of simulation-based inference for determining key evo-

lutionary parameters from observed adaptive dynamics in evolution experiments. We focused

on the role of CNVs in adaptive evolution using experimental data in which we quantified the

population frequency of de novo CNVs at a single locus using a fluorescent CNV reporter. The

goal of our study was to test a new computational framework for simulation-based, likelihood-

free inference, compare it to the state-of-the-art method, and apply it to estimate the GAP1
CNV selection coefficient and formation rates in experimental evolution using glutamine-lim-

ited chemostats.

Our study yielded several important methodological findings. Using synthetic data, we

tested 2 different algorithms for joint inference of evolutionary parameters, the effect of differ-

ent evolutionary models on inference performance, and how best to determine a DFE using

multiple experiments. We find that the neural network–based algorithm NPE outperforms

ABC-SMC regardless of evolutionary model. Although a more complex evolutionary model

better describes the evolution experiments performed in chemostats, we find that a standard

Wright–Fisher model can be a sufficient approximation for inference using NPE. However,

the inferred GAP1 CNV formation rate under the Wright–Fisher model is higher than under

the chemostat model (Fig 6A and 6B), which is consistent with the overprediction of forma-

tion rates using the Wright–Fisher model for inference when an observation is generated by

Fig 7. Comparison of DFE inferred using NPE, lineage-tracking barcodes, and competition assays. (A) Barcode-based lineage frequency trajectories in experimental

population bc01. Lineages with (green) and without (gray) GAP1 CNVs are shown. (B) Two replicates of a pairwise competition assay for a single GAP1 CNV containing

lineage isolated from an evolving population. The selection coefficient for the clone is estimated from the slope of the linear model (blue line) and 95% CI (gray). (C) The

DFE for all beneficial GAP1 CNVs inferred from 11 populations using NPE and the WF (purple) and chemostat (Chemo; green) models compared with the DFE inferred

from barcode frequency trajectories in the bc01 population (light blue) and the DFE inferred using pairwise competition assays with different GAP1 CNV containing

clones (gray). Data and code required to generate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X. CNV, copy number variant; DFE, distribution of

fitness effects; NPE, Neural Posterior Estimation; WF, Wright–Fisher.

https://doi.org/10.1371/journal.pbio.3001633.g007
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the chemostat model and selection coefficients are high (Fig 4C and 4D). This suggests that

Wright–Fisher is not the best suited model to use in all real-world cases, in particular if many

beneficial CNVs turn out to have strong selection coefficients. Finally, although it is possible to

perform joint inference on multiple independent experimental observations to infer a DFE, we

find that inference performed on individual experiments and post facto estimation of the dis-

tribution more accurately captures the underlying DFE.

Previous studies that applied likelihood-free inference to results of evolutionary experi-

ments differ from our study in various ways [5,6,49]. First, they used serial dilution rather than

chemostat experiments. Second, most focused on all beneficial mutations, whereas we catego-

rize beneficial mutations into 2 categories: GAP1 CNVs and all other beneficial mutations;

thus, they used an evolutionary model with a single process generating genetic variation,

whereas our study includes 2 such processes, but focuses inference on our mutation type of

interest. Third, we used 2 different evolutionary models: the Wright–Fisher model, a standard

model in evolutionary genetics, and a chemostat model. The latter is more realistic but also

more computationally demanding. Fourth and importantly, previous studies applied relatively

simple rejection ABC methods [5,6,49,69]. We applied 2 modern approaches: ABC with

sequential Monte Carlo sampling [63], which is a computationally efficient algorithm for

Bayesian inference, using an adaptive distance function [81]; and NPE [78–80] with NSF [84].

NPE approximates an amortized posterior distribution from simulations. Thus, it is more effi-

cient than ABC-SMC, as it can estimate a posterior distribution for new observations without

requiring additional training. This feature is especially useful when a more computationally

demanding model is better (e.g., the chemostat model when selection coefficients are high).

Our study is the first, to our knowledge, to use neural density estimation to apply likelihood-

free inference to experimental evolution data.

Our application of simulation-based inference yielded new insights into the role of CNVs in

adaptive evolution. Using a chemostat model we estimated GAP1 CNV formation rate and selec-

tion coefficient from empirical population-level adaptive evolution dynamics and found that

GAP1 CNVs form at a rate of 10−4.7 to 10−4.0 per generation (approximately 1 in 10,000 cell divi-

sions) and have selection coefficients of 0.04 to 0.1 per generation. We experimentally validated

our inferred fitness estimates using barcode lineage tracking and pairwise competition assays and

showed that simulation-based inference is in good agreement with the 2 different experimental

methods. The formation rate that we have determined for GAP1 CNVs is remarkably high.

Locus-specific CNV formation rates are extremely difficult to determine and fluctuation assays

have yielded estimates ranging from 10−12 to 10−6 [91–95]. Mutation accumulation studies have

yielded genome-wide CNV rates of about 10−5 [32,37,38], which is an order of magnitude lower

than our locus-specific formation rate. We posit 2 possible explanations for this high rate: (1)

CNVs at the GAP1 locus may be deleterious in most conditions, including the putative nonselec-

tive conditions used for mutation-selection experiments, and therefore underestimated in muta-

tion accumulation assays due to negative selection; and (2) under nitrogen-limiting selective

conditions, in which GAP1 expression levels are extremely high, a mechanism of induced CNV

formation may operate that increases the rate at which they are generated, as has been shown at

other loci in the yeast genome [96, 97]. Empirical validation of the inferred rate of GAP1 CNV for-

mation in nitrogen-limiting conditions requires experimental confirmation.

This simulation-based inference approach can be readily extended to other evolution exper-

iments. In this study, we performed inference of parameters for a single type of mutation. This

approach could be extended to infer the rates and effects of multiple types of mutations simul-

taneously. For example, instead of assuming a rate and selection coefficient for other beneficial

mutations and performing ex post facto analyses looking at the sensitivity of inference of

GAP1 CNV parameters in other beneficial mutation regimes, one could simultaneously infer
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parameters for both of these types of mutations. As shown using our barcode-sequencing data,

many CNVs arise during adaptive evolution, and previous studies have shown that CNVs have

different structures and mechanisms of formation [48,98]. Inferring a single effective selection

coefficient and formation rate is a current limitation of our study that could be overcome by

inferring rates and effects for different classes of CNVs (e.g., aneuploidy versus tandem dupli-

cation). Inspecting conditional correlations in posterior distributions involving multiple types

of mutations has the potential to provide insights into how interactions between different clas-

ses of mutations shape evolutionary dynamics.

The approach could also be applied to CNV dynamics at other loci, in different genetic back-

grounds, or in different media conditions. Ploidy and diverse molecular mechanisms likely impact

CNV formation rates. For example, rates of aneuploidy, which result from nondisjunction errors,

are higher in diploid yeast than haploid yeast, and chromosome gains are more frequent than

chromosome losses [37]. There is considerable evidence for heterogeneity in the CNV rate

between loci, as factors including local sequence features, transcriptional activity, genetic back-

ground, and the external environment may impact the mutation spectrum. For example, there is

evidence that CNVs occur at a higher rate near certain genomic features, such as repetitive ele-

ments [42], tRNA genes [99], origins of replication [100], and replication fork barriers [101].

Furthermore, this approach could be used to infer formation rates and selection coefficients

for other types of mutations in different asexually reproducing populations; the empirical data

required is simply the proportion of the population with a given mutation type over time,

which can efficiently be determined using a phenotypic marker, or similar quantitative data

such as whole-genome whole-population sequencing. Evolutionary models could be extended

to more complex evolutionary scenarios including changing population sizes, fluctuating

selection, and changing ploidy and reproductive strategy, with an ultimate goal of inferring

their impact on a variety of evolutionary parameters and predicting evolutionary dynamics in

complex environments and populations. Applications to tumor evolution and viral evolution

are related problems that are likely amenable to this approach.

Methods

All source code and data for performing the analyses and reproducing the figures is available

at https://doi.org/10.17605/OSF.IO/E9D5X. Code is also available at https://github.com/

graceave/cnv_sims_inference.

Evolutionary models

We modeled the adaptive evolution from an isogenic asexual population with frequencies XA

of the ancestral (or wild type) genotype, XC of cells with a GAP1 CNV, and XB of cells with a

different type of beneficial mutation. Ancestral cells can gain a GAP1 CNV or another benefi-

cial mutation at rates δC and δB, respectively. Therefore, the frequencies of cells of different

genotypes after mutation are

xyA ¼ ð1 � dB � dCÞxA;

xyB ¼ xAdB þ xB;

xyC ¼ xAdC þ xC

For simplicity, this model neglects cells with multiple mutations, which is reasonable for

short timescales, such as those considered here.
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In the discrete time Wright–Fisher model, the change in frequency due to natural selection

is modeled by

x� i ¼
wkxi

�w
; �w ¼

X

i2fA;B;Cg
wixi;

where wi is the relative fitness of cells with genotype i, and �w is the population mean fitness rel-

ative to the ancestral type. Relative fitness is related to the selection coefficient by

wi ¼ 1þ si; i ¼ B;C

The change in frequency due random genetic drift is given by

ni ¼ Multinomial N; x�A; x
�
B; x

�
Cð Þð Þ; x0i ¼

ni

N
;

where N is the population size. In our simulations N = 3.3 × 108, the effective population size

in the chemostat populations in our experiment (see the “Determining the effective population

size in the chemostat” section).

The chemostat model starts with a population size 1.5 × 10−7 and the concentration of the

limiting nutrient in the growth vessel, S, is equal to the concentration of that nutrient in the

fresh media, S0. During continuous culture, the chemostat is continuously diluted as fresh

media flows in and culture media and cells are removed at rate D. During the initial phase of

growth, the population size grows, and the limiting nutrient concentration is reduced until a

steady state is attained at which the population size and limiting nutrient concentration are

maintained indefinitely. We extended the model for competition between 2 haploid clonal

populations for a single growth-limiting resource in a chemostat from [73] to 3 populations

such that

dxA
dt
¼ xA

rAS
Sþ kA

� D
� �

;

dxB
dt
¼ xB

rBS
Sþ kB

� D
� �

;

dxC
dt
¼ xC

rCS
Sþ kC

� D
� �

;

dS
dt
¼ S0 � Sð ÞD �

xArAS
ðSþ kAÞYA

�
xBrBS

ðSþ kBÞYB
�

xCrCS
ðSþ kCÞYC

Yi is the culture yield of strain i per mole of limiting nutrient. rA is the Malthusian parame-

ter, or intrinsic rate of increase, for the ancestral strain, and in the chemostat literature is fre-

quently referred to as μmax, the maximal growth rate. The growth rate in the chemostat, μ,

depends on the the concentration of the limiting nutrient with saturating kinetics m ¼
mmaxS
ksþS

. ki
is the substrate concentration at half-maximal μ. rC and rB are the Malthusian parameters for

strains with a CNV and strains with another beneficial mutation, respectively, and are related

to the ancestral Malthusian parameter and selection coefficient by [102]

si ¼
ri � rA
rA

ln2; i ¼ B;C:

The values for the parameters used in the chemostat model are in Table 1.
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We simulated continuous time in the chemostat using the Gillespie algorithm with τ-leap-

ing. Briefly, we calculate the rates of ancestral growth, ancestral dilution, CNV growth, CNV

dilution, other mutant growth, other mutant dilution, mutation from ancestral to CNV, and

mutation from ancestral to other mutant. For the next time interval τ, we calculated the num-

ber of times each event occurs during the interval using the Poisson distribution. The limiting

substrate concentration is then adjusted accordingly. These steps repeat until the desired num-

ber of generations is reached.

For the chemostat model, we began counting generations after 48 hours, which is approxi-

mately the amount of time required for the chemostat to reach steady state, and when we

began recording generations in [48].

Determining the effective population size in the chemostat

In order to determine the effective population size in the chemostat, and thus the population

size to use in with the Wright–Fisher model, we determined the conditional variance of the

allele frequency in the next generation p’ given the frequency in the current generation p in the

chemostat. To do this, we simulated a chemostat population with 2 neutral alleles with fre-

quencies p and q (p + q = 1), which begin at equal frequencies, p = q. We allowed the simula-

tion to run for 1,000 generations, recording the frequency p at every generation, excluding the

first 100 generations to ensure the population is at steady state. We then computed the condi-

tional variance Var(p’|p) in each generation and estimated the effective population size as

(where t = 900 is the total number of generations) [103]:

Ne ¼
pð1 � pÞ

1

t

Ptvarðp0jpÞ
:

The estimated effective population size in our chemostat conditions is 3.3 × 108, which is

approximately two-thirds of the census population size N when the chemostat is at steady state.

Inference methods

For inference using single observations, we used the proportion of the population with a GAP1
CNV at 25 time points as our summary statistics and defined a log-uniform prior for the for-

mation rate ranging from 10−12 to 10−3 and a log-uniform prior for the selection coefficient

from 10−4 to 0.4.

For inference using sets of observation, we used a uniform prior for α from 0.5 to 15, a log-

uniform prior for β from 10−3 to 0.8, and a log-uniform prior for the formation rate ranging

from 10−12 to 10−3. For use with NPE, we used a 3-layer sequential neural network with linear

transformations in each layer and rectified linear unit as the activation functions to encode the

observation set into 5 summary statistics, which we then used as an embedding net with NPE.

We applied ABC-SMC implemented in the Python package pyABC [70]. For inference

using single observations, we used an adaptively weighted Euclidean distance function with

the root mean square deviation as the scale function. For inference using a set of observations,

we used the squared Euclidean distance as our distance metric. We used 100 samples from the

prior for initial calibration before the first round, and a maximum acceptance rate of either

10,000 or 100,000 for both single observations and observation sets (i.e.,10,000 single observa-

tions or 10,000 sets of 11 observations). For the acceptance rate of 10,000, we started inference

with 100 samples, had a maximum of 1,000 accepted samples per round, and a maximum of

10 rounds. For the acceptance rate of 100,000, we started inference with 1,000 samples, had a

maximum of 10,000 accepted samples per round, and a maximum of 10 rounds. The exact

number of samples from the proposal distribution during each round of sampling were
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adaptively determined based on the shape of the current posterior distribution [82]. For infer-

ence of the posterior for each observation, we performed multiple rounds of sampling until

either we reached the acceptance threshold ε< = 0.002 or 10 rounds were performed.

We applied NPE implemented in the Python package sbi [71] using a MAF [83] or a NSF

[84] as a conditional density estimator that learns an amortized posterior density for single

observations. We used either 10,000 or 100,000 simulations to train the network. To test the

dependence of our results on the set of simulations used to learn the posterior, we trained 3

independent amortized networks with different sets of simulations generated from the prior

and compared our resulting posterior distributions for each observation.

Assessment of performance of each method with each model

To test each method, we simulated 5 populations for each combination of the following CNV

formation rates and fitness effects: sC = 0.001 and δC = 10−5; sC = 0.1 and δC = 10−5; sC = 0.001

and δC = 10−7; sC = 0.1 and δC = 10−7, for both the Wright–Fisher model and the chemostat

model, resulting in 40 total simulated observations. We independently inferred the CNV fit-

ness effect and formation rate for each simulated observation 3 times.

We calculated the MAP estimate by first estimating a Gaussian kernel density estimate

(KDE) using SciPy (scipy.stats.gaussian_kde) [104] with at least 1,000 parameter combinations

and their weights drawn from the posterior distribution. We then found the maximum of the

KDE (using scipy.optimize.minimize with the Nelder–Mead solver). We calculated the 95%

HDIs for the MAP estimate of each parameter using pyABC (pyabc.visualization.credible.com-
pute_credible_interval) [70].

We performed posterior predictive checks by simulating CNV dynamics using the MAP

estimate as well as 50 parameter values sampled from the posterior distribution. We calculated

RMSE and correlation to measure agreement of the 50 posterior predictions with the observa-

tion and report the mean and 95% confidence intervals for these measures. For inference on

sets of observations, we calculated the RMSE and correlation coefficient between the posterior

predictions and each of the 3 held out observations, and report the mean and 95% confidence

intervals for these measures over all 3 held out observations.

We calculated AIC using the standard formula

AIC ¼ � 2logðpðyjŷÞÞ þ 2k;

where ŷ is the MAP estimate, k = 2 is the number of inferred parameters, y is the observed

data, and p is the inferred posterior distribution. We calculated Watanabe-AIC or WAIC

according to both commonly used formulas:

WAIC1 ¼ � 2
Xn

i¼1

log
1

S

XS

s¼1

pðyijy
s
Þ

 !

þ 2
Xn

i¼1

log
1

S

XS

s¼1

pðyijy
s
Þ

 !

�
1

S

XS

s¼1

pðyijy
s
Þ

 !

WAIC2 ¼ � 2
Pn

i¼1
log

1

S
PS

s¼1
pðyijy

s
Þ

� �

þ 2
Pn

i¼1
VS

s¼1
logpðyijy

s
ð ÞÞ;

where S is the number of draws from the posterior distribution, θs is a sample from the poste-

rior, and VS
s¼1

is the posterior sample variance.

Pairwise competitions

We isolated CNV-containing clones from the populations on the basis of fluorescence and per-

formed pairwise competitions between each clone and an unlabeled ancestral (FY4) strain. We
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also performed competitions between the ancestral GAP1 CNV reporter strain, with and with-

out barcodes. To perform the competitions, we grew fluorescent GAP1 CNV clones and ances-

tral clones in glutamine-limited chemostats until they reached steady state [48]. We then

mixed the fluorescent strains with the unlabeled ancestor in a ratio of approximately 1:9 and

performed competitions in the chemostats for 92 hours or about 16 generations, sampling

approximately every 2 to 3 generations. For each time point, at least 100,000 cells were ana-

lyzed using an Accuri flow cytometer to determine the relative abundance of each genotype.

Previously, we established that the ancestral GAP1 CNV reporter has no detectable fitness

effect compared to the unlabeled ancestral strain [48]. However, the GAP1 CNV reporter with

barcodes does appear to have a slight fitness cost associated with it; therefore, we took slightly

different approaches to determine the selection coefficient relative to the ancestral state

depending on whether or not a GAP1 CNV containing clone was barcoded. If a clone was not

barcoded, we determined relative fitness using linear regression of the log ratio of the fre-

quency of the 2 genotypes against the number of elapsed hours. If a clone was barcoded, rela-

tive fitness was computed using linear regression of the log ratio of the frequencies of the

barcoded GAP1 CNV-containing clone and the unlabeled ancestor, and the log ratio of the fre-

quencies of the unevolved barcoded GAP1 CNV reporter ancestor to the unlabeled ancestor

against the number of elapsed hours, adding an additional interaction term for the evolved

versus ancestral state. We converted relative fitness from per hour to generation by dividing by

the natural log of 2.

Barcode sequencing

In our prior study, populations with lineage tracking barcodes and the GAP1 CNV reporter

were evolved in glutamine-limited chemostats [48], and whole population samples were peri-

odically frozen in 15% glycerol. To extract DNA, we thawed pelleted cells using centrifugation

and extracted genomic DNA using a modified Hoffman–Winston protocol, preceded by incu-

bation with zymolyase at 37˚C to enhance cell lysis [105]. We measured DNA quantity using a

fluorometer and used all DNA from each sample as input to a sequential PCR protocol to

amplify DNA barcodes which were then purified using a Nucleospin PCR clean-up kit, as

described previously[48,89].

We measured fragment size with an Agilent TapeStation 2200 and performed qPCR to

determine the final library concentration. DNA libraries were sequenced using a paired-end

2 × 150 bp protocol on an Illumina NovaSeq 6000 using an XP workflow. Standard metrics

were used to assess data quality (Q30 and %PF). We used the Bartender algorithm with UMI

handling to account for PCR duplicates and to cluster sequences with merging decisions based

solely on distance except in cases of low coverage (<500 reads/barcode), for which the default

cluster merging threshold was used [69]. Clusters with a size less than 4 or with high entropy

(>0.75 quality score) were discarded. We estimated the relative abundance of barcodes using

the number of unique reads supporting a cluster compared to total library size. Raw sequenc-

ing data is available through the SRA, BioProject ID PRJNA767552.

Detecting adaptive lineages in barcoded clonal populations

To detect spontaneous adaptive mutations in a barcoded clonal cell population that is evolved

for over time, we used a Python-based pipeline (which can be found at https://github.com/

FangfeiLi05/PyFitMut) based on a previously developed theoretical framework [89]. The pipe-

line identifies adaptive lineages and infers their fitness effects and establishment time. In a bar-

coded population, a lineage refers to cells that share the same DNA barcode. For each lineage

in the barcoded population, beneficial mutations continually occur at a total beneficial
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mutation rate Ub, with fitness effect s, which results in a certain spectrum of fitness effects of

mutations μ(s). If a beneficial mutant survives random drift and becomes large enough to

grow deterministically (exponentially), we say that the mutation carried by the mutant has

established. Here, we use Wright fitness s, which is defined as average number of additional t

offspring of a cell per generation, that is, n(t) = n(0)�(1 + s), with n(t) being the total number of

cells at generation t (can be nonintegers). Briefly, for each lineage, assuming that the lineage is

adaptive (i.e., a lineage with a beneficial mutation occurred and established), then estimates of

the fitness effect and establishment time of each lineage are made by random initialization,

and the expected trajectory of each lineage is estimated and compared to the measured trajec-

tory. Fitness effect and establishment time estimates are iteratively adjusted to better fit the

observed data until an optimum is reached. At the same time, the expected trajectory of the

lineage is also estimated assuming that the lineage is neutral. Finally, Bayesian inference is

used to determine whether the lineage is adaptive or neutral. An accurate estimation of the

mean fitness is necessary to detect mutations and quantify their fitness effects, but the mean

fitness is a quantity that cannot be measured directly from the evolution. Rather, it needs to be

inferred through other variables. Previously, the mean fitness was estimated by monitoring the

decline of neutral lineages [89]. However, this method fails when there is an insufficient num-

ber of neutral lineages as a result of low sequencing read depth. Here, we instead estimate the

mean fitness using an iterative method. Specifically, we first initialize the mean fitness of the

population as zero at each sequencing time point, then we estimate the fitness effect and estab-

lishment time for adaptive mutations, then we recalculate the mean fitness with the optimized

fitness and establishment time estimates, repeating the process for several iterations until the

mean fitness converges.

Supporting information

S1 Table. Wall time to run one simulation. Running time for a single WF simulation or a sin-

gle chemostat simulation for each of the following parameter combinations on a 2019 Mac-

Book Pro operating Mac OS Catalina 10.15.7 with a 2.6 GHz 6-Core Intel Core i7 processor.

Code required to generate this table can be found at https://doi.org/10.17605/OSF.IO/E9D5X.

WF, Wright–Fisher.

(CSV)

S2 Table. Kullback–Leibler divergence for Gamma distributions fit from single inferred

selection coefficients versus the true underlying DFE, or for directly inferred Gamma dis-

tributions versus the true underlying DFE. Code required to generate this table can be found

at https://doi.org/10.17605/OSF.IO/E9D5X. DFE, distribution of fitness effects.

(CSV)

S1 Fig. Interpolation for bc01 and bc02. Populations gln01-gln09 and bc01-bc02 have differ-

ent time points—the gln populations have 25 time points in total, whereas the bc populations

have 32 time points in total. Of these, 12 of the time points are the same in both populations.

To match the time points in the gln populations, we interpolated from the 2 nearest time

points in the bc populations (using pandas.DataFrame.interpolate(“values”)). This way, we can

use the same data (same time points) for inference for all 11 populations so that we can use the

same amortized NPE posterior to infer parameters for both gln populations and bc popula-

tions. Original bc data are shown as black dots, the matched data, with interpolated time

points, is shown as red crosses. Data and code required to generate this figure can be found at

https://doi.org/10.17605/OSF.IO/E9D5X. NPE, Neural Posterior Estimation.

(PNG)
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S2 Fig. Performance assessment of NPE with MAF using single simulated synthetic obser-

vations. These show the results of inference on 5 simulated synthetic observations generated

using either the WF or chemostat (Chemo) model (and inference performed with the same

model) per combination of fitness effect sC and formation rate δC. Here, we show the results of

performing one training set with NPE with MAF using 100,000 simulations for training and

using the same amortized network to infer a posterior for each replicate synthetic observation.

(A) Percentage of true parameters within the 50% HDR. (B) Distribution of widths of the fit-

ness effect sC 95% HDI calculated as the difference between the 97.5 percentile and 2.5 percen-

tile, for each inferred posterior distribution. (C) Distribution of the number of orders of

magnitude encompassed by the formation rate δC 95% HDI, calculated as difference of the

base 10 logarithms of the 97.5 percentile and 2.5 percentile, for each inferred posterior distri-

bution. (D) Log ratio MAP estimate as compared to true parameters for sC and δC. Note that

each panel has a different y-axis. (E) Mean and 95% confidence interval for RMSE of 50 poste-

rior predictions as compared to the synthetic observation for which inference was performed.

(F) RMSE of posterior prediction generated with MAP parameters as compared to the syn-

thetic observation for which inference was performed. (G) Mean and 95% confidence interval

for correlation coefficient of 50 posterior predictions compared to the synthetic observation

for which inference was performed. (H) Correlation coefficient of posterior prediction poste-

rior prediction generated with MAP parameters compared to the synthetic observation for

which inference was performed. Data and code required to generate this figure can be found at

https://doi.org/10.17605/OSF.IO/E9D5X. HDI, highest density interval; HDR, highest density

region; MAF, masked autoregressive flow; MAP, maximum a posteriori; NPE, Neural Poste-

rior Estimation; RMSE, root mean square error; WF, Wright–Fisher.

(PNG)

S3 Fig. NPE with the WF model performs as well or better than other combinations of

model and method. Results of inference on 5 simulated single synthetic observations gener-

ated using either the WF or chemostat (Chemo) model (and inference performed with the

same model) per combination of fitness effect sC and formation rate δC. Here, we show the

results of performing training with NPE with NSF using 100,000 simulations for training and

using the same amortized network to infer a posterior for each replicate synthetic observation,

or ABC-SMC when the training budget was 10,000. (A) RMSE (lower is better) of posterior

prediction generated with MAP parameters as compared to the synthetic observation on

which inference was performed. (B) Correlation coefficient (higher is better) of posterior pre-

diction generated with MAP parameters compared to the synthetic observation on which

inference was performed. (C) Mean and 95% confidence interval for correlation coefficient

(higher is better) of 50 posterior predictions (sampled from the posterior distribution) com-

pared to the synthetic observation on which inference was performed. Data and code required

to generate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X. ABC-SMC,

Approximate Bayesian Computation with Sequential Monte Carlo; MAP, maximum a posteri-

ori; NPE, Neural Posterior Estimation; RMSE, root mean square error; WF, Wright–Fisher.

(PNG)

S4 Fig. NPE and WF have the lowest information criteria. WAIC and AIC (lower is better)

of models fitted on single synthetic observations using either the WF or chemostat (Chemo)

model and either ABC-SMC or NPE for different combinations of fitness effect sC and forma-

tion rate δC with simulation budgets of 10,000 or 100,000 simulations per inference procedure

(facets). We were unable to complete ABC-SMC with the chemostat model (red) when the

training budget was 100,000 within a reasonable time frame. Data and code required to gener-

ate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X. ABC-SMC,
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Approximate Bayesian Computation with Sequential Monte Carlo; AIC, Akaike information

criterion; NPE, Neural Posterior Estimation; WAIC, widely applicable information criterion;

WF, Wright–Fisher.

(PNG)

S5 Fig. NPE performs similar to or better than ABC-SMC for 8 additional parameter com-

binations. The figure shows the results of inference on 5 simulated synthetic observations

using the WF model per combination of fitness effect sC and formation rate δC. Simulations

and inference were performed using the same model. For NPE, each training set corresponds

to an independently amortized posterior distribution trained on a different set of 100,000 sim-

ulations, with which each synthetic observation was evaluated to produce a separate posterior

distribution. For ABC-SMC, each training set corresponds to independent inference proce-

dures on each observation with a maximum of 100,000 total simulations accepted for each

inference procedure and a stopping criteria of 10 iterations or ε< = 0.002, whichever occurs

first. (A) The percent of true parameters within the 50% or 95% HDR of the inferred posterior

distribution. The bar height shows the average of 3 training sets. (B, C) Distribution of widths

of 95% HDI of the posterior distribution of the fitness effect sC (B) and CNV formation rate δC

(C), calculated as the difference between the 97.5 percentile and 2.5 percentile, for each sepa-

rately inferred posterior distribution. (D) Log ratio (relative error) of MAP estimate to true

parameter for sC and δC. Note the different y-axis ranges. A perfectly accurate MAP estimate

would have a log ratio of zero. (E) Mean and 95% confidence interval for RMSE of 50 posterior

predictions as compared to the synthetic observation for which inference was performed. (F)

RMSE of posterior prediction generated with MAP parameters as compared to the synthetic

observation for which inference was performed. (G) Mean and 95% confidence interval for

correlation coefficient of 50 posterior predictions compared to the synthetic observation for

which inference was performed. (H) Correlation coefficient of posterior prediction posterior

prediction generated with MAP parameters compared to the synthetic observation for which

inference was performed. Data and code required to generate this figure can be found at

https://doi.org/10.17605/OSF.IO/E9D5X. ABC-SMC, Approximate Bayesian Computation

with Sequential Monte Carlo; HDI, highest density interval; HDR, highest density region;

MAP, maximum a posteriori; NPE, Neural Posterior Estimation; RMSE, root mean square

error; WF, Wright–Fisher.

(PNG)

S6 Fig. Effect of simulation budget on relative error of MAP estimate and width of HDIs.

For NPE, amortized posteriors were estimated using either 10,000 or 100,000 simulations,

with which each synthetic observation was evaluated to produce a separate posterior distribu-

tion. For ABC-SMC, a posterior was independently inferred for each observation with a maxi-

mum of 10,000 or 100,000 total simulations accepted and a stopping criteria of 10 iterations or

ε< = 0.002, whichever occurs first. The gray lines in (A, D) indicates a relative error of zero

(i.e., no difference between MAP parameters and true parameters). (D, E, F) We were unable

to complete ABC-SMC with the chemostat model (red) when the training budget was 100,000

within a reasonable time frame. Data and code required to generate this figure can be found at

https://doi.org/10.17605/OSF.IO/E9D5X. ABC-SMC, Approximate Bayesian Computation

with Sequential Monte Carlo; MAP, maximum a posteriori; NPE, Neural Posterior Estima-

tion.

(PNG)

S7 Fig. The cumulative number of simulations needed to estimate posterior distributions

for multiple observations. The x-axis shows the number of replicate simulated synthetic
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observations for a combination of parameters, and the y-axis shows the cumulative number of

simulations needed to infer posteriors for an increasing number of observations (see the

“Overview of inference strategies” section for more details), for observations with different

combinations of CNV selection coefficient sC and CNV formation rate δC (A–D). Each facet

represents a total simulation budget for NPE, or the maximum number of accepted simula-

tions for ABC-SMC. Since NPE uses amortization, a single amortized network is trained with

10,000 or 100,000 simulations, and that network is then used to infer posteriors for each obser-

vation (note that a single amortized network was used to infer posteriors for all parameter

combinations.) For ABC-SMC, each observation requires a separate inference procedure to be

performed individually, and not all generated simulations are accepted for posterior estima-

tion; therefore, the number of simulations used for a single observation may be more than the

acceptance threshold, and the number of simulations needed increases with the number of

observations for which a posterior is inferred. Data and code required to generate this figure

can be found at https://doi.org/10.17605/OSF.IO/E9D5X. ABC-SMC, Approximate Bayesian

Computation with Sequential Monte Carlo; CNV, copy number variant; NPE, Neural Poste-

rior Estimation.

(PNG)

S8 Fig. Results of inference on 5 simulated synthetic observations generated using either

the WF or chemostat (Chemo) model per combination of fitness effect sC and formation

rate δC. We performed inference on each synthetic observation using both models. For NPE,

each training set corresponds to an independent amortized posterior trained with 100,000 sim-

ulations, with which each synthetic observation was evaluated. (A) Percentage of true parame-

ters within the 50% HDR. The bar height shows the average of 3 training sets. (B) Percentage

of true parameters within the 95% HDR. The bar height shows the average of 3 training sets.

Data and code required to generate this figure can be found at https://doi.org/10.17605/OSF.

IO/E9D5X. HDR, highest density region; NPE, Neural Posterior Estimation; WF, Wright–

Fisher.

(PNG)

S9 Fig. A set of 11 simulated synthetic observations was generated from a WF model with

CNV selection coefficients sampled from an Gamma distribution where α = 10 of fitness

effects (DFE) (black curve). The MAP DFEs (blue curves) were directly inferred using 3 dif-

ferent subsets of 8 out of 11 synthetic observations. We also inferred the selection coefficient

for each observation in the set of 11 individually, and fit Gamma distributions to sets of 8

inferred selection coefficients (green curves). All inferences were performed with NPE using

the same amortized network to infer a posterior for each set of 8 synthetic observations or

each single observation. Data and code required to generate this figure can be found at https://

doi.org/10.17605/OSF.IO/E9D5X. DFE, distribution of fitness effects; MAP, maximum a pos-

teriori; NPE, Neural Posterior Estimation; WF, Wright–Fisher.

(PNG)

S10 Fig. Out-of-sample posterior predictive accuracy using RMSE (A) or correlation (B)

using 3 held out observations when α and β are directly inferred from the other 8 observations,

for α = 1 or α = 10 (facets). Data and code required to generate this figure can be found at

https://doi.org/10.17605/OSF.IO/E9D5X. RMSE, root mean square error.

(PNG)

S11 Fig. Proportion of the population with a GAP1 CNV in the experimental observations

(black) and in posterior predictions using the MAP estimate shown in panels A and B with

either the WF or chemostat (Chemo) model. Inference was performed with all data up to
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generation 267 (WF ppc 267, Chemo ppc 267), or excluding data after generation 116

(WF ppc 116, Chemo ppc 116). Formation rate and fitness effect of other beneficial mutations

set to 10−5 and 10−3, respectively. Data and code required to generate this figure can be found

at https://doi.org/10.17605/OSF.IO/E9D5X. MAP, maximum a posteriori; WF, Wright–

Fisher.

(PNG)

S12 Fig. MAP predictions have lower error when inference is performed using only up to

generation 116 and are most accurate for the first 116 generations. MAP posterior predic-

tion RMSE when inference was performed excluding data after generation 116 (left) or using

all data up to generation 267 (right). RMSE was calculated using either the first 116 generations

or using up to generation 267 (x-axis). Data and code required to generate this figure can be

found at https://doi.org/10.17605/OSF.IO/E9D5X. MAP, maximum a posteriori; RMSE, root

mean square error.

(PNG)

S13 Fig. The inferred MAP estimate and 95% HDIs for fitness effect sC and formation rate δC,

using the (A) WF or (B) chemostat (Chemo) model and NPE for each experimental popula-

tion from Lauer and colleagues (2018). Inference was either performed with data up to genera-

tion 116 or with all data, up to generation 267 (facets). Each training set corresponds to 3

independent amortized posterior distributions estimated with 100,000 simulations. Data and

code required to generate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X.

HDI, highest density interval; MAP, maximum a posteriori; NPE, Neural Posterior Estimation;

WF, Wright–Fisher.

(PNG)

S14 Fig. Sensitivity analysis. GAP1 CNV formation rate and selection coefficient inferred

using NPE with the WF model does not change considerably when other beneficial mutations

have different selection coefficients sB and formation rates δB, except when both sB and δB are

high (purple). Data and code required to generate this figure can be found at https://doi.org/

10.17605/OSF.IO/E9D5X. CNV, copy number variant; NPE, Neural Posterior Estimation;

WF, Wright–Fisher.

(PNG)

S15 Fig. Mean and 95% confidence interval for RMSE (A) and correlation (B) of 50 posterior

predictions compared to empirical observations up to generation 116, using posterior distribu-

tions inferred when other beneficial mutations have different selection coefficients sB and for-

mation rates δB. Data and code required to generate this figure can be found at https://doi.org/

10.17605/OSF.IO/E9D5X. RMSE, root mean square error.

(PNG)
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