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Abstract

Copy number variation (CNV), the duplication or deletion of segments of DNA, is a ubiquitous

form of genetic variation that contributes to rapid adaptation, gene family evolution, and disease.

This doctoral thesis focuses on the role of CNVs in mediating evolution to novel environments,

using the yeast Saccharomyces cerevisiae as a model organism. In chapter one, I summarize

our understanding of evolutionary dynamics in asexual populations, and discuss the role of

CNVs in evolution. In chapter two, I observed the dynamics of CNV at the locus GAP1 locus

during evolution in glutamine-limited chemostats using a fluorescent CNV reporter and lineage

tracking barcodes, and discovered that hundreds to thousands of competing GAP1 CNV

lineages contribute to the rapid and repeatable rise of CNVs in evolving populations. In chapter

three, I used simulation-based inference with neural networks to estimate the formation rate and

selection coefficients of CNVs using the observed population level dynamics from chapter one. I

found that GAP1 CNVs are generated at high rates and have large selection coefficients, and

validated the approach with inference from barcode lineage dynamics and empirical

measurements of GAP1 CNV fitness. In chapter four, I used transposon mutagenesis,

transcriptome profiling, and fitness assays to investigate the genetic and functional effects of

CNVs with different structures. I found that amplification confers novel mutational tolerance, and

that CNVs with low fitness have genetic interactions with genes involved in translation and

mitochondrial function. Furthermore, while amplification results in increased gene expression,

some strains also exhibit dosage compensation. CNVs do not exhibit previously described gene

expression signatures of aneuploidy, instead they downregulate genes involved in cellular

respiration, nucleoside biosynthetic processes, and small molecule metabolism, and upregulate

genes involved in transposition, nucleic acid metabolism, and siderophore transport, though to

different degrees in each strain. The implications of this work and possible future directions are

discussed in chapter five.
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Chapter 1: Introduction

Understanding how genomes evolve is fundamental for understanding how life on earth

came to be, and for predicting how organisms will evolve in the future. Organisms’ genomes are

composed of DNA which is made up of four bases - A, T, C, G -  strung together in linear or

circular chromosomes. Across the tree of life, genomes vary in sequence and in configuration

and structure of segments of DNA. Genomes can evolve in many ways: through single

nucleotide variants (SNV), when one single base is replaced with another; through

rearrangements, where chromosomes break and the broken piece fuses to another

chromosome, or reverses in orientation; through copy number variants (CNV), in which large

portions of the DNA are deleted or duplicated; and through other mechanisms as well (Press et

al. 2019).

Each of these mutations can have different effects on an organism’s fitness - its ability to

survive and reproduce. SNVs usually (but not always!) have smaller effects, whether positive or

negative, than rearrangements or CNVs, because they affect less of the genome (Press et al.

2019). Moreover, the effect of a mutation may differ based on the environmental or genetic

context. A mutation that is beneficial in a cold environment may be detrimental in a hot

environment (Bennett and Lenski 2007), or a mutation that usually only slightly increases one’s

risk of cancer may dramatically increase the risk when another cancer causing mutation, such

as a BRCA1 mutation, is present (Tutuncuoglu and Krogan 2019).

Each of these ways in which the genome evolves occur through different mechanisms,

and therefore occur at different rates. The rate at which different types of mutations occur

affects the probability of a mutation occurring, and therefore can have a very large impact on

how a population evolves (Press et al. 2019; Ferenci and Maharjan 2015). Both SNVs and
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CNVs may help harmful bacteria become resistant to specific antibiotics. Although CNVs occur

frequently, it may take many mutations for bacteria to become fully resistant if each CNV has a

small effect. By contrast, a single SNV may be sufficient to confer resistance, but if it occurs at a

low rate, may be a less likely route to drug resistance (Schenk et al. 2022). Therefore

consideration of both the rate, and effect, of mutations is of practical significance when

prescribing antibiotic regimes (Andersson 2015).

My doctoral thesis research focuses specifically on the role of CNVs in mediating

evolution to novel environments, using the yeast Saccharomyces cerevisiae as a model

organism. In chapter two, I observe the dynamics of copy number variants at a locus using a

variety of approaches, which allows us to investigate CNV dynamics at a range of perspectives,

from comparing dynamics between populations, to lineages within populations, to characterizing

CNV structures in single cells. In chapter three, I use simulation-based inference to estimate the

formation rate and selection coefficients of CNVs using the observed population level dynamics

from chapter one. In chapter four, I examine how CNVs with different structures interact with the

genetic and physical environment, and try to understand if there are common effects associated

with CNVs.

1.1 Evolutionary parameters and the dynamics of evolution

When one thinks of Darwinian evolution, one often thinks of the phrase, “survival of the

fittest.” What does this mean? Darwin’s theory stated that individuals within populations have

variable phenotypes. This phenotypic variation is heritable, and selection acts on these variable

populations so that individuals with some phenotypic characteristics are able to differentially

survive and reproduce, resulting in the “survival of the fittest.” This process of “survival of the

fittest” results in evolution of populations, ultimately resulting in the diversity of life we see in the

world (Darwin 1859). When people think about evolution, this emphasis is often on the “survival

2
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of the fittest” aspect, or the selection aspect, but it is also important that there is variation in a

population. We now know the basis of this heritable variation is genetic, and new genetic

variation is created by mutation. A new mutation can potentially change the phenotype of an

individual and allow that individual to succeed in a selective environment where it otherwise

would not have. The rate and order in which these mutations arrive and add new variation to

populations is as important an aspect of evolutionary dynamics as the selective events.

Understanding how the arrival of new mutations can constrain and facilitate evolution and how

selection acts on these mutations is essential for understanding evolutionary processes, and for

predicting future evolution. These questions become both more interesting and more difficult to

understand when we consider that different types of mutations have different characteristics.

Here, I will focus on asexually reproducing microbial populations and use examples from

evolution experiments, though much interesting work is being done on other types of

populations and in other environments. This section does not comprehensively review the

literature on the dynamics of evolution in microbial experimental evolution (a good review can

be found here (Van den Bergh et al. 2018)), rather, my aim is to introduce some important

terminology and recent insights, as well as give the reader a sense of the complexity of

evolutionary dynamics and the importance of the underlying parameters.

1.1.1 The dynamics of evolution

Evolutionary change can be broken down into two parts: change in the distribution of

phenotypes in a population and change in the allele frequencies in a population. While a change

in one of these can cause a change in the other, this is not necessarily the case. However,

selection ultimately acts on the phenotype. There are many phenotypes at many scales, from

molecules (e.g., mRNA expression) to life history (e.g., number of offspring). Here, I will be

focusing primarily on changes in allele frequencies and a summary phenotype, relative fitness,

3
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which is the combined growth and reproductive success of an individual with a given genotype

relative to an individual of another genotype.

A simple case of a change in allele frequencies is when positive selection occurs. If an

individual acquires a mutation that has a beneficial fitness effect, that individual will have an

advantage over others in the population and survive and reproduce at a greater rate, allowing

the mutation to increase in frequency, or “sweep”, though the population. Conversely, if a

mutation is deleterious, it will be kept at a low frequency or removed from the population by

purifying selection. Selection, however, is not the only force that controls allele frequencies in a

population. They may also change due to genetic drift which is a neutral process. Since drift is

essentially sampling error, the effect of drift is dependent on population size. Thus, a mutation

with no fitness effect can still change in frequency, and mutations can change in frequency in

directions opposite of what would be expected from their fitness effects. We can thus predict the

ultimate fate of a mutation based on the selection coefficient (or fitness effect) of the mutation

and the size of the population.

The above scenarios consider a simple situation, in which a population is initially

isogenic, a new mutation arises in a single individual, and the fate of that mutation is based on

both the probability that the mutation survives drift and its selection coefficient. This would be

the case in a so-called strong selection, weak mutation regime (J. H. Gillespie 1991) which

occurs when the population size and mutation rate result in a low mutation supply, so that new

mutations are sufficiently rare as to appear, and then sweep to fixation if beneficial or be purged

if deleterious, before the next new mutation arrives.

There are many situations (probably most, in fact), in which things are not this simple.

One such situation is when a population is sufficiently large that before a beneficial mutation

fixes another individual in the population acquires a different beneficial mutation. If the second

beneficial mutation has a higher selection coefficient (i.e., is more beneficial) than the first, it can

4
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outcompete the first mutation which subsequently disappears from the population. This

phenomenon, in which multiple beneficial lineages simultaneously compete with each other, is

called clonal interference (Gerrish and Lenski 1998). Experimental evolution studies have

shown that clonal interference is very common using a variety of methods. These include

whole-genome, whole-population sequencing at multiple timepoints, in which the relationship

between the dynamics of different alleles is used to infer lineage dynamics (Kvitek and Sherlock

2013; Hong and Gresham 2014a); divergence and non-linearity in trajectories of individuals with

different phenotypic markers in the population (Frenkel, Good, and Desai 2014; Lang et al.

2013); and introducing random barcodes to individuals in the population and tracking the

frequency of the barcodes over time (Levy et al. 2015; Lauer et al. 2018; Nguyen Ba et al.

2019). The dynamics of competing lineages in populations are often shown with Muller plots

(Muller 1932). When mutation rates are sufficiently high, not only can multiple individuals in a

population acquire mutations at very close to the same time, but a single individual may acquire

multiple different mutations before any fix. In this way, in asexual populations, neutral or even

deleterious mutations can rise to high frequencies in populations by “hitchhiking” along with very

beneficial mutations (Lang et al. 2013; Gresham et al. 2008).

Clonal interference and hitchhiking can result in interesting and complex evolutionary

dynamics, because we cannot think about the fate of each mutation in isolation, but must

consider it in the context of other mutations in the same genome and other mutations in the

population. One such dynamic is that of the “traveling wave,” in which an evolving population

initially diversifies as many different mutations arise in different lineages (Hallatschek 2011). As

beneficial mutations spread, the mean population fitness increases and filters out less fit

lineages, which should reduce diversity. However, different individuals in the expanding

beneficial lineages gain new mutations, some of which are beneficial, and thus diversity is both

maintained and the “wave” of mutants of higher and higher fitness travels onward (Rouzine,

5
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Brunet, and Wilke 2008; Nguyen Ba et al. 2019). Thus, a population can maintain high diversity

while the mean population fitness continually increases.​​ In this type of scenario, a mutation that

is very beneficial may rise to high frequency but ultimately be lost from the population if a

lineage that is initially less fit but still beneficial acquires subsequent beneficial mutation(s) that

give it the ability to “leapfrog” over the other lineage (Gerrish and Lenski 1998; Nguyen Ba et al.

2019).

A further complication is that the effect of a mutation may differ when it arises in a

lineage that already has a mutation compared with its effect in the ancestral lineage. We often

assume that the effects of two mutations are simply the sum or product of the effect of each

individual mutation, but in fact, mutations may interact with each other so that their combined

effect results in lower or higher than expected fitness. This phenomenon is known as epistasis.

Therefore, some evolutionary trajectories may be less likely than others because they require

particular mutations to occur in a particular order (Blount, Lenski, and Losos 2018). While there

are many types of epistasis (reviewed in (Domingo, Baeza-Centurion, and Lehner 2019)), one

particularly interesting type is diminishing returns epistasis, which occurs when the effect of new

beneficial mutations is smaller in more fit lineages, has frequently been observed in evolution

experiments, and results in a decline in the rate of adaptation as evolution progresses (Good

and Desai 2015; Kryazhimskiy et al. 2014; Wei and Zhang 2019; Khan et al. 2011).

1.1.2 Evolutionary dynamics depend on the parameters

As discussed above, mutations do not all arise at the same rate or have the same fitness

effect. Generally, the majority of mutations are deleterious, many mutations are neutral or nearly

neutral, and beneficial mutations are rare, though the relative frequencies of each of these

categories, or the distribution of fitness effects (DFE), differs between species and

environments. It is important to note that the DFE is context dependent – mutations that are
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beneficial in one environment may be neutral or deleterious in another (i.e., exhibit pleiotropy)

and mutations that are beneficial in one genetic background may not be in a different genetic

background (i.e., exhibit epistasis). Despite these complications, it is still important to

understand the DFE in order to understand quantitative genetic variation and predict

evolutionary outcomes. Since highly deleterious mutations are quickly purged from populations

by purifying selection and many mutations are effectively neutral, many studies have focused on

defining the DFE for beneficial mutations. Early theoretical work predicted that the beneficial

DFE would be exponential (J. H. Gillespie 1984; Orr 2003), which has mixed experimental

support (Imhof and Schlotterer 2001; Kassen and Bataillon 2006; Rokyta et al. 2005, 2008).

Recent studies using thousands of barcodes to track lineage dynamics in experimentally

evolving populations have found evidence for a non-monotonic beneficial DFE (Levy et al. 2015;

Nguyen Ba et al. 2019).

Additionally, it is important to note that mutation rates themselves can evolve. In

experimental evolution hypermutators, which have mutations that cause defects in DNA repair

or proofreading resulting in increased mutation rates, often arise (Sniegowski, Gerrish, and

Lenski 1997; Raynes and Sniegowski 2014). While the fitness effect of increased mutation rates

are generally negative, since most mutations are deleterious, hypermutators are more likely to

generate rare highly beneficial mutations or to generate a combination of beneficial mutations,

and can therefore hitchhike to high frequencies with the beneficial mutations they generate

(Desai and Fisher 2011). Features of the genome and genomic context also impact mutation

rate across the genome. There is a GC bias in mutation (Lynch 2010) and sites with neighboring

GC pairs have much higher mutation rates than sites with other neighboring nucleotides (Sung

et al. 2015). Other genomic features, such as repetitive elements, can also result in elevated

mutation rates (Moxon, Bayliss, and Hood 2006; K. Zhou, Aertsen, and Michiels 2014).
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In addition to multiple beneficial alleles at different loci contemporaneously increasing in

frequency in a population, multiple alleles at the same locus can sweep through the population

at the same time, in what is termed a “soft sweep”. Whereas soft sweeps were originally

conceived of as occurring from standing genetic variation (Hermisson and Pennings 2005),

when mutation supply is high and/or the mutational target is large, multiple alleles at the same

locus can arise de novo in a population (Messer and Petrov 2013). What does this mean for

evolutionary dynamics in asexual populations? At the locus of interest, recurrent mutation may

result in mutation stacking, in which multiple different mutations occur at the same locus and the

haplotype with the most beneficial mutations is the most fit. However, there can also be negative

epistatic effects between alleles at the same locus or even mutually exclusive alleles (for

example, a codon deletion would prevent nonsynonymous change at the codon) (Hermisson

and Pennings 2017). When soft sweeps occur, different alleles at the same locus will be linked

to different alleles in the rest of the genome, resulting in maintenance of diversity, unlike in hard

sweeps, where selection for the single most fit haplotype reduces the diversity in the population.

Maintenance of diversity may be beneficial for a population in a selective environment, as more

evolutionary routes remain open to the population. It may also be beneficial when selection is

relaxed, as different alleles may have different trade-offs in other environments (Hermisson and

Pennings 2017). Importantly, the probability of soft sweep depends not only on the allelic

mutation rate, but the genome-wide population mutation rate (Hermisson and Pennings 2017).

What happens when different types of mutations have different parameters? The rate of

adaptation, or the increase in frequency of beneficial mutants, for each mutation type will

depend on both the mutation rate and the selection coefficient. Recently, a study investigated

how adaptation rate affects two traits evolving together using models and simulation (Gomez,

Bertram, and Masel 2020). They found that when the rates of adaptation are the same for two

traits when evolving separately, when evolving together, the trait with the higher selection
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coefficient will be more successful due to clonal interference. However, when the traits have not

only different mutation rates and selection coefficients, but different rates of adaptation on their

own, when they evolve together the one with the higher rate of adaptation continues adapting

and adaptation in the other trait “stalls”, even when clonal interference is present. That means

that high mutation rates can “bias” evolution if the adaptation rate is higher, even if the other

type of trait has a higher selection coefficient (Gomez, Bertram, and Masel 2020). A study in

which researchers evolved bacteria with perturbed translation machinery found that adaptation

initially occurred through mutations in the translation machinery (Venkataram et al. 2020).

However, translation machinery adaptation soon stalled before it was restored to wild type

function, and other modules instead adapted, suggesting the rate of adaptation for translation

machinery was less than that for other modules. Relatedly, a recent study investigated how the

contribution of mutation rates and fitness effects depend on population size in populations of

bacteria adapting to an antibiotic (Schenk et al. 2022). They observed that in the larger

population, mutations of large effect that occurred at a lower rate drove evolutionary dynamics,

while in the small population high-rate mutations of smaller effect size drove the dynamics.

While the populations were both large enough to exhibit clonal interference, the intensity of this

effect was lower in the smaller population, leading to the observed differences. Thus, different

classes of mutation, not just the overall mutation rate and DFE, make important contributions to

evolutionary dynamics.

1.2 What is a CNV?

The focus of my thesis is a particular class of mutation called copy number variation

(CNV). The working definition of CNV varies in the literature because our appreciation of

genomic structural variation has quickly evolved as a vast diversity of genomes are

characterized with ever-improving DNA sequencing technologies. While CNVs were initially
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conceived as duplication or deletion of a putative functional unit of DNA, such as a gene, intron,

exon, promoter, enhancer or other regulatory region (Ohno 1970; Lewis 1978), more recently

CNV has been defined as an increase or decrease in the number of copies of a DNA sequence

that range in size from a few bases to an entire chromosome. CNVs have previously been

defined based on a range of minimal length of sequence that is duplicated or deleted, including

>50 (Iafrate et al. 2004; Sebat et al. 2004; Feuk, Carson, and Scherer 2006; Korbel et al. 2007),

>100 (F. Zhang et al. 2009), and >1000 base pairs (Feuk, Carson, and Scherer 2006; Itsara et

al. 2009; Zarrei et al. 2015; F. Zhang et al. 2009). Historically, these definitions have been

influenced by the resolution of available technologies used to detect CNVs; the first CNVs were

detected by microscopy-based cytogenetic methods (Bridges 1936), array-based comparative

genomic hybridization (array CGH) was common in the early 21st century, and currently short

and long read comparative genome sequencing are being used to more accurately define the

size and structure of CNVs (Iafrate et al. 2004; Sebat et al. 2004; Feuk, Carson, and Scherer

2006; Korbel et al. 2007). The above definitions have usually distinguished a CNV from an

“indel”, or small insertion or deletion (< 1kb) (Werdyani et al. 2017; Scherer et al. 2007). Some

have also postulated that indels form by different mechanisms than CNVs, such as polymerase

slippage during replication (Scherer et al. 2007; Montgomery et al. 2013); however, CNVs can

form by a variety of mechanisms including replication slippage (for more information about

mechanisms of formation of CNVs see Section 1.4.1) making a definition based on formation

mechanism problematic.

The important aspect of a CNV is in the name - CNV refers to some DNA sequence in a

genome that varies in copy relative to other genomes (Pös et al. 2021). Thus, a CNV may exist

in a genome in comparison to a reference or ancestral genome sequence, or in a population of

individuals. This definition excludes structural variants that do not change the copy number,

such as inversions. Another class of variation that is distinguished from CNVs are whole
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genome duplications, which increase copy number but do not alter the relative copy number of

any individual element in the genome. Using this definition, CNV is an umbrella term that

encompasses a large number of variants with diverse structures, from small repeated

sequences including microsatellites, to whole chromosome gain or loss (i.e. aneuploidy), to

more complex structures including unbalanced translocations or amplifications with multiple

inverted copies.  A key defining feature of CNVs is that they comprise a difference in DNA

content with respect to the rest of the genome thereby altering the stoichiometric relationship

between individual genes or genetic elements and their encoded products.

1.3 Experimental evolution reveals CNVs as a major source of adaptation

Experimental evolution is a process by which scientists expose a population of

organisms to a well defined selective pressure in the laboratory over the course of many

generations and study evolutionary processes as they occur (Garland and Rose 2009; Bailey

and Bataillon 2016; Kawecki et al. 2012). Experimental evolution subjects organisms to a strong

selection over a short period of time, and CNVs have repeatedly been shown to be an important

mechanism of adaptation in these regimes.

Many evolution experiments have been performed in microbes, because of their short

generation, ease of maintenance, and ease of genetic analysis. Early evolution experiments in

bacteria and phages showed tandem duplications are a common mechanism of adaptation (R.

P. Anderson and Roth 1977). Many evolution experiments in microbes have shown that CNVs

involving genes that encode for nutrient transporters often arise in nutrient limited conditions.

The first studies to show this were of lac operon amplifications in Escherichia coli limited for

lactose (Horiuchi, Tomizawa, and Novick 1962; Horiuchi, Horiuchi, and Novick 1963),

Saccharomyces cerevisiae limited for phosphate (Hansche 1975), and Salmonella typhimurium

limited for different carbon sources (Straus 1975; Sonti and Roth 1989). Subsequently, multiple,
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independent studies have identified amplifications of the high affinity glucose-transporter genes

HXT6/7 in glucose-limited media (Brown, Todd, and Rosenzweig 1998a; Kao and Sherlock

2008; Gresham et al. 2008). SUL1, which encodes a high-affinity sulfur transporter, has also

been reported as a frequent target of amplification under sulfur-limited conditions from

independent trials (Payen et al. 2014; Gresham et al. 2008). The authors of one study report

that CNVs at the SUL1 locus are responsible for fitness increases as large as 50% over the

ancestral strain (Gresham et al. 2008). More recently, specific amplification alleles for the

corresponding limiting nutrient have been identified in the high-affinity proline transporter PUT4,

the urea transporter DUR3, the allantoin permease DAL4, the general amino acid permease

GAP1 and the ammonia permease MEP2 (Lauer et al. 2018; Gresham et al. 2008; Hong and

Gresham 2014a). Importantly, amplifications may be single gene amplifications, or comprise

long chromosomal segments encompassing many additional genes.

Evolution experiments have been performed with metazoan model organisms including

the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. In contrast to

microbial evolution experiments where asexual propagation is routinely (though, not always)

used, these organisms can reproduce sexually, leading to important insights for evolutionary

processes. A study using C. elegans imposed 200 generations of selection for recovered

fecundity after reduced productivity due to mutation accumulation and inbreeding. Duplications

and deletions increased in frequency over time in many replicate populations, and CNVs were

enriched for genes related to reproduction and development and often spanned the same

region, suggesting strong positive selection (Farslow et al. 2015). Genomic analysis of a fly line

reared in darkness for 1400 generations found about 150 putative CNVs. One verified CNV

contained a 500 base pair deletion within CG459, a gene of unknown function whose

mammalian homologues are involved in fatty acid metabolism in the mitochondria (Izutsu et al.

2012). Despite their importance and prevalence in Drosophila populations (Zichner et al. 2013),
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CNVs are not as frequently addressed as single nucleotide variants in many evolution

experiments (Burke et al. 2010; T. L. Turner et al. 2011; D. Zhou et al. 2011; Remolina et al.

2012; Jalvingh et al. 2014; Kang et al. 2016; Graves et al. 2017; Kezos et al. 2019; Phillips et al.

2018), and should be considered an active area of research for further study.

These evolution experiments have given important insights into the dynamics,

repeatability, and mechanisms of CNV evolution. In many microbial experiments, CNVs arise

early and repeatedly in response to strong selection (Lauer et al. 2018; Payen et al. 2014; Sun

et al. 2012; Morgenthaler et al. 2019). This striking degree of parallelism, with CNVs identified

early at high frequency, has been observed in experimental evolution in other systems including

the algae Chloralla variablis co-evolving with a virus (Frickel et al. 2018), Caenorhabditis

elegans (Farslow et al. 2015), and Arabidopsis thaliana (DeBolt 2010). In shorter experimental

evolution (< 1000 generations), CNVs are frequently maintained at high frequency for the

duration of the experiment (Sunshine et al. 2015; A. M. Selmecki et al. 2009; Lauer et al. 2018;

Payen et al. 2014; Morgenthaler et al. 2019). In longer experiments (> 1000 generations), CNVs

can be maintained in the population (Fisher et al. 2018), or replaced by other high-fitness

mutations or revert to the ancestral state (Yona et al. 2012). Like other types of mutations

(Blundell et al. 2019), CNV dynamics seem to be much more predictable in the early stages of

evolution, and more stochastic later on (Lauer et al. 2018). Many different mechanisms of CNV

formation have been observed to contribute to adaptive dynamics in evolution experiments

(Lauer et al. 2018; Dunham et al. 2002; Todd et al. 2019; Schacherer et al. 2005), though the

relative frequency of each of these mechanisms remains unknown, and is likely to be species,

locus, and condition specific.

CNVs spanning the same region have been observed in many replicate populations

during the same experiment, suggesting that CNVs containing specific genes are under strong

positive selection (A. Selmecki, Forche, and Berman 2006; Farslow et al. 2015; Gresham et al.
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2008). Several studies have performed in depth analysis to find the exact genes/features inside

CNV that are under selection (A. Selmecki et al. 2008; Mount et al. 2018). However, this can be

difficult and time consuming and often a single gene within the amplified region is inferred to be

the element of the CNV under selection, based on the selective regime (Lauer et al. 2018; Hope

et al. 2017; Gerstein et al. 2015). This is challenging as often CNVs arise that encompass many

genes, which may be due to more than one gene being under selection, and/or because there

are several mechanisms of CNV formation that result in recurrent mutation. Duplications and

deletions with the exact same breakpoints in independent populations have been found in

several experiments (Farslow et al. 2015; Lauer et al. 2018). This high rate of recurrent CNV

formation suggests that mutation rate at the locus can have as large of an impact as selection

(Farslow et al. 2015; Lipinski et al. 2011).

While empirical studies performed in laboratory settings are important for determining

the role of CNVs in adaptive evolution, there are a few caveats. Natural environments are

complex, and can fluctuate (for example, in temperature, predation rates, or nutrient content).

Even subtle variations in the environment can cause selective pressures to vary, or can increase

the consequences of antagonistic pleiotropy. This is in direct contrast to adaptive laboratory

evolution and artificial selection such as domestication, where a single, strong selective

pressure is applied. Furthermore, experimental evolution is predominantly performed in

asexually reproducing microbes, often with very large population sizes. These characteristics

which affect the mutation supply rate and eliminate the effect of recombination, which are

important population genetic parameters. In a recent study using Leishmania, the authors

detected whole-chromosomal aneuploidies as major drivers of adaptation during in vitro culture,

but identified smaller CNVs from clinical isolates adapting in the field (Bussotti et al. 2018). In

order to validate insights gleaned from experimental evolution, studies that examine the role of
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CNVs in natural populations are integral to a comprehensive understanding of the role of CNVs

in adaptation.

1.4 CNV formation

1.4.1 Different formation mechanisms give rise to different CNV structures

CNVs are formed through complex and diverse processes, but the molecular basis of

these events is still being elucidated (see (Hastings, Lupski, et al. 2009; Reams and Roth 2015)

for excellent reviews). Highly repetitive elements, including centromeres (reviewed in (Barra and

Fachinetti 2018)), telomeres, and transposable elements, are often implicated in CNV formation,

as they are prone to DNA breakage, and the repetitive nature of these elements facilitates

homologous recombination. Non-allelic homologous recombination (NAHR) between repetitive

sequences is a major driver of CNV formation. In prokaryotes, small insertion sequence (IS)

elements are flanked by long terminal repeats (LTRs) (Siguier, Gourbeyre, and Chandler 2014;

Brügger et al. 2002), which are also frequently found in the yeast genome (Carr, Bensasson,

and Bergman 2012). Many eukaryotes have longer repetitive elements including segmental

duplications, which are >1 kilobase in size and are dispersed throughout the genome (Eichler

2001). Extensive homology between repetitive sequences enables recombination and can lead

to increases or decreases in copy number (Peng et al. 2015), even with long intervening

distances between repeats (Todd et al. 2019).

Transposable elements can also mediate CNV formation through reverse transcription

and insertion into the genome (reviewed in (Casola and Betrán 2017)). This mechanism of CNV

formation is unique in that it can only create duplications, and not deletions (Schacherer et al.

2004; Ewing et al. 2013). Duplicates formed through retrotransposition lack introns and the

promoter, contain a poly-A tract, and have low linkage disequilibrium with surrounding sequence

(Schrider and Hahn 2010; Schacherer et al. 2004).
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CNVs can be generated through replication errors (Koszul et al. 2004; Cardoso-Moreira,

Arguello, and Clark 2012; L. Chen et al. 2015) that involve replication slippage (Ohye et al.

2014), template switching (Slack et al. 2006), sequence microhomology (Hastings, Ira, et al.

2009), and/or the generation of extrachromosomal circles or circular intermediates (Gresham et

al. 2010; Brewer et al. 2011, 2015; Møller et al. 2015; Cohen and Segal 2009; K. M. Turner et al.

2017). Replication stress has been directly linked to increased generation of CNVs in human

cells, including variants associated with disease and tumorigenesis (Durkin et al. 2008; Arlt et al.

2009). The extent of replication-mediated CNV formation may have been previously

underestimated (Lauer et al. 2018), since many early studies focused on recurrent

disease-related variants formed by NAHR or retro-transposition, which can be easier to detect

and characterize.

Recurrent CNVs, which repeatedly occur in specific regions of the genome, typically

underlie re-occurring germline mutations and human disease (Itsara et al. 2009; Girirajan,

Campbell, and Eichler 2011). Current evidence suggests that CNVs are enriched in

pericentromeric and subtelomeric chromatin (Zarrei et al. 2015), and that recurrent CNVs arise

due to specific features of the neighboring genomic sequence including: repetitive elements

(Farslow et al. 2015), tRNA genes (Bermudez-Santana et al. 2010), origins of replication (Di

Rienzi et al. 2009), and replication fork barriers (Labib et al. 2007).

1.4.2 CNVs of different types may form and revert to the ancestral state at different rates

Gene duplications and deletions occur at a higher rate than SNVs. Early on, researchers

studying gene duplications, including the bar mutation, noticed this phenomenon (Sturtevant

1925). A clever genetic screen in E. coli revealed that mutation rates were high and that cells

with amplifications quickly rose to a high frequency (Cairns and Foster 1991; Hastings et al.

2000). Reported frequencies of duplications per locus per generation range from 10-2 to 10-6 in

E. coli and Salmonella (R. P. Anderson and Roth 1977; Horiuchi, Horiuchi, and Novick 1963;
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Reams et al. 2010; P. Anderson and Roth 1981; Starlinger 1977; Langridge 1969), 10-6 in yeast

(Lynch et al. 2008), 10-4 to 10-6 in Drosophila (Gelbart and Chovnick 1979; Shapira and Finnerty

1986), and 10-5 to 10-7 in human sperm (Lam and Jeffreys 2006; D. J. Turner et al. 2008).

Further discussion of CNV formation rates are in (Katju and Bergthorsson 2013).

CNVs formed by different mechanisms likely form at different rates. Each locus in the

genome may have a different mutational spectrum, and these mutational spectra can be

influenced by many factors, including local features, transcription, and the current environment.

Many studies have shown that stress can lead to increases in genome-wide SNP and indel

mutation rates in bacteria and yeast (Foster 2007; Galhardo, Hastings, and Rosenberg 2007;

Shor, Fox, and Broach 2013), as well as multicellular organisms (reviewed in (Fitzgerald,

Hastings, and Rosenberg 2017)). Rates of CNV formation have also been shown to be elevated

under stress (Fitzgerald, Hastings, and Rosenberg 2017; Fitzgerald and Rosenberg 2019), and

though most research has been undertaken in bacterial models, evidence is emerging that this

is true in eukaryotes as well (Chain et al. 2019; Shewaramani et al. 2017). Active transcription

units may play a role in elevating mutation rates and generating these hotspots (Thomas and

Rothstein 1989; Skourti-Stathaki and Proudfoot 2014; Wilson et al. 2015). Increases in the rate

of transcription lead directly to amplification of the rDNA and other loci (Jack et al. 2015; Hull et

al. 2017). A recent study in yeast found that while overall mutation rates decrease with

decreasing growth rate, the rate of CNV formation increases in slow growing cells (H. Liu and

Zhang 2019). Additionally, in some environments (e.g., lithium chloride) there were concurrent

increases in the rate of formation of aneuploidy and sub-chromosomal sized CNVs. However, in

other environments (e.g., sodium chloride) an increase in the rate of formation of aneuploidy

was observed, but not other types of CNV (H. Liu and Zhang 2019). In human cells, hypoxia,

but not other stressors, induces site-specific amplification that is also commonly observed in

tumors. Interestly, one of these CNV regions is syntenic in zebrafish cells and also undergoes
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amplification in hypoxic conditions, while the other is not and is not amplified in hypoxia (Black

et al. 2015). This implicates the role of chromosomal architecture in recurrent CNV formation.

Indubitably, certain regions of the genome are more susceptible to mutation. Understanding the

full repertoire of mechanisms that underlie CNV formation, how these differently contribute to

the mutational spectrum by locus, and whether these processes can be directly stimulated by

the environment are important open questions in the field.

Several mechanisms may change the mutational spectrum of CNVs by locus and

environment. Studies in yeast have shown that rates of aneuploidy increase in response to

reduced Hsp90 activity, due to the role of Hsp90 in kinetochore assembly (G. Chen et al. 2012).

Reduced Hsp90 activity also results in increased transposon mobilization (Kaplan and Li 2012),

which can lead to single gene duplications. Other studies have suggested that epigenetic marks

may also change the mutational spectra between loci. MicroRNAs and histone methylation have

both been shown to suppress site specific amplifications in human cells (Black et al. 2016;

Mishra et al. 2018). An experimental evolution study in yeast selecting increased gene

expression found that genes with nucleosome-free promoters achieved greater expression by

duplication, while genes with dynamic promoter regions achieved greater expression through

point mutations (Rosin et al. 2012). Ploidy can also contribute to changes in the mutational

spectra, as diploid cells can mask deleterious mutations or reduce deleterious stoichiometric

effects of CNV that haploids cannot (Fisher et al. 2018). Recently, a group simulated

transcription/replication conflicts in yeast that resulted in CNVs or point mutations at different

rates. The performed in silico evolution experiments, and found that populations with higher

rates of CNV were more fit because duplications could mask inactivating point mutations and

deletions could eventually purge copies that had been inactivated by point mutations, resulting

in a lower genetic load, even at higher mutation rates (Colizzi and Hogeweg 2019). These
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studies show how the relative rates of different types of mutations can affect evolutionary

outcomes.

CNVs formed by different mechanisms may revert to the ancestral euploid state at

different rates as well. Several studies have shown that in yeast and mammalian cells,

aneuploidies revert readily to ancestral euploid state when selection for aneuploidy is released

(Yona et al. 2012; G. Chen et al. 2012; A. Selmecki, Forche, and Berman 2006; Rosin et al.

2012). Tandem duplications have also been shown to readily collapse to the ancestral copy

number when selection is released or when one copy gains a high fitness beneficial SNV

(Morgenthaler et al. 2019). More complex amplifications may be more difficult to resolve back to

ancestral states, though due to their repetitive sequence they can undergo recombination and

remodeling (Morgenthaler, Fritts, and Copley 2022). Heterozygous deletions could revert back

to ancestral state by recombination with the homologous chromosome. While in some cases (for

example, aneuploids), the rate of CNV reversion may be approximately equal to the rate of

formation, in other cases different mechanisms may act in formation and reversion, resulting in

different rates and increased complexity in evolutionary dynamics

1.5 CNVs and fitness

1.5.1 CNVs mediate rapid adaptation through a variety of mechanisms

CNV formation can have immediate consequences for organismal fitness. Since CNVs

typically encompass large regions of the genome, they can affect multiple protein-coding genes

and regulatory regions simultaneously. Large duplications and deletions leading to increases or

decreases in gene dosage can subsequently result in widespread protein abundance changes

(Rice and McLysaght 2017a; Tang and Amon 2013). CNVs can affect neighboring loci, leading

to changes in expression for genes outside the CNV boundary (Brooks et al. 2022; Molina et al.

2008; Merla et al. 2006). CNVs can also have effects in trans: by changing the expression of
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distal transcripts (Gamazon, Nicolae, and Cox 2011), by affecting global levels of transcription

(Henrichsen et al. 2009), and by changing the topology of chromatin organization (Lupiáñez,

Spielmann, and Mundlos 2016; Lupiáñez et al. 2015; Franke et al. 2016; Spielmann, Lupiáñez,

and Mundlos 2018).

We typically think of CNVs as protein-coding gene deletions or duplications, however,

copy number changes in intergenic sequences have also been identified. CNV formation can

result in position effects that disrupt or modify regulatory elements (Koszul et al. 2004; Chan et

al. 2010). Promoter capture, where spatial re-arrangement of an amplified DNA segment leads

to its regulation by a different promoter, has been observed repeatedly in diverse systems

(Usakin et al. 2005; Adam, Dimitrijevic, and Schartl 1993; Whoriskey et al. 1987). Perhaps the

most famous example of promoter capture is the Cit+ lineage in Richard Lenski’s long term

evolution experiment, in which citrate utilization evolved in Escherichia coli by duplication of the

citrate transporter that resulted in one copy being controlled by a new promoter producing

transcription of the transporter in the evolution environment and subsequent use of citrate as a

carbon source (Blount, Borland, and Lenski 2008; Blount et al. 2012). Similarly, amplifications or

deletions of enhancers and introns have been identified as key adaptive events in stickleback

fish (Bell 1987; Chan et al. 2010), chickens (Wright et al. 2009), and rice (Wang et al. 2015).

In addition to the gene expression changes described above, CNVs can affect the fitness

of an organism through other mechanisms. Gene duplications can increase fitness by buffering

fluctuations in gene expression (Rodrigo and Fares 2018), masking deleterious mutations (Gu

et al. 2003), or promoting heterozygote advantage (Sellis et al. 2016). While CNVs are often

thought of as a substrate for future innovation through duplication and subsequent divergence,

de novo CNVs can immediately provide new functionality. For example, gene duplications,

deletions, and unbalanced translocations can lead to the formation of chimeric genes (Rippey et

al. 2013; Mayo et al. 2017; Arguello et al. 2006; Aigner et al. 2013; Schrider et al. 2013) .
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Therefore, CNVs can drive important adaptive innovations during short-term evolutionary

scenarios. Collectively, these findings demonstrate that a single class of mutation can provide a

range of functional effects and adaptive phenotypes.

1.5.2 CNVs have costs

CNVs, as a class of mutation, can have variable copy number and size (resulting in

variable numbers of genes within the CNV). As a result, there may be many differently

structured CNV alleles at a specific locus within a population (Lauer et al. 2018). This is

important because selection on CNV alleles is not only dependent on selection for increased or

decreased dosage of a single gene, but the aggregate effect of the entire allele. In some

systems, the co-duplication of adjacent genes specifically provides a fitness benefit (Reams and

Neidle 2004). However, large CNVs are more often associated with fitness costs, which can be

attributed to disruption of cellular homeostasis at multiple levels: inherent costs due to increases

in genome size (Elde et al. 2012), changes to local and global gene expression (Sheltzer et al.

2012), increased translational capacity and changes to protein stoichiometry (Torres et al.

2007), or increased burden on protein degradation machinery (Torres et al. 2010; Stingele et al.

2012). In one study, there was a 0.15% reduction in fitness for every kilobase pair amplified in E.

coli (Adler et al. 2014). However, in another study, there was no correlation between the size of

the duplicated region and fitness reduction for the organism (Pettersson et al. 2009).

Many studies have investigated the basis of fitness costs of aneuploidies, primarily in

yeast (recently reviewed in (Tsai and Nelliat 2019), but also in mammalian cells. The largest

costs have been associated with overproduction of proteins on the duplicated chromosome,

however, there is conflicting evidence as to whether this is driven by a few especially harmful

genes or by mass action of all genes involved in the aneuploidy (Bonney, Moriya, and Amon

2015). The phenotypes resulting from this proteotoxic stress include cell cycle delays, DNA
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damage, increased sensitivity to some drugs, lethality, and increased intracellular osmolarity

leading to hypo-osmotic stress (Torres et al. 2007; Tsai et al. 2019; Sheltzer et al. 2011; Anders

et al. 2009; M. Li et al. 2010).

One hypothesis that regards a few harmful genes as the basis of fitness costs

associated with CNVs in the gene dosage balance hypothesis (also called the gene balance

hypothesis or the dosage balance hypothesis) (Veitia 2004; Birchler and Veitia 2012; Papp, Pál,

and Hurst 2003). This hypothesis proposes that the fitness cost of CNVs arises from

stoichiometric imbalances in macromolecular complexes, signaling pathways, and

protein-protein interactions. This imbalance may result in excess subunits or components that

are not stabilized by their normal interacting partners, that are then susceptible to degradation,

putting stress on the proteostasis system (Veitia, Bottani, and Birchler 2008). In the case of a

deletion, it can shift the reaction to unproductive subcomplexes or change reaction speed,

producing less of the complete product, which in turn affects other cellular processes (Birchler

and Veitia 2012).

While some fitness costs of sub-chromosome arm sized CNVs probably also arise from

large scale proteostatic imbalances, the basis of fitness trade-offs of the CNVs may be condition

dependent, rather than a generalizable cost (Sunshine et al. 2015). These condition dependent

costs appear to result from deleterious misexpression of a few proteins, though few studies

have investigated the basis of fitness cost in “smaller” CNVs in depth. Since natural populations

are usually not under a single static selective pressure, and experience a wide range of

environmental conditions, understanding why and how CNVs can be deleterious in some

conditions is important for understanding their evolution in nature.

Since CNVs can confer substantial fitness costs, it has been proposed that they may

occur transiently and are not an effective long-term solutions for organisms adapting to stressful
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conditions (Yona et al. 2012). One proposed mechanism of alleviating fitness costs is the use of

“genomic accordions,” which involve expansions and contractions of genic arrays (Roth and

Andersson 2012; Elde et al. 2012). Gene duplications occur at a high rate, and incremental

increases in gene dosage improve cell growth such that cells with the duplication rise to high

population frequency. Multiple gene copies, as well as many individuals with multiple copies,

increase the likelihood of generating beneficial SNVs in the gene under selection (Sun et al.

2009). If these SNVs provide significant fitness benefits, selection on maintenance of multiple

gene copies is relaxed, and the alternative copies can be subsequently lost. This phenomenon

has been observed in a variety of systems: viruses adapting to host defenses (Elde et al. 2012),

bacteria growing in lactose-limiting environments (Slechta et al. 2003), the evolution of antibiotic

resistance (Pränting and Andersson 2011; Paulander, Andersson, and Maisnier-Patin 2010),

and the evolution of metabolic enzymes (reviewed in (Copley 2012)). However, a recent study in

E. coli evolving for 500-1000 generations under selection for improved function of an enzyme’s

weak secondary activity found that in all eight experimental populations the enzyme was

amplified, a secondary mutation that improved the enzyme’s function in an amplified copy that

resulted in contraction of the amplification only occured in one population (Morgenthaler et al.

2019). Instead, the majority of populations (⅞) had adaptive mutations outside the enzyme

under selection rise to high frequency after the initial amplification (Morgenthaler et al. 2019).

This suggests that there are many ways to compensate for CNVs, and the evolutionary

outcomes of CNV may be complex and dependent on the CNV structure and genetic

background.
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Chapter 2: Single-cell copy number variant detection reveals the dynamics

and diversity of adaptation

This chapter is based on "Single-cell copy number variant detection reveals the dynamics and

diversity of adaptation” by Stephanie Lauer, Grace Avecilla, Pieter Spealman, Gunjan Sethia,

Nathan Brandt, Sasha F. Levy, and David Gresham, published in PLoS Biology (2018)

(https://doi.org/10.1371/journal.pbio.3000069).

Below is the abstract, then excerpts of the introduction, results, discussion, and methods to

which I contributed or which are important for subsequent chapters. The text has been edited for

clarity and relevance. I contributed to generating data for Figure 2.3 and Table 2.2, performed

experiments for and generated Figure 2.4, Figure 2.S1, Figure 2.S2, and Table 2.S1, and

contributed to writing the corresponding sections 2.3.5 and 2.3.6.

2.1 Abstract

Copy number variants (CNVs) are a pervasive source of genetic variation and

evolutionary potential, but the dynamics and diversity of CNVs within evolving populations

remain unclear. Long-term evolution experiments in chemostats provide an ideal system for

studying the molecular processes underlying CNV formation and the temporal dynamics with

which they are generated, selected, and maintained. Here, we developed a fluorescent CNV

reporter to detect de novo gene amplifications and deletions in individual cells. We used the

CNV reporter in Saccharomyces cerevisiae to study CNV formation at the GAP1 locus, which

encodes the general amino acid permease, in different nutrient-limited chemostat conditions.

We find that under strong selection, GAP1 CNVs are repeatedly generated and selected during
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the early stages of adaptive evolution, resulting in predictable dynamics. Molecular

characterization of CNV-containing lineages shows that the CNV reporter detects different

classes of CNVs, including aneuploidies, nonreciprocal translocations, tandem duplications, and

complex CNVs. Despite GAP1’s proximity to repeat sequences that facilitate intrachromosomal

recombination, breakpoint analysis revealed that short inverted repeat sequences mediate

formation of at least 50% of GAP1 CNVs. Analysis of 28 CNV breakpoints indicates that

inverted repeats are typically 8 nucleotides in length and separated by 40 bases. The features

of these CNVs are consistent with origin-dependent inverted-repeat amplification (ODIRA),

suggesting that replication-based mechanisms of CNV formation may be a common source of

gene amplification. We combined the CNV reporter with barcode lineage tracking and found that

102–104 independent CNV-containing lineages initially compete within populations, resulting in

extreme clonal interference. However, only a small number (18–21) of CNV lineages ever

constitute more than 1% of the CNV subpopulation, and as selection progresses, the diversity of

CNV lineages declines. Our study introduces a novel means of studying CNVs in

heterogeneous cell populations and provides insight into their dynamics, diversity, and formation

mechanisms in the context of adaptive evolution.

2.2 Introduction

Copy number variants (CNVs) drive rapid adaptive evolution in diverse scenarios

ranging from niche specialization to speciation and tumor evolution (Conant and Wolfe 2008;

Zuellig and Sweigart 2018; Shlien and Malkin 2009; Stratton, Campbell, and Futreal 2009).

CNVs, which include duplications and deletions of genomic segments, underlie phenotypic

diversity in natural populations (Barreiro et al. 2008; Iskow et al. 2012; Clop, Vidal, and Amills

2012; Żmieńko et al. 2014; Greenblum, Carr, and Borenstein 2015; Zarrei et al. 2015), and

provide a substrate for evolutionary novelty through modification of existing heritable material
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(Ohno 1970; Lynch and Conery 2000; A. L. Hughes 1994; R. P. Anderson and Roth 1977) .

Beneficial CNVs are associated with defense against disease in plants, increased nutrient

transport in microbes, and drug resistant phenotypes in parasites and viruses (Iantorno et al.

2017; Cowell et al. 2018; Dolatabadian et al. 2017; Elde et al. 2012; Greenblum, Carr, and

Borenstein 2015). Despite the importance of CNVs for phenotypic variation, evolution and

disease, the dynamics with which these alleles are generated and selected in evolving

populations are not well understood.

Long term experimental evolution provides an efficient means of gaining insights into

evolutionary processes using controlled and replicated selective conditions (Lenski et al. 1991;

Good et al. 2017). Chemostats are devices that maintain cells in a constant nutrient-poor growth

state using continuous culturing (Gresham and Dunham 2014). Nutrient limitation in chemostats

provides a defined and strong selective pressure in which CNVs have been repeatedly identified

as major drivers of adaptation. CNVs containing the gene responsible for transporting the

limiting nutrient are repeatedly selected in a variety of organisms and conditions including

Escherichia coli limited for lactose (Horiuchi, Horiuchi, and Novick 1963), Salmonella

typhimurium in different carbon source limitations (Sonti and Roth 1989), and Saccharomyces

cerevisiae in glucose-, phosphate-, sulfur- and nitrogen-limited chemostats (Hong and Gresham

2014a; Gresham et al. 2010; Payen et al. 2014; Gresham et al. 2008; Kao and Sherlock 2008;

Hansche 1975; Brown, Todd, and Rosenzweig 1998b). CNVs confer large selective advantages

and multiple, independent CNV alleles have been identified within experimental evolution

populations (Payen et al. 2014; Gresham et al. 2008; Kvitek and Sherlock 2011; Gresham et al.

2010). These findings suggest that CNVs are generated at a high rate, but estimates differ

greatly, ranging from 1 x 10-10 to 3.4 x 10-6 duplications per cell per division, with variation in CNV

formation rates potentially differing between loci and/or condition (Dorsey et al. 1992; Lynch et

al. 2008). A high rate of CNV formation suggests that multiple, independent CNV-containing
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lineages may compete during adaptive evolution resulting in clonal interference, which is

characteristic of large, evolving populations (Lang et al. 2013; J. M. Hughes et al. 2012;

Maddamsetti, Lenski, and Barrick 2015; Kao and Sherlock 2008). However, the extent to which

clonal interference among CNV-containing lineages influences the dynamics of adaptation is

unknown.

The general amino acid permease gene, GAP1, is well suited to studying the role of

CNVs in adaptive evolution. GAP1 encodes a high-affinity transporter for all naturally occurring

amino acids, and it is highly expressed in nitrogen-poor conditions (Grenson, Hou, and Crabeel

1970; Stanbrough and Magasanik 1995). We have previously shown that two classes of CNVs

are selected at the GAP1 locus in S. cerevisiae when a sole nitrogen source is provided: GAP1

amplification alleles are selected in glutamine and glutamate-limited chemostats and GAP1

deletion alleles are selected in urea- and allantoin-limited chemostats (Gresham et al. 2010;

Hong and Gresham 2014a). GAP1 CNVs are also found in natural populations. In the nectar

yeast, Metschnikowia reukaufii, multiple tandem copies of GAP1 result in a competitive

advantage over other microbes when amino acids are scarce (Dhami, Hartwig, and Fukami

2016). As a target of selection in adverse environments in both experimental and natural

populations, GAP1 is a model locus for studying the dynamics and mechanisms underlying both

gene amplification and deletion in evolving populations.

CNVs are generated by two primary classes of mechanisms: homologous recombination

and DNA replication (Hastings, Lupski, et al. 2009; Reams and Roth 2015; Carvalho and Lupski

2016). DNA double strand breaks (DSBs) are typically repaired by homologous recombination

and do not result in CNV formation. However, non-allelic homologous recombination (NAHR)

can generate CNVs when the incorrect repair template is used, which occurs more often with

repetitive DNA sequences such as transposable elements and long terminal repeats (LTRs)

(Stankiewicz and Lupski 2002). During DNA replication, stalled and broken replication forks can
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re-initiate DNA replication through processes including break-induced replication (BIR),

microhomology-mediated break-induced replication (MMBIR), and fork stalling and template

switching (FoSTes) (J. A. Lee, Carvalho, and Lupski 2007; Hastings, Ira, et al. 2009; Payen et

al. 2008). BIR is driven by homologous sequences, whereas MMBIR relies on shorter stretches

of sequence homology. Recently, origin-dependent inverted-repeat amplification (ODIRA) has

been identified as a novel mechanism underlying amplification of the SUL1 locus in yeast

(Brewer et al. 2011, 2015). ODIRA is mediated by short inverted repeat sequences that facilitate

ligation of the leading and lagging strands following regression of the replication fork during

DNA synthesis. ODIRA is hypothesized to involve the formation of an extrachromosomal circular

intermediate that replicates independently and therefore requires an origin of replication within

the amplified region. Subsequent integration of the circle into the original locus via homologous

recombination results in an inverted triplication. Extrachromosomal circular DNA is common in

yeast (Møller et al. 2015), can drive tumorigenesis (K. M. Turner et al. 2017), and may represent

a rapid and reversible mechanism of generating adaptive CNVs (Møller, Andersen, and

Regenberg 2013; Cohen and Segal 2009). Previously, we found that some GAP1 amplifications

are extrachromosomal circular elements. We hypothesized that GAP1circle alleles are generated

as a result of NAHR between flanking LTRs resulting in their excision from the chromosome

(Gresham et al. 2010). Identifying the mechanisms underlying CNV formation is required for

understanding the roles of CNVs in evolutionary processes and human disease.

A key limitation to the study of CNVs in evolving populations is the challenge of

identifying them at low frequencies in heterogeneous populations. CNVs are typically detected

using molecular methods including qPCR, Southern blotting, DNA microarrays and sequencing

(Gresham et al. 2010; Payen et al. 2014; Hong and Gresham 2014a). However, using any of

these methods, de novo CNVs are undetectable in a heterogeneous population until present at

high frequency (e.g. >50%). This precludes analysis of the early dynamics with which CNVs
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emerge and compete in evolving populations. As CNVs usually comprise genomic regions that

include multiple neighboring genes (Hong and Gresham 2014a), we hypothesized that CNVs

could be identified on the basis of increased expression of a constitutively expressed

fluorescent reporter gene inserted adjacent to a target gene of interest. A major benefit of this

approach is that it detects CNVs independently of whole genome sequencing, enabling a

high-resolution and efficient assay of CNV dynamics with single-cell resolution in evolving

populations.

In this study, we constructed strains containing a fluorescent CNV reporter adjacent to

GAP1 in S. cerevisiae and performed evolution experiments in different selective environments

using chemostats. The CNV reporter allowed us to visualize selection of CNVs at the GAP1

locus in real time with unprecedented temporal resolution. We find that CNV dynamics occur in

two distinct phases: CNVs are selected early during adaptive evolution and quickly rise to high

frequencies, but the subsequent dynamics are complex. We find that GAP1 CNVs are diverse in

size and copy number, and can be generated by a range of processes including aneuploidy,

non-reciprocal translocations and tandem duplication by NAHR. Nucleotide resolution analysis

of GAP1 CNV breakpoints revealed that CNV formation is mediated by short, interrupted

inverted repeats for half of the resolvable cases, suggesting that replication-based mechanisms

also underlie gene amplification at the GAP1 locus. The presence of inverted repeats, in

combination with a replication origin and inverted triplication, is consistent with GAP1 CNV

formation through ODIRA. ODIRA may be a major source of de novo CNVs in yeast, as these

breakpoint features also characterize CNVs at an additional locus identified in our study, DUR3.

To determine the underlying structure of the CNV subpopulation, we generated a

lineage-tracking library using random DNA barcodes. FACS-based fractionation of CNV

lineages and barcode sequencing identified hundreds to thousands of individual CNV lineages

within populations, consistent with a high CNV supply rate and extreme clonal interference.
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Together, our results show that CNVs are generated repeatedly by diverse processes, resulting

in predictable dynamics, but that the long term fate of CNV-containing lineages in evolving

populations is shaped by clonal interference and additional variation.

2.3 Results

2.3.1 Protein fluorescence increases proportionally with gene copy number

We sought to construct a reporter for CNVs that occur at a given locus of interest. Based

on previous studies (Suzuki et al. 2011; Gruber et al. 2012; Kafri et al. 2016; Steinrueck and

Guet 2017), we hypothesized that CNVs that alter the number of copies of a constitutively

expressed fluorescent protein gene would facilitate single cell detection of de novo copy number

variation. To test the feasibility of this approach, we constructed haploid S. cerevisiae strains

isogenic to the reference strain (S288c) with one or two copies of a constitutively expressed

GFP variant mCitrine (Griesbeck et al. 2001), and diploid strains with 1-4 copies of mCitrine,

integrated into the genome.

Flow cytometry analysis confirmed that additional copies of mCitrine produce

quantitatively distinct distributions of protein fluorescence (Figure 2.1A). Haploid cells with two

copies of mCitrine have higher fluorescence than those with a single copy and there is minimal

overlap between the distributions of fluorescent signal in the two strains. Normalization of the

fluorescent signal by forward scatter, which is correlated with cell size, shows that the

concentration of fluorescent protein is proportional to the ploidy normalized copy number of the

mCitrine gene (i.e. one copy in a haploid results in a signal equivalent to two copies in a diploid

and two copies in a haploid results in a signal similar to four copies in a diploid). Thus, the cell

size-normalized fluorescent signal, or concentration, accurately reports on the number of copies

of the fluorescent gene in single cells. Therefore, integrating a constitutively expressed
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fluorescent protein gene proximate to an anticipated target of selection functions as a CNV

reporter for tracking gene amplifications and deletions in evolving populations (Figure 2.1B).

Figure 2.1. Fluorescent protein signal is proportional to gene copy number. (A) Protein
fluorescence increases with increasing copies of the mCitrine gene. We determined the fluorescence of
haploid and diploid cells containing variable numbers of a constitutively expressed mCitrine gene
integrated at either the HO locus and/or the dubious ORF, YLR123C. The two copy diploid is
heterozygous at both loci. Each distribution was estimated using 100,000 single cell measurements
normalized by forward scatter. (B) Schematic representation of how the fluorescent reporter enables CNV
detection in heterogeneous evolving populations through quantitative changes in protein fluorescence.

2.3.2 A CNV reporter tracks the dynamics of GAP1 CNVs in real time

Previous work has shown that spontaneous GAP1 amplifications are positively selected

when glutamine is the sole limiting nitrogen source during evolution experiments in chemostats

(Gresham et al. 2010). GAP1 copy number amplifications result in increased amino-acid

transporters on the plasma membrane, providing cells with a selective advantage when nitrogen

is scarce (Gresham et al. 2010; Hong and Gresham 2014a). Conversely, GAP1 deletions
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provide a fitness benefit and are selected in urea-limited conditions (Gresham et al. 2010).

Thus, the use of different nitrogen sources in nitrogen-limited chemostats enables the study of

both GAP1 amplification and deletion, making it an ideal system for studying the dynamics of

CNV selection in evolving populations.

We constructed a haploid strain containing a mCitrine CNV reporter located 1,118 bases

upstream of the GAP1 start codon to ensure that the native regulation of GAP1 was unaffected

(Stanbrough and Magasanik 1996). We inoculated the GAP1 CNV reporter strain into 9

glutamine-limited chemostats and included two control populations: one containing a single

copy of the mCitrine CNV reporter at a neutral locus (one copy control) and one containing two

copies of the mCitrine CNV reporter at two neutral loci (two copy control). All populations were

maintained in continuous mode (dilution rate = 0.12 culture volumes/hr; population doubling time

= 5.8 hours) for 267 generations over 65 days. We sampled each of the 32 populations every 8

generations and used flow cytometry to measure fluorescence of 100,000 cells per sample.

Experimental evolution in a glutamine-limited chemostat resulted in clear increases in

fluorescence in individual cells containing the GAP1 CNV reporter by generation 79 (Figure

2.2A). By contrast, populations containing one or two copies of mCitrine at neutral loci exhibited

stable fluorescence for the duration of the experiment (Figure 2.2A). Maintenance of protein

fluorescence in one and two copy control populations is consistent with the absence of a

detectable fitness cost associated with one or two copies of the CNV reporter in

glutamine-limited chemostats, which we confirmed using competition assays. Analysis of six

additional independent populations evolving in glutamine-limited chemostats showed

qualitatively similar dynamics of single-cell fluorescence over time (Figure 2.S2A). To

summarize the dynamics of CNVs in evolving populations, we determined the median

normalized fluorescence in each population at each time point. The fluorescent signal of the

GAP1 CNV reporter increases during selection in all populations evolving in glutamine-limited
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chemostats (Figure 2.2B), consistent with the de novo generation and selection of CNVs at the

GAP1 locus in all 9 populations.

To quantify the proportion of cells containing a GAP1 duplication, we used one and two

copy control strains to define flow cytometry gates. We found that the fluorescence of control

strains varied slightly, which may be indicative of either instrument variation or changes in cell

physiology and morphology during the experiment as suggested by systematic changes in

forward scatter with time. Using a conservative method to classify individual cells containing

GAP1 amplifications, we find that GAP1 amplification alleles are selected with remarkably

reproducible dynamics in the nine glutamine-limited populations (Figure 2.2C). CNVs are

predominantly duplications (two copies), but quantification of fluorescence suggests that many

cells contain three or more copies of the GAP1 locus.

We quantified the dynamics of CNVs in each population evolved in glutamine-limited

chemostats using metrics defined by Lang et al. (Lang, Botstein, and Desai 2011). CNVs are

detected by generation 70-75 (average = 72.8) in all 9 populations (Tup) (Table 2.1). To estimate

the fitness of all CNV lineages relative to the mean population fitness, we calculated Sup, the

rate of increase in the abundance of the CNV subpopulation. The average relative fitness of the

CNV subpopulation is 1.077 (Sup) and CNV alleles are at frequencies greater than 75% in all

populations by 250 generations (Table 2.1). Thus, in all replicated glutamine-limited selection

experiments, GAP1 amplifications emerge early, increase in frequency rapidly, and are

maintained in each population throughout the selection.
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Figure 2.2. Dynamics of GAP1 CNVs in evolving populations. (A) Normalized distributions of
single-cell fluorescence over time for a representative GAP1 CNV reporter strain and one and two copy
control strains evolving in glutamine-limited chemostats. Single cell fluorescence is normalized by the
forward scatter measurement of the cell. (B) Normalized median fluorescence for each population
evolving in glutamine- (n = 9), urea- (n= 9) and glucose- (n = 8) limited chemostats. The fluorescence of
the one and two copy control strains is plotted for reference (grey dotted lines). (C) Estimates of the
proportion of cells with GAP1 amplifications over time for nine glutamine-limited populations containing
the GAP1 CNV reporter.
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Table 2.1. Summary statistics of GAP1 CNV dynamics in glutamine-limited chemostats. Tup is the
number of elapsed generations before CNVs are reliably detected (>7% frequency, see
methods). Sup is the rate of increase in CNV abundance during the initial expansion of the CNV
subpopulation (S1 Text). The frequency of CNVs in the population at generation 150 and
generation 250, when genome sequencing was performed, is also reported.
Population Tup 1 + Sup ± SE g150% g250%

gln_01 70 1.066 ± 0.0038 62 77

gln_02 75 1.071 ± 0.0034 57 87

gln_03 70 1.071 ± 0.0037 88 94

gln_04 70 1.079 ± 0.0036 80 95

gln_05 75 1.077 ± 0.0041 74 89

gln_06 70 1.082 ± 0.0043 91 75

gln_07 75 1.094 ± 0.0048 18 78

gln_08 75 1.090 ± 0.0052 90 82

gln_09 75 1.066 ± 0.0050 48 93

AVG ± STD 72.8 ± 2.6 1.077 ± 0.01 68 ± 24 86 ± 8

GAP1 CNVs undergo two distinct phases of population dynamics. The initial dynamics

with which CNV subpopulations emerge and increase in frequency are highly reproducible in

independent evolving populations. However, after 125 generations, the trajectories of the CNV

subpopulation in the different replicate populations diverge. Many populations maintain a high

frequency of GAP1 amplification alleles, but in some populations they decrease in frequency. In

one population, GAP1 CNV alleles are nearly lost from the population before subsequently

increasing to an appreciable frequency (gln_07).

2.3.3 GAP1 CNV alleles are diverse within and between replicate populations

Based on prior studies (Payen et al. 2014; Hong and Gresham 2014a), we hypothesized

that multiple CNV alleles exist within each population. To characterize the diversity of GAP1

CNVs, we isolated a total of 29 clones containing increased fluorescence from glutamine-limited

chemostats at 150 and 250 generations for whole genome sequencing. We used read depth to

calculate GAP1 copy number and to estimate CNV boundaries (Figure 2.3A). We find that
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GAP1 copy number estimated by sequencing read depth correlates with the fluorescent signal

for individual clones (Figure 2.3B), indicating that fluorescent signal is predictive of copy

number. In 3 clones, we find increased read depth across the entirety of chromosome XI

consistent with aneuploidy. Thus, the CNV reporter is able to detect aneuploid chromosomes as

well as subchromosomal CNVs.

We identified diverse GAP1 CNVs between and within populations (Figure 2.3C). In the

majority of populations (6/9) different clones had different CNVs. For example, in population

gln_01 at generation 150, we identified a large GAP1 CNV that includes the entire right arm of

chromosome XI and another clone that was aneuploid for chromosome XI. At generation 250,

clones isolated from population gln_01 have CNV alleles that are distinct from each other and

from those observed at generation 150. Clones from the 8 additional glutamine-limited

populations show evidence for CNV diversity within and between the two time points analyzed

(Figure 2.3C) suggesting the presence of multiple CNV lineages within evolving populations.

Furthermore, the diversity of GAP1 CNVs indicates that they are not predominantly formed

through a recurrent mechanism as might be anticipated by the presence of proximate repetitive

elements.

We used pulsed-field gel electrophoresis and Southern blotting to confirm CNV

structures. Using GAP1 and CEN11 probes for Southern blotting, we identified size shifts in

some samples consistent with the large CNVs ( >140 kilobases) we identified in several clones.

Interestingly, in some cases, we identified two discrete bands in our GAP1 Southern blot,

indicating that the additional copies of GAP1 were not contained on chromosome XI. The GAP1

Southern also provided further evidence for the GAP1 deletion in a clone isolated from

urea-limitation. Importantly, while control populations evolving in glutamine-limited chemostats

did not show evidence for GAP1 CNVs on the basis of fluorescence, sequence and Southern

blotting analysis identified GAP1 amplifications in lineages isolated from these populations. As
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one and two copy control strains do not have the GAP1 CNV reporter, this suggests that GAP1

CNV formation and selection is not affected by the reporter. Moreover, we find no evidence that

the molecular features of GAP1 CNVs are affected by the presence of  the CNV reporter.

We determined the fitness of GAP1 CNV-containing clones using pair-wise competitive

fitness assays in glutamine-limited chemostats (Figure 2.3C). Four independent competition

assays with the ancestral strain containing the GAP1 CNV reporter showed no significant

differences in fitness compared to the isogenic non-fluorescent reference strain. The majority of

evolved clones (18/28) have higher relative fitness than the ancestor, indicating that GAP1

CNVs typically confer large fitness benefits. Several clones have neutral (8/28) or lower (2/28)

relative fitness, which indicates that either 1) the fitness effect of GAP1 CNVs may be

context-specific or 2) not all GAP1 CNVs confer a fitness benefit.
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Figure 2.3. Diversity and fitness effects of GAP1 CNVs. (A) Representative sequence read depth plot
from a glutamine-limited clone (gln_01_c4). The nucleotide coordinates of GAP1 in our CNV reporter
strain are chromosome XI: 518438-520246 (blue line). Estimated breakpoint boundaries are shown in red.
Read depth was normalized to the average read depth on chromosome XI. Reads at each nucleotide
position were randomly downsampled for presentation purposes. (B) Read depth based estimates of
GAP1 copy number are positively correlated with median fluorescence of glutamine-limited clones,
indicating that fluorescence is informative about the copy number of de novo CNVs. (C) Schematic
representation of CNVs identified in clones isolated from glutamine-limited populations. The relative
fitness of each clone is also indicated. Copy number and CNV boundaries were estimated using read
depth. This schematic is simplified for presentation purposes: the reported copy number refers specifically
to the GAP1 coding sequence and does not necessarily reflect copy number throughout the entire CNV,
which may vary.
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2.3.4 CNV breakpoints are characterized by short, interrupted inverted repeats

We developed a breakpoint detection pipeline that integrates information from read

depth, discordant reads and split reads. To define the breakpoint sequence, we performed de

novo assembly using split reads and aligned the resulting contig against the reference genome.

We analyzed 29 lineages containing GAP1 CNVs and inferred the underlying mechanisms for

19 (66%) of them on the basis of copy number and breakpoint sequences. Of the 19 GAP1

CNVs that can be reliably resolved, 3 are the result of aneuploidies and 2 are the result of

non-reciprocal interchromosomal translocations. Translocations were confirmed using

pulsed-field gel electrophoresis and Southern blot analysis, which clearly shows that the second

copy of GAP1 is located on a different chromosome. Southern blotting also indicates that an

additional 3 GAP1 CNVs are the result of partial (i.e. segmental) aneuploidies, which include the

chromosome XI centromere (CEN11) but are smaller than the ancestral chromosome XI (S5

Fig). At least 4 GAP1 CNVs appear to be the result of a tandem duplication mediated by

non-allelic homologous recombination (NAHR). For two of these CNVs, novel junction

sequences were obtained that included a hybrid sequence composed of half of each flanking

long terminal repeat (YKRCdelta11/YKRCdelta12), similar to our previous report (Gresham et al.

2010).

For 12 out of 29 (41%) GAP1 CNVs, we identified a pair of short, interrupted, inverted

repeats proximate to at least one breakpoint. We were able to resolve breakpoints at both ends

of the CNV for 12 of the 20 CNVs. Analysis of these breakpoints indicates that inverted repeat

sequences range in length from 4-24 base pairs and are typically separated by 40 base pairs.

Microhomology at breakpoint junctions is characteristic of replication-based CNV formation,

including microhomology-mediated break-induced replication (MMBIR) and origin-dependent

inverted-repeat amplification (ODIRA). ODIRA has several other requirements including the

presence of at least one replication origin within the CNV, an internal inversion, and an odd copy
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number. The identification of inverted sequence relative to the reference at all identified

breakpoint junctions is consistent with an inverted structure. We find that 6/29 GAP1 CNVs meet

these criteria and thus are likely the result of ODIRA. In cases where the CNV lacks an odd

copy number we cannot reliably infer the mechanism.

2.3.5 Lineage tracking reveals extensive clonal interference among CNV lineages

The reproducible dynamics of CNV lineages observed during glutamine-limited

experimental evolution may be due to two non-exclusive reasons: either 1) a high supply rate of

de novo CNVs or 2) pre-existing CNVs in the ancestral population. In both scenarios, a single

CNV or multiple, competing CNVs may underlie the reproducible dynamics. Sequence analysis

of clonal lineages suggests at least two, and as many as four, CNV lineages may co-exist in

populations (Figure 2.3); however, genome sequencing is uninformative about the total number

of lineages for two key reasons. First, the recurrent formation of CNVs confounds distinguishing

CNVs that are identical by state from those that are identical by descent. Second, CNVs that

arise de novo may subsequently diversify over time resulting in distinct alleles that are derived

from a common event.

To quantify the number, relationship and dynamics of individual CNV lineages, we

constructed a lineage tracking library using random DNA barcodes (Levy et al. 2015). We

constructed a library of ~80,000 unique barcodes (Figure 2.S1) in the background of the GAP1

CNV reporter and performed six independent replicate experiments in glutamine-limited

chemostats. Real time monitoring of CNV dynamics using the GAP1 CNV reporter recapitulated

the dynamics of our original experiment (Figure 2.4A, Figure 2.S2A and Table 2.S1) although

CNV lineages appeared significantly earlier in these populations (Tup; t-test p-value < 0.01). As

the lineage tracking strain was independently derived from the strain used in our original

experiment, these results indicate that selection of GAP1 CNVs in glutamine-limited chemostats

is reproducible and independent of genetic background.
40

https://paperpile.com/c/fnft5x/ypNw2


To quantify individual lineages, we isolated the subpopulation containing CNVs from two

populations (bc01 and bc02) at multiple timepoints (generations 70, 90, 150, and 270). Isolation

of the CNV subpopulation was performed by fluorescence activated cell sorting (FACS) using

gates based on one and two copy control populations (Figure 2.4A). We sequenced barcodes

from the CNV subpopulation at each time point and determined the number of unique lineages

((Zhao et al. 2017) and methods). To account for variation in the purity of the FACS-isolated

CNV subpopulation, we analyzed individual clones using a flow cytometer. Using these data, we

estimated a false positive rate, which we find varies between time points (Figure 2.S2B and

methods), and applied this correction to barcode counts (Table 2.2).

Table 2.2. Estimation of CNV lineages in evolving populations across time. We determined the
number of GAP1 CNV containing lineages by correcting the number of identified barcodes by the
estimated false positive rate associated with CNV isolation using FACS. High confidence GAP1 CNV
lineages are defined as those that are found at two or more consecutive timepoints.

Population Generation

Number of
detected
barcodes

False positive
rate (FP)

FP corrected
barcode
count

Barcodes
identified at
>1 time point

bc01 70 9650 0.27 7067 891
bc01 90 1064 0.09 973 891
bc01 150 136 0.04 131 131
bc01 270 79 0.04 76 38
bc02 70 7243 0.27 5305 2676
bc02 90 5851 0.09 5351 2710
bc02 150 606 0.04 583 162
bc02 270 29 0.04 28 22

Strikingly, we detect thousands of independent GAP1 CNV lineages at generation 70

indicating that a large number of independent GAP1 CNVs are generated and selected in the

early stages of the evolution experiments (Figure 2.4B). Applying a conservative false positive

correction, we identified 7,067 GAP1 CNV lineages in bc01 and 5,305 GAP1 CNV lineages in

bc02 at generation 70 (Table 2.2). If we only consider lineages detected in the CNV

subpopulation at multiple time points, we identify 891 CNV lineages in bc01 and 2,676 CNV
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lineages at generation 70 (Table 2.2). Thus, between 102-104 independent CNV lineages initially

compete within each population that are on the order of ~108 cells. The overall diversity of CNV

lineages decreases with time, consistent with decreases in lineage diversity observed in other

evolution experiments (Levy et al. 2015; Blundell et al. 2019). By generation 270, we detect only

76 CNV lineages in bc01 and 28 CNV lineages in bc02. To determine the dominant lineages in

each population, we identified barcodes that reached greater than 1% frequency in the CNV

subpopulation in at least one time point: 21 independent lineages are found at greater than 1%

frequency in bc01 and 18 independent lineages are found at greater than 1% frequency in bc02

(Figure 2.4B). These results indicate the presence and persistence of multiple GAP1 CNVs

across hundreds of generations of selection during which there is a continuous reduction in the

overall diversity of CNV lineages.

Although CNVs rise to high frequencies in both populations (Figure 2.4A), the

composition of competing CNV lineages is dramatically different: in bc02, a single lineage

dominates the population by generation 150 (Figure 2.4B), whereas in bc01, there is much

greater diversity at later time points. In both populations, several CNV lineages that comprise a

large fraction of the CNV subpopulation at early generations (generations 70, 90, or 150) are

extinct by generation 270. Thus, within populations, individual CNV lineages do not increase in

frequency with uniform dynamics despite the consistent and reproducible dynamics of the entire

CNV subpopulations (Figure 2.2A and Figure 2.4A). Differences in fitness between individual

CNV lineages, possibly as a result of variation in copy number, CNV size and secondary

adaptive mutations, are likely to contribute to these dynamics.
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Figure 2.4 Lineage tracking reveals extensive clonal interference among CNV-containing lineages.
(A) We used fluorescence-activated cell sorting (FACS) to fractionate cells containing GAP1 CNVs from
two  populations at four time points (dashed black lines) and performed barcode sequencing. (B) Using a
sample- and time point-specific false positive correction, we identified 7067, 973, 131, and 76 barcodes in
one population, bc01 (left), and 5305, 5351, 583, and 28 barcodes in another population, bc02 (right), at
generations 70, 90, 150 and 270 respectively. Each barcode found at >1% frequency in at least one time
point is represented by a unique color in the plot, for a total of 21 barcodes in bc01 and 18 barcodes in
bc02. All other lineages that are never detected at >1% frequency are shown in grey. Lineages denoted
by a * are found at >1% frequency in both populations.
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2.3.6 CNV subpopulations comprise de novo and pre-existing CNV alleles

To distinguish the contribution of pre-existing genetic variation (i.e. CNVs introduced to

the population before chemostat inoculation) and de novo variation (i.e. CNVs introduced to the

population following chemostat inoculation) to CNV lineage dynamics, we assessed whether

barcodes were shared between CNV lineages in independent populations. We identified four

barcodes at greater than 1% frequency that are common to both populations (Figure 2.4B). At

generation 70, one of these barcodes (indicated in light purple) was present at 14% and 19% in

bc01 and bc02, respectively. We find that the barcode for this lineage was over-represented in

the ancestral unselected population (an initial frequency of 0.014%, which is one order of

magnitude greater than the average starting frequency of 0.0011%; Figure 2.S1). Although

there is a possibility that de novo CNVs formed independently in this barcode lineage, it is more

likely that this lineage contained a pre-existing CNV in the ancestral population. While this

lineage represented a sizable fraction of the CNV subpopulation in both replicate populations, it

was only maintained at high frequency in one of them (bc01). Only one of the four pre-existing

CNV lineages persists throughout the experiment in both populations. By contrast, in each

population, we identified 17 and 14 unique high frequency CNV lineages that are most likely

new CNVs. These results indicate that both pre-existing CNVs and de novo CNVs that arise

during glutamine limitation contribute to adaptive evolution.

2.4 Discussion

Copy number variants are an important class of genetic variation and adaptive potential.

In this study, we sought to understand the short-term fate of CNVs as they are generated and

selected in evolving populations. Previous work from our laboratory and others has shown that

the defined, strong selective conditions of a chemostat provides an ideal system for studying
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CNVs. We used nitrogen limitation to establish conditions that select for amplification and

deletion of the gene GAP1, which encodes the general amino acid permease, in S. cerevisiae.

2.4.1 A GAP1 CNV reporter reveals the dynamics of selection

To determine the dynamics with which CNVs are selected at the GAP1 locus, we

inserted a constitutively expressed fluorescent gene adjacent to GAP1 and tracked changes in

single cell fluorescence over time. While one and two copy control strains with mCitrine at

neutral loci maintain a steady fluorescent signal over 250 generations of selection, all

glutamine-limited populations with the GAP1 CNV reporter show increased fluorescence by

generation 75. Importantly, the structure and breakpoints of CNVs within and between

populations are different, indicating independent formation of CNVs. Control strains were

inoculated independently, and have different genetic backgrounds, but also form CNVs at the

GAP1 locus as determined by whole genome sequencing and Southern blot analysis. These

data indicate that GAP1 CNVs are positively selected early and repeatedly in glutamine-limited

environments.

While the majority of evolved clones with GAP1 CNVs (18/28) have higher relative

fitness in glutamine-limited chemostats compared to the ancestor, several clones have neutral

(8/28) or lower (2/28) relative fitness. CNV-containing clones were selected on the basis of

increased fluorescence, which does not necessarily mean the clone had higher fitness than the

ancestor. The fitness effect of a CNV within the chemostat environment is context-specific, and

may depend on factors such as frequency-dependent selection. In addition, if GAP1 CNVs are

generated at a high rate as we have hypothesized, neutral or deleterious CNVs could be

present for several generations before these lineages are purged from the population or acquire

additional adaptive mutations.
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2.4.2 Inference of CNV formation mechanisms

Whole genome sequencing of GAP1 CNV lineages isolated on the basis of increased

fluorescence uncovered a wide range of CNV structures within and between populations. We

found cases in which distinct alleles were identified within populations at different time points

and cases in which we identified the same CNV allele 100 generations later. GAP1 CNV alleles

are 105 kilobases on average, but can include the entire right arm of chromosome XI (260

kilobases).

Our reporter detects increases in gene copy number that result from a variety of

processes including aneuploidy, non-reciprocal translocation, tandem duplication, and complex

copy number variants including inverted triplications. The ability to track and isolate these

diverse gene amplifications allows us to enumerate the frequency of each type and characterize

the mechanisms underlying their formation. Combining our approach with molecular techniques

allowed us to further understand the nature of these GAP1 CNVs. Three particularly interesting

GAP1 CNV-containing clones appear to have partial (i.e. segmental) aneuploidies that

encompass centromere XI. As the presence of two centromeres in one chromosome is

extremely unlikely, it is plausible that these exist as independent, supernumerary chromosomes

(Natesuntorn et al. 2015). Similar adaptive rearrangements occur in other yeast species:

isochromosome formation, potentially mediated by the presence of inverted repeats, has been

observed during treatment of Candida albicans with antifungal drugs (A. Selmecki, Forche, and

Berman 2006). The use of a CNV reporter should facilitate determination of the frequency with

which these and other complex mechanisms give rise to CNVs at a given locus.

We identified 9 GAP1 CNVs containing breakpoints that comprise closely-spaced

inverted repeat sequences. Of these, the majority (14/17) also had an odd copy number, and

contained an origin of replication consistent with the ODIRA mechanism (Brewer et al. 2011,

2015). Our results suggest that replication-based mechanisms may be a major source of gene
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amplification in yeast. This is consistent with increasing evidence for replication-based CNV

formation in diverse organisms including yeast, mice, and humans (Feng Zhang et al. 2009;

Ottaviani, LeCain, and Sheer 2014; Arlt et al. 2012; Sakofsky et al. 2015).

2.4.3 Clonal interference underlies CNV dynamics

By combining a CNV reporter with lineage tracking, we identified a surprisingly large

number of independent CNV lineages. Whereas clonal isolation and sequencing suggested at

least four independent lineages within populations, lineage tracking indicates that hundreds to

thousands of individual CNV lineages emerge within less than 100 generations. Most of these

lineages do not achieve high frequency, as we identified only 18-21 lineages present at >1%

frequency in the CNV subpopulation. The number of independent CNV lineages we identified is

remarkable. Although we have attempted to account for technical factors that may inflate this

number, unanticipated aspects of barcode transformation and library construction, cell sorting,

and barcode sequencing and identification may impact this estimation. Conversely, the exact

number of CNV lineages may be underestimated, as the unselected barcode library was not

maximally diverse and each unique barcode was shared by multiple founding cells.

While we found lineages that were common to both populations (at least one of which is

likely to contain a pre-existing CNV), ancestral CNV lineages do not drive the evolutionary

dynamics. Pre-existing CNV lineages have different dynamics in each population, and do not

prevent the emergence of unique de novo CNV lineages. This demonstrates that the ultimate

fate of a CNV lineage depends on multiple factors, and a high frequency at an early generation

does not guarantee that a lineage will persist in the population. Thus, CNV dynamics result from

pre-existing and de novo variation and are characterized by extensive clonal interference and

replacement among competing CNV lineages.
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The large number of CNV lineages identified in our study indicates that they occur at a

high rate. Recent studies have suggested that adaptive mutations may be stimulated by the

environment. Stress can lead to increases in genome-wide mutation rates in both bacteria and

yeast (Foster 2007; Galhardo, Hastings, and Rosenberg 2007; Shor, Fox, and Broach 2013)

and replicative stress can lead directly to increased formation of CNVs (L. Chen et al. 2015;

Wilson et al. 2015). Other groups have proposed an interplay between transcription and CNV

generation, and that active transcription units might even be “hotspots” of CNV formation

(Thomas and Rothstein 1989; Skourti-Stathaki and Proudfoot 2014; Aguilera and Gaillard

2014). These hotspots, often designated as common fragile sites, may occur in long, late

replicating genes, with large inter-origin distances (Wilson et al. 2015). Local transcription at the

rDNA locus leads to rDNA amplification, and is thought to be regulated in response to the

environment (Jack et al. 2015; Mansisidor et al. 2018). Transcription of the CUP1 locus in

response to environmental copper leads to promoter activity that further destabilizes stalled

replication forks and generates CNVs (Hull et al. 2017). Given the high level of GAP1

transcription in nitrogen limited chemostats (Airoldi et al. 2016) it is tempting to speculate that

this condition may promote the formation of GAP1 CNVs. Further studies are required to

understand the full extent of processes that underlie CNV formation at the GAP1 locus and how

these different mechanisms may contribute to the fitness and overall success of CNV lineages.

The frequency of GAP1 CNVs can be attributed to a combination of factors including: a

high mutation supply rate due in part to the large chemostat population size (~108), the strength

of selection, and the fitness benefit typically conferred by GAP1 amplification. Together, these

factors contribute to an early, deterministic phase, during which CNVs are formed at a high rate

and thousands of lineages with CNVs rapidly increase in frequency. During a second phase, the

dynamics are more variable as competition from different types of adaptive lineages, and

additional acquired variation, influence evolutionary trajectories of individual CNV lineages. This
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phenomenon has recently been observed in other evolution experiments, where early events

are driven by multiple competing single-mutant lineages (Blundell et al. 2019), but later

dynamics are influenced by stochastic factors and secondary mutations (Levy et al. 2015).

The high degree of clonal interference observed among a single class of adaptive

mutations may have important implications for adaptive evolution. CNVs are alleles of large

effect that can simultaneously change the dosage of multiple protein-coding genes and

subsequently lead to changes in cell physiology. Epistatic relationships between CNVs and

other adaptive mutations could therefore dramatically alter the fitness landscape (Kvitek and

Sherlock 2011). Additionally, CNVs can confer a fitness benefit per se but also serve to increase

the amount of DNA in the genome that can accumulate mutations. Therefore, CNVs can

potentially increase the rate of adaptive evolution by increasing the target size for adaptive

mutations. In this study, we found evidence for polymorphisms within individual CNVs and

potential epistasis between SNVs and CNV alleles, two phenomena that require further

exploration as we continue to define the role of CNVs in driving rapid adaptive evolution.

2.5 Conclusion

The combined use of a fluorescent CNV reporter and barcode lineage tracking provides

unprecedented insight into this important class of mutation. Previous studies have tracked

specific mutations and their fitness effects (Lang, Botstein, and Desai 2011), but ours is the first

single-cell based approach to identify an entire class of mutations and follow evolutionary

trajectories with high resolution. While barcode tracking alone provides information about the

number of adaptive lineages and their fitness effects, the CNV reporter enables us to specifically

determine the number of unique CNV events. In addition, the reporter provides an estimate of

the total proportion of CNVs in the population, which we can use to inform our understanding of

lineage dynamics. Using these tools, we have shown that CNVs are generated at a high rate
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through diverse mechanisms including homologous recombination and replication-based errors.

These processes lead to the formation of many distinct CNV alleles segregating within

populations. One limitation of our approach is that a complex copy number variant could be the

product of multiple, independent events (for example, a duplication followed by a subsequent

triplication). Evolution experiments that start with a pre-existing CNV would be informative for

studying how CNVs diversify when maintained under selection.

Our results demonstrate an important role for CNVs in driving rapid adaptive evolution in

microbial populations, but could be broadly applicable to plants, animals, and humans. Our

system provides a facile means for studying the molecular processes underlying CNV

generation as well as evolutionary aspects of CNVs including: whether there are fundamental

differences in CNV formation and selection at different loci, the impact of a high rate of CNV

formation on the evolutionary dynamics of other adaptive lineages, how CNVs are maintained or

refined over longer evolutionary timescales, how CNVs interact with other adaptive mutations to

influence fitness landscapes, whether there are consequences and tradeoffs in alternative

environments, and how the formation of CNVs impacts gene expression and genome

architecture. Extension of this method is likely to be useful for addressing additional

fundamental questions regarding the evolutionary and pathogenic role of CNVs in diverse

systems.

2.6 Methods

2.6.1 Strains and media

We used FY4 and FY4/5, haploid and diploid derivatives of the reference strain S288c,

for all experiments. To generate fluorescent strains, we performed high efficiency yeast

transformation (Gietz and Schiestl 2007b) with an mCitrine gene under control of the

constitutively expressed ACT1 promoter (ACT1pr::mCitrine::ADH1term) and marked by the
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KanMX G418-resistance cassette (TEFpr::KanMX::TEFterm). The entire construct, which we

refer to as the mCitrine CNV reporter, is 3,375 base pairs. For control strains, the mCitrine

reporter was integrated at two neutral loci: HO (YDL227C) on chromosome IV and the dubious

ORF, YLR123C on chromosome XII. Diploid control strains containing 3 and 4 copies of the

mCitrine CNV reporter were generated using a combination of backcrossing and mating. We

constructed the GAP1 CNV reporter by integrating the mCitrine construct at an intergenic region

1,118 base pairs upstream of GAP1 (integration coordinates, chromosome XI: 513945-517320).

PCR and Sanger sequencing were used to confirm integration of the GAP1 CNV reporter at

each location. Transformants were subsequently backcrossed and sporulated, and the resulting

segregants were genotyped.

For the purpose of lineage tracking, we constructed a strain containing a landing pad

and the GAP1 CNV reporter by segregation analysis after mating the original GAP1 CNV

reporter strain to a landing pad strain (derived from BY4709) (Levy et al. 2015). As the kanMX

cassette is present at two loci in this cross, we performed tetrad dissection and identified four

spore tetrads that exhibited 2:2 G418 resistance. A segregant with the correct genotype (G418

resistant, ura-) was identified and confirmed using a combination of PCR and fluorescence

analysis. We introduced a library of random barcodes by transformation and selection on

SC-ura plates (Levy et al. 2015). We plated an average of 500 transformants on 200 petri plates

and estimated 78,000 independent transformants.

Nitrogen limiting media contained 800 𝛍M nitrogen and 1 g/L CaCl2-2H2O, 1 g/L of NaCl,

5 g/L of MgSO4-7H2O, 10 g/L KH2PO4, 2% glucose and trace metals and vitamins as previously

described (Hong and Gresham 2014a).

2.6.2 Long-term experimental evolution

We inoculated the GAP1 CNV reporter strain into 20mL ministat vessels (Miller et al.

2013) containing either  glutamine-, urea-, or glucose-limited media. Control populations
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containing either one or two copies of the CNV reporter at neutral loci (HO and YLR123C) were

also inoculated in ministat vessels for each media condition. Ministats were maintained at 30°C

in aerobic conditions and diluted at a rate of 0.12 hr-1 (corresponding to a population doubling

time of 5.8 hours). Steady state populations of 3 x 108 cells were maintained in continuous

mode for 270 generations (65 days). Every 30 generations, we archived 2 mL population

samples at -80°C in 15% glycerol.

2.6.3 Flow cytometry sampling and analysis

To monitor the dynamics of CNVs, we sampled 1mL from each population every ~8

generations. We performed sonication to disrupt any cellular aggregates and immediately

analyzed the samples on an Accuri flow cytometer, measuring 100,000 cells per population for

mCitrine fluorescence signal (excitation = 516nm, emission = 529nm, filter = 514/20nm), cell

size (forward scatter) and cell complexity (side scatter). We generated a modified version of our

laboratory flow cytometry pipeline for this analysis (https://github.com/GreshamLab/flow), which

uses the R package flowCore (Ellis et al. 2016). We used forward scatter height (FSC-H) and

forward scatter area (FSC-A) to filter out doublets, and FSC-A and side scatter area (SSC-A) to

filter debris. We quantified fluorescence for each cell and divided this value by the forward

scatter measurement for the cell to account for differences in cell size. To determine population

frequencies of cells with zero, one, two, and three plus copies of GAP1, we used one and two

copy control strains grown in glutamine-limited chemostats to define gates and perform manual

gating. We used a conservative gating approach to reduce the number of false positive CNV

calls by first manually drawing a liberal gate for the one copy control strain, followed by a

non-overlapping gate for the two copy control strain.
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2.6.4 Isolation and analysis of evolved clones

Clonal isolates were obtained from each glutamine- and urea-limited population at

generation 150 and generation 250. We isolated clones by plating cells onto rich media (YPD)

and randomly selecting individual colonies. We inoculated each clone into 96 well plates

containing the limited media used for evolution experiments and analyzed them on an Accuri

flow cytometer following 24 hours of growth. We compared fluorescence to unevolved ancestral

strains and evolved 1 and 2 copy controls grown under the same conditions, and chose a

subset of clones for whole genome sequencing.

To measure the fitness coefficient of evolved clones, we performed pairwise competitive

fitness assays in glutamine-limited chemostats using the same, glutamine-limited conditions as

our evolution experiments (Hong and Gresham 2014a). We co-cultured our fluorescent evolved

strains with a non-fluorescent, unevolved reference strain (FY4). We determined the relative

abundance of each strain every 2-3 generations for approximately 15 generations using flow

cytometry. We performed linear analysis of the natural log of the ratio of the two genotypes

against time and estimated the fitness, and associated error, relative to the ancestral strain.

2.6.5 Quantifying the number of CNV lineages

We inoculated the lineage tracking library into 20mL ministat vessels (Miller et al. 2013)

containing glutamine-limited media. Control populations containing either zero, one or two

copies of the GAP1 CNV reporter at neutral loci (HO and YLR123C) were also inoculated in

ministat vessels for each media condition. Control populations did not contain lineage tracking

barcodes. Ministat vessels were maintained and archived as above. Samples were taken for

flow cytometry every ~8 generations and analyzed as previously described.

We used fluorescence activated cell sorting (FACS) to isolate the subpopulation of cells

containing two or more copies of the mCitrine CNV reporter using a FACSAria. We defined our

gates using zero, one, and two copy mCitrine control strains sampled from ministat vessels at
53

https://paperpile.com/c/fnft5x/8UZqC
https://paperpile.com/c/fnft5x/BlVHt


the corresponding timepoints: 70, 90, 150, and 265 generations. Depending on the sample, we

isolated 500,000-1,000,000 cells with increased fluorescence, corresponding to two or more

copies of the reporter. We grew the isolated subpopulation containing CNVs for 48 hours in

glutamine-limited media and performed genomic DNA extraction using a modified

Hoffman-Winston protocol (Hoffman and Winston 1987). We verified FACS isolation of true

CNVs by isolating clones from subpopulations sorted at generation 70, 90, and 150 (sorted from

all lineage tracking populations, bc01-06) and performing independent flow cytometry analysis

using an Accuri. We estimated the average false positive rate of CNV isolation at each time

point as the percent of clones from a population with FL1 less than one standard deviation

above the median FL1 in the one copy control strain. Only subpopulations with fluorescence

measurements for at least 25 clones were included in calculations of false positive rate.

We performed a sequential PCR protocol to amplify DNA barcodes and purified the

products using a Nucleospin PCR clean-up kit (Levy et al. 2015). We quantified DNA

concentrations by qPCR before balancing and pooling libraries. DNA libraries were sequenced

using a paired-end (2x150) protocol on an Illumina MiSeq 300 Cycle v2. Standard metrics were

used to assess data quality (Q30 and %PF). However, the reverse read failed due to

over-clustering, so all analyses were performed only using the forward read. We used the

Bartender algorithm with UMI handling to account for PCR duplicates and to cluster sequences

with merging decisions based solely on distance except in cases of low coverage (<500

reads/barcode), for which the default cluster merging threshold was used (Zhao et al. 2017).

Clusters with a size less than four or with high entropy (>0.75 quality score) were discarded. We

estimated the relative abundance of barcodes using the number of unique reads supporting a

cluster compared to total library size.
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2.7 Supplemental Material

Figure 2.S1. Distribution of barcode counts in ancestral populations. We determined the distribution
of read counts supporting each unique barcode in the ancestral population, after filtering out low
confidence clusters. The relative frequencies of barcodes vary by over an order of magnitude and we
observe a long tail with a few barcodes significantly overrepresented in the ancestral population. The red
arrow indicates an overrepresented barcode in the ancestral population that was identified in the CNV
subpopulation in both independent barcoded evolution experiments (indicated in purple in Fig 5B). This
distribution is consistent with that found in other barcode lineage tracking experiments (Levy et al. 2015).
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Figure 2.S2 Identification of barcoded GAP1 CNV-lineages in evolving populations. (A) GAP1 CNV
dynamics in barcoded populations assayed using a CNV reporter. (B) Estimation of true positive rate of
CNV isolation by FACS at generations 70, 90, and 150. CNV subpopulations were isolated by FACS at
each timepoint and clones isolated by plating for single colonies. The percent of cells containing a  CNV
in the fractionated subpopulation was estimated using at least 25 clones. A one copy control strain was
used to define gates.
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Sample
ID

(Tup) Time
of initial
detection

1 +
Sup ±
SE

95%
CI Sup

95%
CI Sup

Sup
Range

Max
%

(Tmax)
Time to
max
frequency

g70
%

g90
%

g150
%

g270
% Monotonic

gln_bc01 50
1.124 ±
0.0052 0.1096 0.1387 37-79 96% 273 61%

82
% 90% 96% yes

gln_bc02 54
1.073 ±
0.0024 0.0676 0.0781 29-124 96% 182 30%

59
% 95% 92% yes

gln_bc03 41
1.065 ±
0.0046 0.0537 0.0762 29-87 73% 140 39%

52
% 71% 44% no

gln_bc04 50
1.069 ±
0.0046 0.0574 0.0796 21-79 60% 207 24%

32
% 48% 38% no

gln_bc05 50
1.08 ±
0.0059 0.0659 0.0950 29-87 75% 140 40%

59
% 73% 6% no

gln_bc06 58
1.096 ±
0.0035 0.0872 0.1042 29-87 94% 265 25%

53
% 78% 92% yes

Table 2.S1 Summary statistics for GAP1 CNV dynamics, determined using the GAP1 CNV reporter, in
replicated evolution experiments using lineage tracking libraries. Summary statistics are defined as in
Table 1.
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Chapter 3: Simulation-based inference of evolutionary parameters from

adaptation dynamics using neural networks

This chapter is based on "Simulation-based inference of evolutionary parameters from

adaptation dynamics using neural networks” by Grace Avecilla, Julie N. Chuong, Fangfei Li,

Gavin Sherlock, David Gresham, and Yoav Ram, which is posted on bioRxiv

(https://www.biorxiv.org/content/10.1101/2021.09.30.462581v1) and has been accepted for

publication at PLoS Biology.

I performed all analysis in collaboration with Yoav Ram, except for that shown in Figure 3.7C

(lineage tracking). I contributed to generating data for Figure 3.7. I generated all figures and

tables, and wrote the manuscript text with editing from David Gresham and Yoav Ram.

3.1 Abstract

The rate of adaptive evolution depends on the rate at which beneficial mutations are

introduced into a population and the fitness effects of those mutations. The rate of beneficial

mutations and their expected fitness effects is often difficult to empirically quantify. As these two

parameters determine the pace of evolutionary change in a population, the dynamics of

adaptive evolution may enable inference of their values. Copy number variants (CNVs) are a

pervasive source of heritable variation that can facilitate rapid adaptive evolution. Previously, we

developed a locus-specific fluorescent CNV reporter to quantify CNV dynamics in evolving

populations maintained in nutrient-limiting conditions using chemostats. Here, we use CNV

adaptation dynamics to estimate the rate at which beneficial CNVs are introduced through de

novo mutation and their fitness effects using simulation-based Bayesian likelihood-free

inference approaches. We tested the suitability of two evolutionary models: a standard
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Wright-Fisher model and a chemostat model. We evaluated two likelihood-free inference

algorithms: the well-established Approximate Bayesian Computation with Sequential Monte

Carlo (ABC-SMC) algorithm, and the recently developed Neural Posterior Estimation (NPE)

algorithm, which applies an artificial neural network to directly estimate the posterior distribution.

By systematically evaluating the suitability of different inference methods and models we show

that NPE has several advantages over ABC-SMC and that a Wright-Fisher evolutionary model

suffices in most cases. Using our validated inference framework, we estimate the CNV

formation rate at the GAP1 locus in the yeast Saccharomyces cerevisiae to be 10-4.7 - 10-4 CNVs

per cell division, and a fitness coefficient of 0.04 - 0.1 per generation for GAP1 CNVs in

glutamine-limited chemostats. We experimentally validated our inference-based estimates using

two distinct experimental methods - barcode lineage tracking and pairwise fitness assays - that

provide independent confirmation of the accuracy of our approach. Our results are consistent

with a beneficial CNV supply rate that is 10-fold greater than the estimated rates of beneficial

single-nucleotide mutations, explaining the outsized importance of CNVs in rapid adaptive

evolution. More generally, our study demonstrates the utility of novel neural-network-based

likelihood-free inference methods for inferring the rates and effects of evolutionary processes

from empirical data with possible applications ranging from tumor to viral evolution.

3.2 Introduction

Evolutionary dynamics are determined by the supply rate of beneficial mutations and

their associated fitness effect. As the combination of these two parameters determines the

overall rate of adaptive evolution, experimental methods are required for separately estimating

them. The fitness effects of beneficial mutations can be determined using competition assays

(Gallet et al. 2012; Ram et al. 2019) and mutation rates are typically estimated using mutation

accumulation or Luria-Delbrück fluctuation assays (Gallet et al. 2012; Kondrashov and
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Kondrashov 2010). An alternative approach to estimating both the rate and effect of beneficial

mutations entails quantifying the dynamics of adaptive evolution and using statistical inference

methods to find parameter values that are consistent with the dynamics (Sousa et al. 2013;

Hegreness et al. 2006; Barrick et al. 2010; Nguyen Ba et al. 2019). Approaches to measure the

dynamics of adaptive evolution, quantified as changes in the frequencies of beneficial alleles,

have become increasingly accessible using either phenotypic makers (Lang, Botstein, and

Desai 2011) or high-throughput DNA sequencing (Torada et al. 2019). Thus, inference methods

using adaptation-dynamics data hold great promise for determining the underlying evolutionary

parameters.

Fitness effects of beneficial mutations are not constant, but comprise a portion of a

distribution of fitness effects (DFE). Determining the parameters of the DFE in a given condition

is a central goal of evolutionary biology. Typically, beneficial mutations can occur at multiple loci

and thus variance in the DFE reflects genetic heterogeneity. However, in some scenarios a

single locus is the dominant gene in which beneficial mutations occur, such as the case of

mutations in the β-lactamase gene underlying β-lactam antibiotic resistance or in rpoB

underlying rifampicin resistance in bacteria (Weinreich et al. 2006; MacLean and Buckling

2009). In this case different mutations at the same locus confer differential beneficial effects

resulting in a locus specific DFE. Typically, a DFE of beneficial mutations encompasses both

allelic and locus heterogeneity.

Copy number variants (CNVs) are defined as deletions or amplifications of genomic

sequences. Due to their high rate of formation and strong fitness effects, they can underlie rapid

adaptive evolution in diverse scenarios ranging from niche adaptation to speciation (Zuellig and

Sweigart 2018; Dhami, Hartwig, and Fukami 2016; K. M. Turner et al. 2017; Geiger, Cox, and

Mann 2010; Stratton, Campbell, and Futreal 2009). In the short term, CNVs may provide

immediate fitness benefits by altering gene dosage. Over longer evolutionary timescales, CNVs
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can provide the raw material for the generation of evolutionary novelty through diversification of

different gene copies (M.-C. Harrison et al. 2021). As a result, CNVs are common in human

populations (Barreiro et al. 2008; Iskow et al. 2012; Zarrei et al. 2015), domesticated and wild

populations of animals and plants (Ramirez et al. 2014; Clop, Vidal, and Amills 2012; Żmieńko

et al. 2014), pathogenic and non-pathogenic microbes (Greenblum, Carr, and Borenstein 2015;

Nair et al. 2008; Iantorno et al. 2017; Dulmage et al. 2018), and viruses (Gao et al. 2017; Rezelj,

Levi, and Vignuzzi 2018; Elde et al. 2012). CNVs can be both a driver and a consequence of

cancers (reviewed in (Ben-David and Amon 2020)).

Although critically important to adaptive evolution, our understanding of the dynamics

and reproducibility of CNVs in adaptive evolution is poor. Specifically, key evolutionary

properties of CNVs, including their rate of formation and fitness effects, are largely unknown. As

with other classes of genomic variation, CNV formation is a relatively rare event, occurring at

sufficiently low frequencies to make experimental measurement challenging. Estimates of de

novo CNV rates are derived from indirect and imprecise methods, and even when genome-wide

mutation rates are directly quantified by mutation accumulation studies and whole-genome

sequencing, estimates depend on both genotype and condition (Kondrashov and Kondrashov

2010) and vary by orders of magnitude (Y. O. Zhu et al. 2014; R. P. Anderson and Roth 1977;

Horiuchi, Horiuchi, and Novick 1963; Reams et al. 2010; P. Anderson and Roth 1981; Sharp et

al. 2018; Sui et al. 2020; H. Liu and Zhang 2019).

Fitness effects of CNVs vary depending on gene content, genetic background and the

environment. In evolution experiments in many systems, CNVs arise repeatedly in response to

strong selection (Lauer et al. 2018; Payen et al. 2014; Sun et al. 2012; Farslow et al. 2015;

Morgenthaler et al. 2019; Frickel et al. 2018; DeBolt 2010; Todd and Selmecki 2020; Sunshine

et al. 2015), consistent with strong beneficial fitness effects. Several of these studies measured

fitness of clonal isolates containing CNVs, and reported selection coefficients ranging from -0.11
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to 0.6 (Payen et al. 2014; Lauer et al. 2018; Sunshine et al. 2015). However, the fitness of

lineages containing CNVs varies between isolates even within  studies, which could be due to

additional heritable variation or to differences in fitness between different types of CNVs (e.g.

aneuploidy vs. single-gene amplification).

Due to the challenge of empirically measuring rates and effects of beneficial mutations

across many genetic backgrounds, conditions, and types of mutations, researchers have

attempted to infer these parameters from population-level data using evolutionary models and

Bayesian inference (Hegreness et al. 2006; Barrick et al. 2010; Harari et al. 2018). This

approach has several advantages. First, model-based inference provides estimations of

interpretable parameters and the opportunity to compare multiple models. Second, the degree

of uncertainty associated with a point estimate can be quantified. Third, a posterior distribution

over model parameters allows exploration of parameter combinations that are consistent with

the observed data, and posterior distributions can provide insight into certain relationships

between parameters (Gonçalves et al. 2020). Fourth, posterior predictions can be generated

using the model and either compared to the data or used to predict the outcome of differing

scenarios.

Standard Bayesian inference requires a likelihood function, which gives the probability of

obtaining the observed data given some values of the model parameters. However, for many

evolutionary models, such as the Wright-Fisher model, the likelihood function is analytically

and/or computationally intractable. Likelihood-free simulation-based Bayesian inference

methods that bypass the likelihood function, such as Approximate Bayesian Computation (ABC;

(Sunnåker et al. 2013)), have been developed and used extensively in population genetics

(Beaumont, Zhang, and Balding 2002), ecology and epidemiology (Tanaka et al. 2006;

Beaumont 2010), cosmology (Jennings and Madigan 2017), as well as experimental evolution

(Bank et al. 2014; Blanquart and Bataillon 2016; Barrick et al. 2010; Sousa et al. 2013; Harari,
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Ram, and Kupiec 2018). The simplest form of likelihood-free inference is rejection-ABC (Tavaré

et al. 1997; Pritchard et al. 1999), in which model parameter proposals are sampled from a prior

distribution, simulations are generated based on those parameter proposals, and simulated data

are compared to empirical observations using a summary and distance function. Proposals that

generate simulated data with a distance less than a defined tolerance threshold are considered

samples from the posterior distribution and can therefore be used for its estimation. Efficient

sampling methods have been introduced, namely MCMC (Marjoram et al. 2003) and SMC

(Sisson, Fan, and Tanaka 2007), that iteratively select proposals based on previous parameters

samples so that regions of the parameter space with higher posterior density are explored more

often. A shortcoming of ABC is that it requires summary and distance functions, which may be

difficult to choose appropriately and compute efficiently, especially when using high-dimensional

or multi-modal data, although methods have been developed to address this challenge (Blum

and François 2010; Csilléry, François, and Blum 2012; Beaumont, Zhang, and Balding 2002).

Recently, new inference methods have been introduced that directly approximate the

likelihood or the posterior density function using deep neural density estimators—artificial neural

networks that approximate density functions. These methods, which have recently been used in

neuroscience (Gonçalves et al. 2020), population genetics (Flagel, Brandvain, and Schrider

2019), and cosmology (Alsing et al. 2019), forego the summary and distance functions, can use

data with higher dimensionality, and perform inference more efficiently (Gonçalves et al. 2020;

Alsing et al. 2019; Cranmer, Brehmer, and Louppe 2020). However, neural network-based

inference methods have not previously been applied to experimental evolution.

Despite being originally developed to analyze population-genetic data, e.g. to infer

parameters of the coalescent model (Tavaré et al. 1997; Pritchard et al. 1999; Sisson, Fan, and

Tanaka 2007; Marjoram et al. 2003), likelihood-free methods have only been used in a small

number of experimental evolution studies. Hegreness et al (Hegreness et al. 2006) estimated
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the rate and mean fitness effect of beneficial mutations in E. coli. They performed 72 replicates

of a serial-dilution evolution experiment, starting with equal frequencies of two strains that differ

only in a fluorescent marker in a putatively neutral location and allowed them to evolve over 300

generations. Following the marker frequencies, they estimated from each experimental replicate

two summary statistics: the time when a beneficial mutation starts to spread in the population

and the rate at which its frequency increases. They then ran 500 simulations of an evolutionary

model using a grid of model parameters to produce a theoretical distribution of summary

statistics. Finally, they used the one-dimensional Kolmogorov-Smirnov distance between the

empirical and theoretical summary-statistic distributions to assess the inferred parameters.

Barrick et al (Barrick et al. 2010) also inferred the rate and mean fitness effect from similar

serial-dilution experiments using a different evolutionary model implemented with a 𝛕-leap

stochastic simulation algorithm. They used the same summary statistics but applied the

two-dimensional Komogorov-Smirnov distance function to better account for dependence

between the summary statistics. Moura de Sousa et al (Moura de Sousa, Campos, and Gordo

2013) also focused on evolutionary experiments with two neutral markers. Their model included

three parameters: the beneficial mutation rate, and the two parameters of a Gamma distribution

for the fitness effects of beneficial mutations. They introduced a new summary statistic that uses

both the marker frequency trajectories and the population mean fitness trajectories (measured

using competition assays). They summarized these data by creating histograms of the

frequency values and fitness values for each of six time-points. This resulted in 66 summary

statistics necessitating the application of a regression-based method to reduce the

dimensionality of the summary statistics and achieve greater efficiency (Moura de Sousa,

Campos, and Gordo 2013; Csilléry, François, and Blum 2012). A simpler approach was taken by

Harari et al (Harari et al. 2018), who used a rejection-ABC approach to estimate a single model

parameter, the endoreduplication rate, from evolutionary experiments with yeast. They used the
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frequency dynamics of three genotypes (haploid and diploid homozygous and heterozygous at

the MAT locus) without a summary statistic. The distance between the empirical results and 100

simulations was computed as the mean absolute error.  These prior studies point to the potential

of simulation-based inference.

Previously, we developed a fluorescent CNV reporter system in the budding yeast,

Saccharomyces cerevisiae, to quantify the dynamics of de novo CNVs during adaptive evolution

(Lauer et al. 2018). Using this system we quantified CNV dynamics at the GAP1 locus, which

encodes a general amino acid permease, in nitrogen-limited chemostats for over 250

generations in multiple populations. We found that GAP1 CNVs reproducibly arise early and

sweep through the population. By combining the GAP1 CNV reporter with barcode lineage

tracking and whole-genome sequencing we found that 102–104 independent CNV-containing

lineages comprising diverse structures compete within populations.

In this study, we estimate the formation rate and fitness effect of GAP1 CNVs. We tested

both ABC-SMC (Klinger, Rickert, and Hasenauer 2018) and a neural density estimation method,

NPE (Tejero-Cantero et al. 2020), using a classical Wright-Fisher model (Otto and Day 2007)

and a chemostat model (Dean 2005). Using simulated data we tested the utility of the different

evolutionary models and inference methods. We find that NPE has better performance than

ABC-SMC. Although a more complex model has improved performance, the simpler and more

computationally efficient Wright-Fisher model is appropriate in most scenarios. We validated our

approach by comparison to two different experimental methods: lineage tracking and pairwise

fitness assays. We estimate that in glutamine-limited chemostats, beneficial GAP1 CNVs are

introduced at a rate of 10-4.7 -10-4 per cell division, and have a selection coefficient of 0.04 - 0.1

per generation. NPE is likely to be a useful method for inferring evolutionary parameters across

a variety of scenarios, including tumor and viral evolution, providing a powerful approach for

combining experimental and computational methods.
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3.3 Results

In a previous experimental evolution study, we  quantified the dynamics of de novo

CNVs in nine populations using a prototrophic yeast strain containing a fluorescent GAP1 CNV

reporter. (Lauer et al. 2018). Populations were maintained in glutamine-limited chemostats for

over 250 generations and sampled every 8-20 generations (25 time points in total) to determine

the proportion of cells containing a GAP1 CNV using flow cytometry (populations gln_01-gln_09

Figure 3.1A). In the same study, we also performed two replicate evolution experiments using

the fluorescent GAP1 CNV reporter and lineage-tracking barcodes quantifying the proportion of

the population with a GAP1 CNV at 32 time points (populations bc01-bc02 in Figure 3.1A)

(Lauer et al. 2018) . We used interpolation to match timepoints between these two experiments

(Figure 3.S1) resulting in a dataset comprising the proportion of the population with a GAP1

CNV at 25 timepoints in 11 replicate evolution experiments. In this study, we tested whether the

observed dynamics of CNV-mediated evolution provide a means of inferring the underlying

evolutionary parameters.

3.3.1 Overview of evolutionary models

We tested two models of evolution: the classical Wright-Fisher model (Otto and Day

2007) and a specialized chemostat model (Dean 2005). Previously, it has been shown that a

single effective selection coefficient may be sufficient to model evolutionary dynamics in

populations undergoing adaptation (Hegreness et al. 2006). Therefore, we focus on beneficial

mutations and assume a single selection coefficient for each class of mutation. In both models,

we start with an isogenic population in which GAP1 CNV mutations occur at a rate 𝛿C and other

beneficial mutations occur at rate 𝛿B (Figure 3.1B). In our simulations, cells can acquire only a

single beneficial mutation, either a CNV at GAP1 or some other beneficial mutation (i.e. SNV,

transposition, diploidization, or CNV at another locus). In all simulations (except for sensitivity
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analysis, see Inference from empirical GAP1 dynamics), the mutation rate of  beneficial

mutations other than GAP1 CNVs was fixed at 𝛿B=10-5 per genome per cell division and the

selection coefficient was fixed at sB=0.001, based on estimates from previous experiments using

yeast in several conditions (Venkataram et al. 2016; Joseph and Hall 2004; Hall et al. 2008).

Our goal was to infer the GAP1 CNV mutation rate, 𝛿C, and GAP1 CNV selection coefficient, sC.

Figure 3.1. Empirical data and evolutionary models. A) Estimates of the proportion of cells with GAP1 CNVs for
eleven S. cerevisiae populations containing either a fluorescent GAP1 CNV reporter (gln_01 - gln_09) or a
fluorescent GAP1 CNV reporter and lineage tracking barcodes (bc01 and bc02) evolving in glutamine-limited
chemostats, from (Lauer et al. 2018). B) In our models, cells with the ancestral genotype (XA) can give rise to cells
with a GAP1 CNV (XC) or other beneficial mutation (XB) at rates 𝛿C and 𝛿B, respectively. C) The Wright-Fisher model
has discrete, non-overlapping generations and a constant population size. Allele frequencies in the next generation
change from the previous generation due to mutation, selection, and drift. D) In the chemostat model, medium
containing a defined concentration of a growth limiting nutrient (S0) is added to the culture at a constant rate. The
culture, containing cells and medium, is removed by continuous dilution at rate D. Upon inoculation, the number of
cells in the growth vessel increases and the limiting-nutrient concentration decreases until a steady state is reached
(red and blue curves in inset). Within the growth vessel, cells grow in continuous, overlapping generations undergoing
mutation, selection, and drift.

67

https://paperpile.com/c/fnft5x/tcM8U+9mRtH+WQVYz
https://paperpile.com/c/fnft5x/obtgD


The two evolutionary models have several unique features. In the Wright-Fisher model

the population size is constant and each generation is discrete. Therefore, genetic drift is

efficiently modeled using multinomial sampling (Figure 3.1C). In the chemostat model (Dean

2005), fresh medium is added to the growth vessel at a constant rate and medium and cells are

removed from the growth vessel at the same rate resulting in continuous dilution of the culture

(Figure 3.1D). Individuals are  randomly removed from the population through the dilution

process, regardless of fitness, in a manner analogous to genetic drift. In the chemostat model,

we start with a small initial population size and a high initial concentration of the growth-limiting

nutrient. Following inoculation, the population size increases and the growth-limiting nutrient

concentration decreases until a steady state is attained that persists throughout the experiment.

As generations are continuous and overlapping in the chemostat model, we use the Gillespie

algorithm with 𝛕-leaping (D. T. Gillespie 2001) to simulate the population dynamics. Growth

parameters in the chemostat are based on experimental conditions during the evolution

experiments (Lauer et al. 2018) or taken from the literature (Table 3.1).

3.3.2 Overview of inference strategies

We tested two likelihood-free Bayesian methods for joint inference of the GAP1 CNV

mutation rate and the GAP1 CNV fitness effect: Approximate Bayesian Computation with

Sequential Monte Carlo (ABC-SMC) (Sisson, Fan, and Tanaka 2007) and Neural Posterior

Estimation (NPE) (Lueckmann et al. 2017; Greenberg, Nonnenmacher, and Macke 2019;

Papamakarios and Murray 2016). We used the proportion of the population with a GAP1 CNV at

25 time points as the observed data (Figure 3.1A). For both methods, we defined a log-uniform

prior distribution for the CNV mutation rate ranging from 10-12 to 10-3 and a log-uniform prior

distribution for the selection coefficient ranging from 10-4 to 0.4.

We applied ABC-SMC (Figure 3.2A), implemented in the Python package pyABC

(Klinger, Rickert, and Hasenauer 2018). We used an adaptively weighted Euclidean distance
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function to compare simulated data to observed data. Thus, the distance function adapts over

the course of the inference process based on the amount of variance at each time point

(Prangle 2017). The number of samples drawn from the proposal distribution (and therefore

number of simulations) is adapted at each iteration of the ABC-SMC algorithm using the

adaptive population strategy, which is adapted based on the shape of the current posterior

distribution (Klinger and Hasenauer 2017). We applied bounds on the maximum number of

samples used to approximate the posterior in each iteration; however, the total number of

samples (simulations) used in each iteration is greater because not all simulations are accepted

for posterior estimation (see Methods). For each observation, we performed ABC-SMC with

multiple iterations until either the acceptance threshold (ε = 0.002) was reached or until 10

iterations had been completed. We performed inference on each observation independently

three times. Although we refer to different observations belonging to the same “training set”, a

different ABC-SMC procedure must be performed for each observation.

We applied NPE (Figure 3.2B), implemented in the Python package sbi (Tejero-Cantero

et al. 2020), and tested two specialized normalizing flows as density estimators: a masked

autoregressive flow (MAF) (Papamakarios, Pavlakou, and Murray 2017) and a neural spline flow

(NSF) (Durkan et al. 2019). The normalizing flow is used as a density estimator to “learn” an

amortized posterior distribution, which can then be evaluated for specific observations. Thus,

amortization allows for evaluation of the posterior for each new observation without the need to

re-train the neural network. To test the sensitivity of our inference results on the set of

simulations used to learn the amortized posterior, we trained three independent amortized

networks with different sets of simulations generated from the prior distribution and compared

our resulting posterior distributions for each observation. We refer to inferences made with the

same amortized network as having the same “training set.”
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Figure 3.2. Inference methods and performance assessment. A) When using Approximate Bayesian Computation
with Sequential Monte Carlo (ABC-SMC), in the first iteration a proposal for the parameters 𝛿C (GAP1 CNV mutation
rate) and sC (GAP1 CNV selection coefficient) is sampled from the prior distribution. Simulated data are generated
using either a Wright-Fisher or chemostat model and the current parameter proposal. The distance between the
simulated data and the observed data is computed, and the proposed parameters are weighted by this distance.
These weighted parameters are used to sample the proposed parameters in the next iteration. Over many iterations,
the weighted parameter proposals provide an increasingly better approximation of the posterior distribution of 𝛿C and
sC (adapted from (Cranmer, Brehmer, and Louppe 2020)). B) In Neural Posterior Estimation (NPE), simulated data
are generated using parameters sampled from the prior distribution. From the simulated data and parameters, a
density-estimating neural network learns the joint density of the model parameters and simulated data (the “amortized
posterior”). The network then evaluates the conditional density of model parameters given the observed data, thus
providing an approximation of the posterior distribution of 𝛿C and sC (adapted from (Cranmer, Brehmer, and Louppe
2020) and (Gonçalves et al. 2020).) C) Assessment of inference performance. The 50% and 95% highest density
regions (HDRs) are shown on the joint posterior distribution with the true parameters and the maximum a posteriori
(MAP) parameter estimates. We compare the true parameters to the estimates by their log ratio. We also generate
posterior predictions (sampling 50 parameters from the joint posterior distribution and using them to simulate
frequency trajectories, ⍴i), which we compare to the observation, oi, using the root mean square error (RMSE) and
the correlation coefficient.
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3.3.3 NPE outperforms ABC-SMC

To test the performance of each inference method and evolutionary model, we

generated 20 simulated synthetic observations for each model (Wright-Fisher or chemostat)

over four combinations of CNV formation rates and selection coefficients, resulting in 40

synthetic observations (i.e., five simulated observations per combination of model, 𝛿C, and sC).

We refer to the parameters that generated the synthetic observation as the “true” parameters.

For each synthetic observation we performed inference using each method three times.

Inference was performed using the same evolutionary model as that used to generate the

observation. We found that NPE using NSF as the density estimator was superior to NPE using

MAF, and therefore we report results using NSF in the main text (results using MAF are in

Figure 3.S2).

For each inference method we plotted the joint posterior distribution with the 50% and

95% highest density regions (HDR) (Kruschke 2014) demarcated (Figure 3.2C,

Supplementary Files).  The true parameters are expected to be covered by these HDRs at

least 50% and 95% of the time, respectively. We also computed the marginal 95% highest

density intervals (HDI) (Kruschke 2014) using the marginal posterior distributions for the GAP1

CNV selection coefficient and GAP1 CNV formation rate. We found that the true parameters

were within the 50% HDR in half or more of the tests (averaged over three training sets) across

a range of parameter values with the exception of ABC-SMC applied to the Wright-Fisher model

when the GAP1 CNV formation rate (𝛿C=10-7) and selection coefficient (sC=0.001) were both low

(Figure 3.3A). The true parameters were within the 95% HDR in 100% of tests

(Supplementary Files). The width of the HDI is informative about the degree of uncertainty

associated with the parameter estimation. The HDIs for both fitness effect and mutation rate

tend to be smaller when inferring with NPE compared to ABC-SMC, and this advantage of NPE

is more pronounced when the CNV formation rate is high (𝛿C=10-5) (Figure 3.3B-C).
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We computed the maximum a posteriori (MAP) estimate of the GAP1 CNV formation

rate and selection coefficient by determining the mode (i.e. argmax) of the joint posterior

distribution, and computed the log-ratio of the MAP relative to the true parameters. We find that

the MAP estimate is close to the true parameter (i.e. the log-ratio is close to zero) when the

selection coefficient is high (sC=0.1), regardless of the model or method, and much of the error

is due to the  mutation rate estimation error (Figure 3.3D). Generally, the MAP estimate is within

an order of magnitude of the true parameter (i.e. the log-ratio is less than one), except when the

formation rate and selection coefficient are both low (𝛿C=10-7, sC=0.001); in this case the

formation rate was under-estimated up to four-fold and the selection coefficient was slightly

over-estimated (Figure 3.3D). In some cases there are substantial differences in log-ratio

between training sets using NPE; however, this variation in log-ratio is usually less than the

variation in the log-ratio when performing inference with ABC-SMC. Overall, the log-ratio tends

to be closer to zero (i.e estimate close to true parameter) when using NPE (Figure 3.3D).

We performed posterior predictive checks by simulating GAP1 CNV dynamics using the

MAP estimates as well as 50 parameter values sampled from the posterior distribution

(Supplementary Files). We computed both the root mean squared error (RMSE) and the

correlation coefficient between posterior predictions and the observation to measure the

prediction accuracy (Figure 3.3E, Figure 3.S3). We find that the RMSE posterior predictive

accuracy of NPE is similar to, or better than, that of ABC-SMC (Figure 3.3E). The predictive

accuracy quantified using correlation was close to 1 for all cases except when GAP1 CNV

formation rate and selection coefficient are both low (sC=0.001 and 𝛿C=10-7) (Figure 3.S3).
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Figure 3.3. Performance assessment of inference methods using simulated synthetic observations. The figure
shows the results of inference on five simulated synthetic observations using either the Wright-Fisher (WF) or
chemostat (Chemo) model per combination of fitness effect sC and mutation rate 𝛿C. Simulations and inference were
performed using the same model. For NPE, each training set corresponds to an independently amortized posterior
distribution trained on a different set of 100,000 simulations, with which each synthetic observation was evaluated to
produce a separate posterior distribution. For ABC-SMC, each training set corresponds to independent inference
procedures on each observation with a maximum of 10,000 total simulations accepted for each inference procedure
and a stopping criteria of 10 iterations or ε <= 0.002, whichever occurs first. A) The percent of true parameters
covered by the 50% HDR of the inferred posterior distribution. The bar height shows the average of three training
sets. Horizontal line marks 50%. B-C) Distribution of widths of 95% highest density interval (HDI) of the posterior
distribution of the fitness effect sC (B) and CNV mutation rate 𝛿C (C), calculated as the difference between the 97.5
percentile and 2.5 percentile, for each separately inferred posterior distribution. D) Log-ratio of MAP estimate to true
parameter for sC and 𝛿C. Note the different y-axis ranges. Gray horizontal line represents a log-ratio of zero, indicating
an accurate MAP estimate. E) Mean and 95% confidence interval of RMSE of 50 posterior predictions compared to
the synthetic observation from which the posterior was inferred.

We performed model comparison using both AIC (Akaike information criterion),

computed using the MAP estimate, and WAIC (widely applicable information criterion),
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computed over the entire posterior distribution (Gelman et al. 2013). Lower values imply higher

predictive accuracy and a difference of 2 is considered significant (Figure 3.S4) (Kass and

Raftery 1995). We find similar results for both criteria: NPE with either model have similar

values, though the value for Wright-Fisher is sometimes slightly lower than the value for the

chemostat model. When sC=0.1, the value for NPE is consistently and significantly lower than

for ABC-SMC. When 𝛿C=10-5 and sC=0.001, the value for NPE with the Wright-Fisher model is

significantly lower than that for ABC-SMC, while the NPE with the chemostat model is not. The

difference between any combination of model and method was insignificant for 𝛿C=10-7 and

sC=0.001. Therefore, NPE is similar or better than ABC-SMC using either evolutionary model

and for all tested combinations of GAP1 CNV formation rate and selection coefficient, and we

further confirmed the generality of this trend using the Wright-Fisher model and eight additional

parameter combinations (Figure 3.S5).

We performed NPE using 10,000 or 100,000 simulations to train the neural network and

found that increasing the number of simulations did not substantially reduce the MAP estimation

error, but did tend to decrease the width of the 95% HDIs for both parameters (Figure 3.S6).

Similarly, we performed ABC-SMC with per observation maximum accepted  parameter samples

(i.e. “particles” or “population size”) numbers of 10,000 and 100,000, which correspond to

increasing number of simulations per inference procedure, and found that increasing the budget

decreases the widths of the 95% HDIs for both parameters (Figure 3.S6). Overall, amortization

with NPE allowed for more accurate inference using fewer simulations corresponding to less

computation time (Figure 3.S7).

3.3.4 The Wright-Fisher model is suitable for inference using chemostat dynamics

Whereas the chemostat model is a more precise description of our evolution

experiments, both the model itself and its computational implementation have some drawbacks.

First, the model is a stochastic continuous-time model implemented using the 𝛕-leap method (D.
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T. Gillespie 2001). In this method, time is incremented in discrete steps and the number of

stochastic events that occur within that time step is sampled based on the rate of events and the

system state at the previous time step. For accurate stochastic simulation, event rates and

probabilities must be computed at each time step, and time steps must be sufficiently small.

This incurs a heavy computational cost as time steps are considerably smaller than one

generation, which is the time step used in the simpler Wright-Fisher model. Moreover, the

chemostat model itself has additional parameters compared to the Wright-Fisher model, which

must be experimentally measured or estimated.

The Wright-Fisher model is more general and more computationally efficient than the

chemostat model (Table 3.S1). Therefore, we investigated if it can be used to perform accurate

inference with NPE on synthetic observations generated by the chemostat model. By assessing

how often the true parameters were covered by the HDRs, we found that the Wright-Fisher is a

good-enough approximation of the full chemostat dynamics when selection is weak (sC = 0.001)

(Figure 3.S8), and it performs similarly to the chemostat model in parameter estimation

accuracy (Figure 3.4A-B). The Wright-Fisher is less suitable when selection is strong (sC = 0.1),

as the true parameters are not covered by the 50% or 95% HDR (Figure 3.S8). Nevertheless,

estimation of the selection coefficient remains accurate, and the difference in estimation of the

formation rate is less than an order of magnitude, with a 3-5-fold overestimation (MAP log-ratio

between 0.5 and 0.7) (Figure 3.4C-D).
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Figure 3.4. Inference with Wright-Fisher model from chemostat dynamics. The figure shows results of inference
using NPE and either the Wright-Fisher (WF) or chemostat (Chemo) model on five simulated synthetic observations
generated using the chemostat model for different combinations of fitness effect sC and formation rate 𝛿C. Boxplots
and markers show the log-ratio of MAP estimate to true parameters for sC and 𝛿C. Horizontal solid line represents a
log-ratio of zero, indicating an accurate MAP estimate; dotted lines indicate an order of magnitude difference between
the MAP estimate and the true parameter.

3.3.5 Inference using a set of observations

Our empirical dataset includes eleven biological replicates of the same evolution

experiment. Differences in the dynamics between independent replicates may be explained by

an underlying distribution of fitness effects (DFE) rather than a single constant selection

coefficient. It is possible to infer the DFE using all experiments simultaneously. However,

inference of distributions from multiple experiments presents several challenges, common to

other mixed-effects or hierarchical models (X. A. Harrison et al. 2018). Alternatively, individual

values inferred from individual experiments could provide an approximation of the underlying

DFE.

To test these two alternative strategies for inferring the DFE, we performed simulations in

which we allowed for variation in the selection coefficient of GAP1 CNVs for each population in

a set of observations. We sampled eleven selection coefficients from a Gamma distribution with

shape and scale parameters and , respectively, and an expected value (Mouraα β 𝐸(𝑠) =  αβ

de Sousa, Campos, and Gordo 2013), and then simulated a single observation for each

sampled selection coefficient. As the Wright-Fisher model is a suitable approximation of the
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chemostat model (Figure 3.4), we used the Wright-Fisher model both for generating our

observation sets and for parameter inference.

For the observation sets, we used NPE to either infer a single selection coefficient for

each observation or to directly infer the Gamma distribution parameters and from all elevenα β

observations. When inferring eleven selection coefficients, one for each observation in the

observation set, we fit a Gamma distribution to eight of the eleven inferred values (Figure 3.5,

green lines). When directly inferring the DFE, we used a uniform prior for from 0.5 to 15 and aα

log-uniform prior for from 10-3 to 0.8. We held out three experiments from the set of eleven andβ

used a three-layer neural network to reduce the remaining eight observations to a five-feature

summary statistic vector, which we then used as an embedding net (Tejero-Cantero et al. 2020)

with NPE to infer the joint posterior distribution of , , and 𝛿C (Figure 3.5, blue lines). For eachα β

observation set, we performed each inference method three times, using different sets of eight

experiments to infer the underlying DFE.

We used Kullback–Leibler divergence to measure the difference between the true DFE

and inferred DFE, and find that the inferred selection coefficients from the single experiments

capture the underlying DFE as well or better than direct inference of the DFE from a set of

observations for both (an exponential distribution) and (sum of ten exponentials)α = 1 α = 10

(Figure 3.5, Figure 3.S9). The only exception we found is when , , andα = 10 𝐸(𝑠) = 0. 001

𝛿C=10-5 (Figure 3.S9, Table 3.S2). We assessed the performance of inference from a set of

observations using out-of-sample posterior predictive accuracy (Gelman et al. 2013) and found

that inferring and from a set of observations results in lower posterior predictive accuracyα β

compared to inferring sC from a single observation (Figure 3.S10). Therefore, we conclude that

estimating the DFE through inference of individual selection coefficients from each observation

is superior to inference of the distribution from multiple observations.
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Figure 3.5. Inference of  the distribution of fitness effects. A set of eleven simulated synthetic observations was
generated from a Wright-Fisher model with CNV selection coefficients sampled from an exponential (Gamma with

) distribution of fitness effects (true DFE; black curve). The MAP DFEs (observation set DFE, green curves)α = 1
were directly inferred using three different subsets of eight out of eleven synthetic observations. We also inferred the
selection coefficient for each individual observation in the set of eleven separately, and fit a Gamma distribution
(single observation DFE, blue curves) to sets of eight inferred selection coefficients. All inferences were performed
with NPE using the same amortized network to infer a posterior for each set of eight synthetic observations or each
single observation. A) weak selection, high formation rate, B) weak selection, low formation rate, C) strong selection,
high formation rate, D) strong selection, low formation rate.

3.3.6 Inference from empirical evolutionary dynamics

To apply our approach to empirical data we inferred GAP1 CNV selection coefficients

and formation rates using eleven replicated evolutionary experiments in glutamine-limited

chemostats (Lauer et al. 2018) (Figure 3.1A) using NPE with both evolution models. We

performed posterior predictive checks, drawing parameter values from the posterior distribution,

and found that GAP1 CNV were predicted to increase in frequency earlier and more gradually

than is observed in our experimental populations (Figure 3.S11). This discrepancy is especially

apparent in experimental populations that appear to experience clonal interference with other

beneficial lineages (i.e. gln07, gln09). Therefore, we excluded data after generation 116, by

which point CNVs have reached high frequency in the populations but do not yet exhibit the
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non-monotonic and variable dynamics observed in later time points, and performed inference.

The resulting posterior predictions are more similar to the observations in initial generations

(average MAP RMSE for the eleven observations up to generation 116 is 0.06 when inference

excludes late time points versus 0.13 when inference includes all time points). Furthermore, the

overall RMSE (for observations up to generation 267) was not significantly different (average

MAP RMSE is 0.129 and 0.126 when excluding or including late time points, respectively;

Figure 3.S12). Restricting the analysis to early time points did not dramatically affect estimates

of GAP1 CNV selection coefficient and formation rate, but it did result in less variability in

estimates between populations (i.e. independent observations) and some reordering of

populations’ selection coefficients and formation rate relative to each other (Figure 3.S13).

Thus, we focused on inference using data prior to generation 116.

The inferred GAP1 CNV selection coefficients were similar regardless of model, with the

range of MAP estimates for all populations between 0.04 and 0.1, whereas the range of inferred

GAP1 CNV formation rates was somewhat higher when using the Wright-Fisher model,

10-4.1-10-3.4, compared to the chemostat model, 10-4.7 -10-4 (Figure 3.6A-B). While there is

variation in inferred parameters due to the training set, variation between observations (replicate

evolution experiments) is higher than variation between training sets (Figure 3.6A-C). Posterior

predictions using the chemostat model, a fuller depiction of  the evolution experiments, tend to

have slightly lower RMSE than predictions using the Wright-Fisher model (Figure 3.6C).

However, predictions using both models recapitulate actual GAP1 CNV dynamics, especially in

early generations (Figure 3.6D).

To test the sensitivity of these estimates, we also inferred the GAP1 CNV selection

coefficient and formation rate using the Wright-Fisher model in the absence of other beneficial

mutations (𝛿B=0), and for nine additional combinations of other beneficial mutation selection

coefficient sB and formation rate 𝛿B (Figure 3.S14). In general, perturbations to the rate and
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selection coefficient of other beneficial mutations did not alter the inferred GAP1 CNV selection

coefficient or formation rate. We found a single exception: when both the formation rate and

fitness effect of other beneficial mutations is high (sB=0.1 and 𝛿B=10-5), the GAP1 CNV selection

coefficient was approximately 1.6-fold higher and the formation rate was approximately 2-fold

lower (Figure 3.S14); however, posterior predictions were poor for this set of parameter values

(Figure 3.S15) suggesting these values are inappropriate.

Figure 3.6. Inference of CNV formation rate and fitness effect from empirical evolutionary dynamics. The
inferred MAP estimate and 95% highest density intervals (HDI) for fitness effect sC and formation rate 𝛿C, using the
(A) Wright-Fisher (WF) or (B) chemostat (Chemo) model and NPE for each experimental population from (Lauer et al.
2018). Inference performed with data up to generation 116, and each training set (marker shape) corresponds to an
independent amortized posterior distribution estimated with 100,000 simulations. C) Mean and 95% confidence
interval for RMSE of 50 posterior predictions compared to empirical observations up to generation 116. D) Proportion
of the population with a GAP1 CNV in the experimental observations (solid lines) and in posterior predictions using
the MAP estimate from one of the training sets shown in panels A and B with either the Wright-Fisher (dotted line) or
chemostat (dashed line) model. Mutation rate and fitness effect of other beneficial mutations set to 10-5 and 10-3,
respectively.

3.3.7 Experimental confirmation of fitness effects inferred from adaptive dynamics

To experimentally validate the inferred selection coefficients, we used lineage tracking to

estimate the distribution of fitness effects (Levy et al. 2015; Nguyen Ba et al. 2019; Aggeli, Li,
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and Sherlock, n.d.). We performed barseq on the entire evolving population at multiple time

points and identified lineages that did and did not contain GAP1 CNVs (Figure 3.7A). Using

barcode trajectories to estimate fitness effects ((Levy et al. 2015); see Methods), we identified

1,569 out of 80,751 lineages (1.94%) as adaptive in the bc01 population. A total of 1,513

(96.4%) adaptive lineages have a GAP1 CNV (Figure 3.7A).

As a complementary experimental approach, selection coefficients can be directly

measured using competition assays by fitting a linear model to the log-ratio of the GAP1 CNV

strain and ancestral strain frequencies over time (Figure 3.7B). Therefore, we isolated GAP1

CNV containing clones from populations bc01 and bc02, determined their fitness (Methods),

and combined these estimates with previously reported selection coefficients for GAP1 CNV

containing clones isolated from populations gln01-gln09 (Lauer et al. 2018) to define the DFE.

Figure 3.7. Comparison of DFE inferred using NPE, lineage-tracking barcodes, and competition assays. A)
Barcode-based lineage frequency trajectories in experimental population bc01. Lineages with (green) and without
(gray) GAP1 CNVs are shown. B) Two replicates of a pairwise competition assay for a single GAP1 CNV containing
lineage isolated from an evolving population. The selection coefficient for the clone is estimated from the slope of the
linear model (blue line) and 95% CI (gray). C) The distribution of fitness effects for all beneficial GAP1 CNVs inferred
from eleven populations using NPE and the Wright-Fisher (WF; purple) and chemostat (Chemo; green) models
compared with the DFE inferred from barcode frequency trajectories in the bc01 population (light blue) and the DFE
inferred using pairwise competition assays with different GAP1 CNV containing clones (gray).
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The DFE for adaptive GAP1 CNV lineages in bc01 inferred using lineage-tracking

barcodes and the DFE from pairwise competition assays share similar properties to the

distribution inferred using NPE from all experimental populations (Figure 3.7C). Thus, our

inference framework using CNV adaptation dynamics is a reliable estimate of the DFE

estimated using laborious experimental methods that are gold-standards in the field.

3.4 Discussion

In this study we tested the application of simulation-based inference for determining key

evolutionary parameters from observed adaptive dynamics in evolution experiments. We

focused on the role of CNVs in adaptive evolution using experimental data in which we

quantified the population frequency of de novo CNVs at a single locus using a fluorescent CNV

reporter. The goal of our study was to test a new computational framework for simulation-based,

likelihood-free inference, compare it to the state of the art method, and apply it to estimate the

GAP1 CNV selection coefficient and formation rates in experimental evolution using

glutamine-limited chemostats.

Our study yielded several important methodological findings. Using synthetic data we

tested two different model-based algorithms for joint inference of evolutionary parameters, the

effect of different evolutionary models on inference performance, and how best to determine a

distribution of fitness effects using multiple experiments. We find that the neural-network-based

algorithm NPE outperforms ABC-SMC regardless of evolutionary model. Although a more

complex evolutionary model better describes the evolution experiments performed in

chemostats, we find that a standard Wright-Fisher model can be a sufficient approximation for

inference using NPE. However, the inferred GAP1 CNV formation rate under the Wright-Fisher

model is higher than under the chemostat model (Figure 3.6A-B), which is consistent with the

overprediction of formation rates using the Wright-Fisher model for inference when an
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observation is generated by the chemostat model and selection coefficients are high (Figure

3.4C-D). This suggests that Wright-Fisher is not the best-suited model to use in all real-world

cases, in particular if many beneficial CNVs turn out to have strong selection coefficients.

Finally, although it is possible to perform joint inference on multiple independent experimental

observations to infer a distribution of fitness effects, we find that inference performed on

individual experiments and post-facto estimation of the distribution more accurately captures the

underlying distribution of fitness effects.

Previous studies that applied likelihood-free inference to results of evolutionary

experiments differ from our study in various ways (Hegreness et al. 2006; Barrick et al. 2010;

Harari et al. 2018). First, they used serial-dilution rather than chemostat experiments. Second,

most focused on all beneficial mutations, whereas we categorize beneficial mutations into two

categories: GAP1 CNVs and all other beneficial mutations; thus, they used an evolutionary

model with a single process generating genetic variation whereas our study includes two such

processes, but focuses inference on our mutation type of interest. Third, we used two different

evolutionary models: the Wright-Fisher model, a standard model in evolutionary genetics, and a

chemostat model. The latter is more realistic but also more computationally demanding. Fourth

and importantly, previous studies applied relatively simple rejection-ABC methods (Hegreness et

al. 2006; Barrick et al. 2010; Moura de Sousa, Campos, and Gordo 2013; Harari et al. 2018).

We applied two modern approaches: ABC with sequential Monte Carlo sampling (Sisson, Fan,

and Tanaka 2007), which is a computationally efficient algorithm for Bayesian inference, using

an adaptive distance function (Prangle 2017); and NPE (Lueckmann et al. 2017; Greenberg,

Nonnenmacher, and Macke 2019; Papamakarios and Murray 2016) with NSF (Durkan et al.

2019). NPE approximates an amortized posterior distribution from simulations. Thus, it is more

efficient than ABC-SMC, as it can estimate a posterior distribution for new observations without

requiring additional training. This feature is especially useful when a more computationally
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demanding model is better (e.g., the chemostat model when selection coefficients are high). Our

study is the first, to our knowledge, to use neural density estimation to apply likelihood-free

inference to experimental evolution data.

Our application of simulation-based inference yielded new insights into the role of CNVs

in adaptive evolution. We estimated GAP1 CNV formation rate and selection coefficient from

empirical population-level adaptive evolution dynamics and found that GAP1 CNVs form at a

rate of 10-3.5-10-4.5 per generation (approximately 1 in 10,000 cell divisions) and have selection

coefficients of 0.05-0.1 per generation. We experimentally validated our inferred fitness

estimates using barcode lineage tracking and pairwise competition assays and showed that

simulation-based inference is in good agreement with the two different experimental methods.

The formation rate that we have determined for GAP1 CNVs is remarkably high. Locus-specific

CNV formation rates are extremely difficult to determine and fluctuation assays have yielded

estimates ranging from 10-12 to 10-6 (Lynch et al. 2008; H. Zhang et al. 2013; Schacherer et al.

2005, 2007; Dorsey et al. 1992). Mutation accumulation studies have yielded genome-wide

CNV rates of about 10-5 (Y. O. Zhu et al. 2014; Sharp et al. 2018; Sui et al. 2020), which is an order of magnitude lower

than our locus specific formation rate. We posit two possible explanations for this high rate: 1)

CNVs at the GAP1 locus may be deleterious in most conditions, including the putative

non-selective conditions used for mutation-selection experiments, and therefore underestimated

in mutation accumulation assays due to negative selection; and 2) under nitrogen-limiting

selective conditions, in which GAP1 expression levels are extremely high, a mechanism of

induced CNV formation may operate that increases the rate at which they are generated, as has

been shown at other loci in the yeast genome (Hull et al. 2017; Whale et al. 2021). Empirical

validation of the inferred rate of GAP1 CNV formation in nitrogen-limiting conditions requires

experimental confirmation.
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This simulation-based inference approach can be readily extended to other evolution

experiments. In this study we performed inference of parameters for a single type of mutation.

This approach could be extended to infer the rates and effects of multiple types of mutations

simultaneously. For example, instead of assuming a rate and selection coefficient for other

beneficial mutations and performing ex post facto analyses looking at the sensitivity of inference

of GAP1 CNV parameters in other beneficial mutation regimes, one could simultaneously infer

parameters for both of these types of mutations. As shown using our barcode-sequencing data,

many CNVs arise during adaptive evolution, and previous studies have shown that CNVs have

different structures and mechanisms of formation (Lauer et al. 2018; Hong and Gresham

2014a). Inferring a single effective selection coefficient and formation rate is a current limitation

of our study that could be overcome by inferring rates and effects for different classes of CNVs

(e.g, aneuploidy vs tandem duplication). Inspecting conditional correlations in posterior

distributions involving multiple types of mutations has the potential to provide insights into how

interactions between different classes of mutations shape evolutionary dynamics.

The approach could also be applied to CNV dynamics at other loci, in different genetic

backgrounds, or in different media conditions. Ploidy and diverse molecular mechanisms likely

impact CNV formation rates. For example, rates of aneuploidy, which result from nondisjunction

errors, are higher in diploid yeast than haploid yeast, and chromosome gains are more frequent

than chromosome losses (Sharp et al. 2018). There is considerable evidence for heterogeneity

in the CNV rate between loci, as factors including local sequence features, transcriptional

activity, genetic background, and the external environment may impact the mutation spectrum.

For example, there is evidence that CNVs occur at a higher rate near certain genomic features,

such as repetitive elements (Farslow et al. 2015), tRNA genes (Bermudez-Santana et al. 2010),

origins of replication (Di Rienzi et al. 2009), and replication fork barriers (Labib et al. 2007).
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Furthermore, this approach could be used to infer formation rates and selection

coefficients for other types of mutations in different asexually reproducing populations; the

empirical data required is simply the proportion of the population with a given mutation type over

time, which can efficiently be determined using a phenotypic marker, or similar quantitative data

such as whole-genome whole-population sequencing. Evolutionary models could be extended

to more complex evolutionary scenarios including changing population sizes, fluctuating

selection, and changing ploidy and reproductive strategy, with an ultimate goal of inferring their

impact on a variety of evolutionary parameters and predicting evolutionary dynamics in complex

environments and populations. Applications to tumor evolution and viral evolution are related

problems that are likely amenable to this approach.

3.5 Methods

All source code and data for performing the analyses and reproducing the figures is available at

https://doi.org/10.17605/OSF.IO/E9D5X.  Code is also available at

https://github.com/graceave/cnv_sims_inference.

3.5.1 Evolutionary models

We modeled the adaptive evolution from an isogenic asexual population with

frequencies XA of the ancestral (or wild-type) genotype, XC of cells with a GAP1 CNV,  and XB of

cells with a different type of beneficial mutation. Ancestral cells can gain a GAP1 CNV or

another beneficial mutation at rates 𝛿C and 𝛿B, respectively. Therefore, the frequencies of cells of

different genotypes after mutation are
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For simplicity, this model neglects cells with multiple mutations, which is reasonable for short

timescales, such as those considered here.

In the discrete time Wright-Fisher model, the change in frequency due to natural

selection is modeled by

,𝑥*
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=
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,        𝑤‾ =
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where wi is the relative fitness of cells with genotype i , and is the population mean fitness𝑤‾

relative to the ancestral type. Relative fitness is related to the selection coefficient by
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where N is the population size. In our simulations N=3.3x108, the effective population size in the

chemostat populations in our experiment (see Determining effective population size in the

chemostat).

The chemostat model starts with a population size 1.5x10-7 and the concentration of the

limiting nutrient in the growth vessel, S, is equal to the concentration of that nutrient in the fresh

media, S0. During continuous culture, the chemostat is continuously diluted as fresh media flows

in and culture media and cells are removed at rate D. During the initial phase of growth, the

population size grows and the limiting nutrient concentration is reduced until a steady state is

attained at which the population size and limiting nutrient concentration are maintained

indefinitely. We extended the model for competition between two haploid clonal populations for a

single growth-limiting resource in a chemostat from (Dean 2005) to three populations such that
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Yi is the culture yield of strain i per mole of limiting nutrient. is the Malthusian parameter, or𝑟
𝐴

intrinsic rate of increase, for the ancestral strain, and in the chemostat literature is frequently

referred to as , the maximal growth rate. The growth rate in the chemostat, ,  depends onµ
𝑚𝑎𝑥

µ

the the concentration of the limiting nutrient with saturating kinetics . ki is the substrateµ =
µ

𝑚𝑎𝑥
𝑆

𝑘
𝑠
+𝑆

concentration at half-maximal . rC and rB are the Malthusian parameters for strains with a CNVµ

and strains with an other beneficial mutation, respectively, and are related to the ancestral

Malthusian parameter and selection coefficient by (Chevin 2011)

.𝑠
𝑖

=
𝑟

𝑖
−𝑟

𝐴

𝑟
𝐴

𝑙𝑛2,  𝑖 = 𝐵, 𝐶

The values for the parameters used in the chemostat model are in Table 3.1.

We simulated continuous time in the chemostat using the Gillespie algorithm with

-leaping. Briefly, we calculate the rates of ancestral growth, ancestral dilution, CNV growth,τ

CNV dilution, other mutant growth, other mutant dilution, mutation from ancestral to CNV, and

mutation from ancestral to other mutant. For the next time interval we calculated the number ofτ

times each event occurs during the interval using the Poisson distribution. The limiting substrate

concentration is then adjusted accordingly. These steps repeat until the desired number of

generations is reached.
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For the chemostat model, we began counting generations after 48 hours, which is

approximately the amount of time required  for the chemostat to reach steady state, and when

we began recording generations in (Lauer et al. 2018).

Table 3.1. Chemostat parameters

Parameter Value Source

kA=kB=kC 0.103 mM Airoldi et al. 2016
https://doi.org/10.1091/mbc.E
14-05-1013

YA=YB=YC 32,445,000 cells/mL/mM
nitrogen

Airoldi et al. 2016
https://doi.org/10.1091/mbc.E
14-05-1013

Expected S at steady state Approximately 0.08 mM Airoldi et al. 2016
https://doi.org/10.1091/mbc.E
14-05-1013

maxµ 0.35 hr-1 Cooper TG (1982) Nitrogen
metabolism in
Saccharomyces cerevisiae

D 0.12 hr-1 Lauer et al. 2018

S0 0.8 mM Lauer et al. 2018

Expected cell density at
steady state

Approximately 2.5x107

cells/mL
Lauer et al. 2018

Doubling time 5.8 hours Lauer et al. 2018

3.5.2 Determining the effective population size in the chemostat

In order to determine the effective population size in the chemostat, and thus the

population size to use in with the Wright-Fisher model, we determined the conditional variance

of the allele frequency in the next generation p’ given the frequency in the current generation p

in the chemostat. To do this, we simulated a chemostat population with two neutral alleles with
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frequencies p and q (p+q=1), which begin at equal frequencies, p=q. We allowed the simulation

to run for 1,000 generations, recording the frequency p at every generation, excluding the first

100 generations to ensure the population is at steady state. We then computed the conditional

variance Var(p’|p) in each generation and estimated the effective population size as (where

t=900 is the total number of generations) by (Crow and Kimura 1970):

.𝑁
𝑒

= 𝑝(1−𝑝)

1
𝑡

𝑡

∑𝑣𝑎𝑟(𝑝'|𝑝)

The estimated effective population size in our chemostat conditions is 3.3x108, which is

approximately two thirds of the census population size N when the chemostat is at steady state.

3.5.3 Inference methods

For inference using single observations, we used the proportion of the population with a

GAP1 CNV at 25 time points as our summary statistics and defined a log-uniform prior for the

mutation rate ranging from 10-12 to 10-3 and a log-uniform prior for the selection coefficient from

10-4 to 0.4.

For inference using sets of observation, we used a uniform prior for from 0.5 to 15, aα

log-uniform prior for from 10-3 to 0.8, and a log-uniform prior for the mutation rate ranging fromβ

10-12 to 10-3. For use with NPE, we used a three layer sequential neural network with linear

transformations in each layer and Rectified Linear Unit as the activation functions to encode the

observation set into five summary statistics, which we then used as an embedding net with

NPE.

We applied ABC-SMC implemented in the Python package pyABC (Klinger, Rickert, and

Hasenauer 2018). For inference using single observations we used an adaptively weighted

Euclidean distance function with the root mean square deviation as the scale function. For

inference using a set of observations, we used the squared Euclidean distance as our distance

metric. We used 100 samples from the prior for initial calibration before the first round, and a
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maximum acceptance rate of either 10,000 or 100,000 for both single observations and

observation sets (i.e.10,000 single observations or 10,000 sets of 11 observations). For the

acceptance rate of 10,000, we started inference with 100 samples, had a maximum of 1,000

accepted samples per round, and a maximum of ten rounds. For the acceptance rate of

100,000, we started inference with 1,000 samples, had a maximum of 10,000 accepted samples

per round, and a maximum of ten rounds. The exact number of samples from the proposal

distribution during each round of sampling were adaptively determined based on the shape of

the current posterior distribution (Klinger and Hasenauer 2017). For inference of the posterior

for each observation, we performed multiple rounds of sampling until either we reached the

acceptance threshold ε <= 0.002 or ten rounds were performed.

We applied NPE implemented in the Python package sbi (Tejero-Cantero et al. 2020)

using a Masked Autoregressive Flow (MAF) (Papamakarios, Pavlakou, and Murray 2017) or a a

neural spline flow (NSF) (Durkan et al. 2019) as a conditional density estimator that learns an

amortized posterior density for single observations. We used either 10,000 or 100,000

simulations to train the network. To test the dependence of our results on the set of simulations

used to learn the posterior, we trained three independent amortized networks with different sets

of simulations generated from the prior and compared our resulting posterior distributions for

each observation.

3.5.4 Assessment of performance of each method with each model

To test each method, we simulated five populations for each combination of the following

CNV mutation rates and fitness effects: sC=0.001 and 𝛿C=10-5; sC=0.1 and 𝛿C=10-5; sC=0.001 and

𝛿C=10-7; sC=0.1 and 𝛿C=10-7, for both the Wright-Fisher model and the chemostat model,

resulting in 40 total simulated observations. We independently inferred the CNV fitness effect

and mutation rate for each simulated observation three times.
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We calculated the MAP estimate by first estimating a Gaussian kernel density estimate

(KDE) using SciPy (scipy.stats.gaussian_kde) (Virtanen et al. 2020) with at least 1,000

parameter combinations and their weights drawn from the posterior distribution. We then found

the maximum of the KDE (using scipy.optimize.minimize with the Nelder-Mead solver). We

calculated the 95% highest density intervals for the MAP estimate of each parameter using

pyABC (pyabc.visualization.credible.compute_credible_interval) (Klinger, Rickert, and

Hasenauer 2018).

We performed posterior predictive checks by simulating CNV dynamics using the MAP

estimate as well as 50 parameter values sampled from the posterior distribution. We calculated

root mean square error (RMSE) and correlation to measure agreement of the 50 posterior

predictions with the observation, and report the mean and 95% confidence intervals for these

measures. For inference on sets of observations, we calculated the RMSE and correlation

coefficient between the posterior predictions and each of the three held out observations, and

report the mean and 95% confidence intervals for these measures over all three held out

observations.

We calculated Akaike’s information criteria (AIC) using the standard formula

𝐴𝐼𝐶 =  − 2𝑙𝑜𝑔(𝑝(𝑦|θ )) +  2𝑘

where is the MAP estimate, is the number of inferred parameters, y is the observedθ 𝑘 = 2

data, and p is the inferred posterior distribution. We calculated Watanabe-Akaike information

criterion or widely applicable information criterion (WAIC) according to both commonly used

formulas:

𝑊𝐴𝐼𝐶1 =  − 2
𝑖=1

𝑛

∑ 𝑙𝑜𝑔 1
𝑆

𝑠=1

𝑆

∑ 𝑝(𝑦
𝑖
|θ𝑠)( ) + 2

𝑖=1

𝑛
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𝑊𝐴𝐼𝐶2 =  − 2
𝑖=1

𝑛

∑ 𝑙𝑜𝑔 1
𝑆
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where is the number of draws from the posterior distribution, is a sample from the posterior,𝑆 θ𝑠

and is the posterior sample variance.𝑉
𝑠=1
𝑆

3.5.6 Pairwise competitions

We isolated CNV-containing clones from the populations on the basis of fluorescence,

and performed pairwise competitions between each clone and an unlabeled ancestral (FY4)

strain. We also performed competitions between the ancestral GAP1 CNV reporter strain, with

and without barcodes. To perform the competitions, we grew fluorescent GAP1 CNV clones and

ancestral clones in glutamine-limited chemostats until they reached steady state (Lauer et al.

2018). We then mixed the fluorescent strains with the unlabeled ancestor in a ratio of

approximately 1:9, and performed competitions in the chemostats for 92 hours or about 16

generations, sampling approximately every 2-3 generations. For each time point, at least

100,000 cells were analyzed using an Accuri flow cytometer to determine the relative

abundance of each genotype. Previously, we established that the ancestral GAP1 CNV reporter

has no detectable fitness effect compared to the unlabeled ancestral strain (Lauer et al. 2018).

However, the GAP1 CNV reporter with barcodes does appear to have a slight fitness cost

associated with it, therefore, we took slightly different approaches to determine the selection

coefficient relative to the ancestral state depending on whether or not a GAP1 CNV containing

clone was barcoded. If a clone was not barcoded, we detemined relative fitness using linear

regression of the log-ratio of the frequency of the two genotypes against the number of elapsed

hours. If a clone was barcoded, relative fitness was computed using linear regression of the

log-ratio of the frequencies of the barcoded GAP1-CNV-containing clone and the unlabeled

ancestor, and the log-ratio of the frequencies of the unevolved barcoded GAP1 CNV reporter

93

https://paperpile.com/c/fnft5x/obtgD
https://paperpile.com/c/fnft5x/obtgD
https://paperpile.com/c/fnft5x/obtgD


ancestor to the unlabeled ancestor against the number of elapsed hours, adding an additional

interaction term for the evolved versus ancestral state. We converted relative fitness from per

hour to generation by dividing by the natural log of two.

3.5.7 Barcode sequencing

In our prior study, populations with lineage tracking barcodes and the GAP1 CNV

reporter were evolved in glutamine-limited chemostats (Lauer et al. 2018), and whole population

samples were periodically frozen in 15% glycerol. To extract DNA, we thawed pelleted cells

using centrifugation and extracted genomic DNA using a modified Hoffman-Winston protocol,

preceded by incubation with zymolyase at 37°C to enhance cell lysis (Hoffman and Winston

1987). We measured DNA quantity using a fluorometer, and used all DNA from each sample as

input to a sequential PCR protocol to amplify DNA barcodes which were then purified using a

Nucleospin PCR clean-up kit, as described previously(Levy et al. 2015; Lauer et al. 2018).

We measured fragment size with an Agilent TapeStation 2200 and performed qPCR to

determine the final library concentration. DNA libraries were sequenced using a paired-end 2 ×

150 bp protocol on an Illumina NovaSeq 6000 using an XP workflow. Standard metrics were

used to assess data quality (Q30 and %PF). We used the Bartender algorithm with UMI

handling to account for PCR duplicates and to cluster sequences with merging decisions based

solely on distance except in cases of low coverage (<500 reads/barcode), for which the default

cluster merging threshold was used [69]. Clusters with a size less than 4 or with high entropy

(>0.75 quality score) were discarded. We estimated the relative abundance of barcodes using

the number of unique reads supporting a cluster compared to total library size. Raw sequencing

data is available through the SRA, BioProject ID PRJNA767552.
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3.5.8 Detecting adaptive lineages in barcoded clonal populations

To detect spontaneous adaptive mutations in a barcoded clonal cell population that is evolved

for over time, we used a Python-based pipeline (Li and Sherlock, in prep;

https://github.com/FangfeiLi05/PyFitMut) based on a previously developed theoretical

framework (Levy et al., 2015). The pipeline identifies adaptive lineages and infers their fitness

effects and establishment time. In a barcoded population, a lineage refers to cells that share the

same DNA barcode. For each lineage in the barcoded population, beneficial mutations

continually occur at a total beneficial mutation rate Ub, with fitness effect s, which results in a

certain spectrum of fitness effects of mutations 𝜇(s). If a beneficial mutant survives random drift

and becomes large enough to grow deterministically (exponentially), we say that the mutation

carried by the mutant has established. Here, we use Wright fitness s, which is defined as

average number of additional t offspring of a cell per generation, that is, n(t) = n(0)·(1 + s) , with

n(t) being the total number of cells at generation t (can be non-integers). Briefly, for each

lineage, assuming that the lineage is adaptive (i.e., a lineage with a beneficial mutation occurred

and established), then estimates of the fitness effect and establishment time of each lineage are

made by random initialization, and the expected trajectory of each lineage is estimated and

compared to the measured trajectory. Fitness effect and establishment time estimates are

iteratively adjusted to better fit the observed data until an optimum is reached. At the same time,

the expected trajectory of the lineage is also estimated assuming that the lineage is neutral.

Finally, Bayesian inference is used to determine whether the lineage is adaptive or neutral. An

accurate estimation of the mean fitness is necessary to detect mutations and quantify their

fitness effects, but the mean fitness is a quantity that cannot be measured directly from the

evolution. Rather, it needs to be inferred through other variables. Previously, the mean fitness

was estimated by monitoring the decline of neutral lineages (Levy et al., 2015). However, this

method fails when there is an insufficient number of neutral lineages as a result of low
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sequencing read depth. Here, we instead estimate the mean mean fitness using an iterative

method. Specifically, we first initialize the mean fitness of the population as zero at each

sequencing time point, then we estimate the fitness effect and establishment time for adaptive

mutations, then we recalculate the mean fitness with the optimized fitness and establishment

time estimates, repeating the process for several iterations until the mean fitness converges. We

established the improved the accuracy of the method using simulated data (Li and Sherlock, in

prep).

3.6 Supplemental Material

Supplementary Files. Assessing inference method performance on single experiments.
This is a zip folder containing the results of inference on single observations. Each file in the folder is named with the
following naming convention: Model_Method_FlowType_SimulationBudget_InferenceSet_all.pdf. Each file contains
20 pages, each page corresponding to one of the 20 simulated synthetic observations. For NPE, each file
corresponds to one training set (each observation was evaluated on a single amortized posterior was used) each
page contains 6 panels, from top left to bottom right: a description of parameters used to generate the synthetic
observation, a plot of the synthetic observation, the marginal posterior distribution for CNV formation rate, a plot of
the posterior predictive check, the joint posterior distribution, and the marginal posterior distribution for CNV selection
coefficient. For ABC-SMC, each page contains 8 panels from top left to bottom right: a description of parameters
used to generate the synthetic observation, a plot of the synthetic observation, the effective sample size for each
iteration of inference, epsilon values for each iteration of inference, the marginal posterior distribution for CNV
formation rate for each iteration of inference, a plot of the posterior predictive check, the final joint posterior
distribution, and the marginal posterior distribution for CNV selection coefficient for each iteration of inference. When
the starting particle size = 100, the simulation budget was 10,000; when starting particle size = 1000, the simulation
budget was 100,000. Supplementary files can be found at OSF: https://osf.io/e9d5x/

96

https://osf.io/e9d5x/


Figure 3.S1. Interpolation for bc01 and bc02. Populations gln01-gln09 and bc01-bc02 have different timepoints -
the gln populations have 25 timepoints in total, whereas the bc populations have 32 timepoints in total. Of these, 12
of the timepoints are the same in both populations. To match the timepoints in the gln populations we interpolated
from the two nearest timepoints in the bc populations (using pandas.DataFrame.interpolate(‘values’)). This way, we
can use the same data (same timepoints) for inference for all 11 populations so that we can use the same amortized
NPE posterior to infer parameters for both gln populations and bc populations. Original bc data is shown as black
dots, the matched data, with interpolated timepoints, is shown as red crosses.
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Figure 3.S2. Performance assessment of NPE with MAF using single simulated synthetic observations. These
show the results of inference on five simulated synthetic observations generated using either the Wright-Fisher (WF)
or chemostat (Chemo) model (and inference performed with the same model) per combination of fitness effect sC and
mutation rate 𝛿C. Here we show the results of performing one training set with NPE with MAF using 100,000
simulations for training and using the same amortized network to infer a posterior for each replicate synthetic
observation. A) Percentage of true parameters within the 50% HDR. B) Distribution of widths of the fitness effect sC

95% highest density interval (HDI) calculated as the difference between the 97.5 percentile and 2.5 percentile, for
each inferred posterior distribution. C) Distribution of the number of orders of magnitude encompassed by the
mutation rate 𝛿 95% HDI, calculated as difference of the base 10 logarithms of the 97.5 percentile and 2.5 percentile,
for each inferred posterior distribution. D) Log ratio MAP estimate as compared to true parameters for sC and δC. Note
that each panel has a different y axis. E) Mean and 95% confidence interval for RMSE of 50 posterior predictions as
compared to the synthetic observation for which inference was performed. F) RMSE of posterior prediction generated
with MAP parameters as compared to the synthetic observation for which inference was performed. G) Mean and
95% confidence interval for correlation coefficient of 50 posterior predictions compared to the synthetic observation
for which inference was performed. H) Correlation coefficient of posterior prediction posterior prediction generated
with MAP parameters compared to the synthetic observation for which inference was performed.
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Figure 3.S3. NPE with the Wright-Fisher model performs as well or better than other combinations of model
and method. Results of inference on five simulated single synthetic observations generated using either the
Wright-Fisher (WF) or chemostat (Chemo) model (and inference performed with the same model) per combination of
fitness effect sC and mutation rate 𝛿C. Here we show the results of performing training with NPE with NSF using
100,000 simulations for training and using the same amortized network to infer a posterior for each replicate synthetic
observation, or ABC-SMC when the training budget was 10,000. A) RMSE (lower is better) of posterior prediction
generated with MAP parameters as compared to the synthetic observation on which inference was performed. B)
Correlation coefficient (higher is better) of posterior prediction generated with MAP parameters compared to the
synthetic observation on which inference was performed. C) Mean and 95% confidence interval for correlation
coefficient (higher is better) of 50 posterior predictions (sampled from the posterior distribution) compared to the
synthetic observation on which inference was performed.

Figure 3.S4. NPE and WF have the lowest information criteria. WAIC and AIC (lower is better) of models fitted on
single synthetic observations using either the Wright-Fisher (WF) or chemostat (Chemo) model and either ABC-SMC
or NPE for different combinations of fitness effect sC and mutation rate 𝛿C with simulation budgets of 10,000 or
100,000 simulations per inference procedure (facets). We were unable to complete ABC-SMC with the chemostat
model (red)  when the training budget was 100,000 within a reasonable time frame.
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Figure 3.S5. NPE performs similar to or better than ABC-SMC for eight additional parameter combinations.
The figure shows the results of inference on five simulated synthetic observations using the Wright-Fisher (WF)
model per combination of fitness effect sC and mutation rate 𝛿C. Simulations and inference were performed using the
same model. For NPE, each training set corresponds to an independently amortized posterior distribution trained on
a different set of 100,000 simulations, with which each synthetic observation was evaluated to produce a separate
posterior distribution. For ABC-SMC, each training set corresponds to independent inference procedures on each
observation with a maximum of 100,000 total simulations accepted for each inference procedure and a stopping
criteria of 10 iterations or ε <= 0.002. A) The percent of true parameters within the 50% or 95% HDR of the inferred
posterior distribution. Bar height shows the average of three training sets. B-C) Distribution of widths of 95% highest
density interval (HDI) of the posterior distribution of the fitness effect sC (B) and CNV mutation rate 𝛿C (C), calculated
as the difference between the 97.5 percentile and 2.5 percentile, for each inferred posterior distribution. D) Log-ratio
(relative error) of MAP estimate to true parameter. Note the different y-axis ranges. E) Mean and 95% confidence
interval for RMSE of 50 posterior predictions as compared to the synthetic observation for which inference was
performed. F) RMSE of posterior prediction generated with MAP parameters as compared to the synthetic
observation for which inference was performed. G) Mean and 95% confidence interval for correlation coefficient of 50
posterior predictions compared to the synthetic observation. H) Correlation coefficient of posterior prediction posterior
prediction generated with MAP parameters compared to the synthetic observation for which inference was performed.
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Figure 3.S6. Effect of simulation budget on relative error of MAP estimate and width of HDIs. For NPE,
amortized posteriors were estimated using either 10,000 or 100,000 simulations, with which each synthetic
observation was evaluated to produce a separate posterior distribution. For ABC-SMC, a posterior was independently
inferred for each observation with a maximum of 10,000 or 100,000 total simulations accepted and a stopping criteria
of 10 iterations or ε <= 0.002, whichever occurs first. The grey lines in (A, D) indicates a relative error of zero (i.e., no
difference between MAP parameters and true parameters). (D, E, F) We were unable to complete ABC-SMC with the
chemostat model (red) when the training budget was 100,000 within a reasonable time frame.
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Figure 3.S7. The cumulative number of simulations needed to estimate posterior distributions for multiple
observations. The x axis shows the number of replicate simulated synthetic observations for a combination of
parameters and the y axis shows the cumulative number of simulations needed to infer posteriors for an increasing
number of observations (see Overview of inference strategies for more details), for observations with different
combinations of CNV selection coefficient sC and CNV formation rate 𝛿C (A-D). Each facet represents a total
simulation budget for NPE, or the maximum number of accepted simulations for ABC-SMC. Since NPE uses
amortization, a single amortized network is trained with 10,000 or 100,000 simulations, and that network is then used
to infer posteriors for each observation (note that a single amortized network was used to infer posteriors for all
parameter combinations.) For ABC-SMC, each observation requires a separate inference procedure to be performed
individually, and not all generated simulations are accepted for posterior estimation; therefore, the number of
simulations used for a single observation may be more than the acceptance threshold, and the number of simulations
needed increases with the number of observations for which a posterior is inferred.
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Table 3.S1. Wall time to run one simulation. Running time for a single Wright-Fisher simulation or a single
chemostat simulation for each of the following parameter combinations on a 2019 MacBook Pro operating Mac OS
Catalina 10.15.7 with a 2.6 GHz 6-Core Intel Core i7 processor.

Model 𝛿C sC Wall time (seconds)

Wright-Fisher 0.1 10-5 0.0136

Chemostat 0.1 10-5 10.8608

Wright-Fisher 0.1 10-7 0.0099

Chemostat 0.1 10-7 11.2390

Wright-Fisher 0.001 10-5 0.0108

Chemostat 0.001 10-5 11.3547

Wright-Fisher 0.001 10-7 0.0086

Chemostat 0.001 10-7 10.6964
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Figure 3.S8. Results of inference on five simulated synthetic observations generated using either the Wright-Fisher
(WF) or chemostat (Chemo) model per combination of fitness effect sC and mutation rate 𝛿C. We performed inference
on each synthetic observation using both models. For NPE, each training set corresponds to an independent
amortized posterior trained with 100,000 simulations, with which each synthetic observation was evaluated. A)
Percentage of true parameters within the 50% HDR. The bar height shows the average of three training sets. B)
Percentage of true parameters within the 95% HDR. The bar height shows the average of three training sets.
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Figure 3.S9. A set of eleven simulated synthetic observations was generated from a Wright-Fisher model with CNV
selection coefficients sampled from an Gamma distribution where of fitness effects (DFE) (black curve) . Theα = 10
MAP DFEs (blue curves) were directly inferred using three different subsets of eight out of eleven synthetic
observations. We also inferred the selection coefficient for each observation in the set of eleven individually, and fit
Gamma distributions to sets of eight inferred selection coefficients (green curves). All inferences were performed with
NPE using the same amortized network to infer a posterior for each set of eight synthetic observations or each single
observation.
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Table 3.S2. Kullback–Leibler divergence for Gamma distributions fit from single inferred selection coefficients versus
the true underlying DFE, or for directly inferred Gamma distributions versus the true underlying DFE.

KL divergence:
Gamma fit from
single inferred sC

KL divergence: α
and directlyβ
inferred from set of
observations

Observation set name True α True β True 𝛿C

1359.8 572810.04 WF_shape1_scale0.001_mut5 1.0 0.001 1E-05

856459.8 200872.69 WF_shape1_scale0.001_mut5 1.0 0.001 1E-05

1338.0 644533.9 WF_shape1_scale0.001_mut5 1.0 0.001 1E-05

38967.7 664134.98 WF_shape1_scale0.001_mut7 1.0 0.001 1E-07

6522383.1 854560.75 WF_shape1_scale0.001_mut7 1.0 0.001 1E-07

38652.8 372597.74 WF_shape1_scale0.001_mut7 1.0 0.001 1E-07

233.8 1200.59 WF_shape1_scale0.1_mut5 1.0 0.1 1E-05

230.7 220.63 WF_shape1_scale0.1_mut5 1.0 0.1 1E-05

233.0 1161.7 WF_shape1_scale0.1_mut5 1.0 0.1 1E-05

9.4 5151.41 WF_shape1_scale0.1_mut7 1.0 0.1 1E-07

6.6 1255.33 WF_shape1_scale0.1_mut7 1.0 0.1 1E-07

21.7 1130.75 WF_shape1_scale0.1_mut7 1.0 0.1 1E-07

2079309.0 381627.51 WF_shape10_scale0.0001_mut
5

10.0 0.0001 1E-05

1719636.6 562084.78 WF_shape10_scale0.0001_mut
5

10.0 0.0001 1E-05

2125542.6 543314.78 WF_shape10_scale0.0001_mut
5

10.0 0.0001 1E-05

32299.9 1124713.46 WF_shape10_scale0.0001_mut
7

10.0 0.0001 1E-07

133767.3 818178.69 WF_shape10_scale0.0001_mut
7

10.0 0.0001 1E-07

51454.3 993824.56 WF_shape10_scale0.0001_mut
7

10.0 0.0001 1E-07

336.3 123.01 WF_shape10_scale0.01_mut5 10.0 0.01 1E-05

231.7 274.56 WF_shape10_scale0.01_mut5 10.0 0.01 1E-05

74.1 134.88 WF_shape10_scale0.01_mut5 10.0 0.01 1E-05

334.6 49.24 WF_shape10_scale0.01_mut7 10.0 0.01 1E-07

228.3 25.18 WF_shape10_scale0.01_mut7 10.0 0.01 1E-07

22.0 66.22 WF_shape10_scale0.01_mut7 10.0 0.01 1E-07

106



Figure 3.S10. Out-of-sample posterior predictive accuracy using root mean square error (A) or correlation (B) using
three held out observations when and are directly inferred from the other eight observations, for or 0α β α = 1 α = 1
(facets).

Figure 3.S11. Proportion of the population with a GAP1 CNV in the experimental observations (black) and in
posterior predictions using the MAP estimate shown in panels A and B with either the Wright-Fisher (WF) or
chemostat (Chemo) model. Inference was performed with all data up to generation 267 (WF ppc 267, Chemo ppc
267), or excluding data after generation 116 (WF ppc 116, Chemo ppc 116). Mutation rate and fitness effect of other
beneficial mutations set to 10-5 and 10-3, respectively.

107



Figure 3.S12. MAP predictions have lower error when inference is performed using only up to generation 116,
and are most accurate for the first 116 generations. MAP posterior prediction root mean square error (RMSE)
when inference was performed excluding data after generation 116 (left) or using all data up to generation 267 (right).
RMSE was calculated using either the first 116 generations, or using up to generation 267 (x-axis).

Figure 3.S13. The inferred MAP estimate and 95% highest density intervals (HDI) for fitness effect sC and formation
rate 𝛿C, using the (A) Wright-Fisher (WF) or (B) chemostat (Chemo) model and NPE for each experimental population
from Lauer et al. (2018). Inference was either performed with data up to generation 116 or with all data, up to
generation 267 (facets). Each training set corresponds to three independent amortized posterior distributions
estimated with 100,000 simulations.
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Figure 3.S14. Sensitivity analysis. GAP1 CNV formation rate and selection coefficient inferred using NPE with the
Wright-Fisher model does not change considerably when other beneficial mutations have different selection
coefficients sB and formation rates 𝛿B, except when both sB and 𝛿B are high (purple).
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Figure 3.S15. Mean and 95% confidence interval for RMSE (A) and correlation (B) of 50 posterior predictions
compared to empirical observations up to generation 116, using posterior distributions inferred when other beneficial
mutations have different selection coefficients sB and formation rates 𝛿B.
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Chapter 4: Effects of diverse CNV structures on genetic interactions and

mRNA expression

This chapter is based on "Effects of diverse CNV structures on genetic interactions and mRNA

expression” by Grace Avecilla, Julia Matthews, Elodie Caudal, Joseph Schacherer, and David

Gresham, which is in preparation and will be submitted to a peer-reviewed journal for

publication.

I performed transposon mutagenesis experiments with assistance from Elodie Caudal, assisted

Julia Matthews in performing RNAseq, and performed all other new experiments. I performed all

analysis, generated all figures and tables, and wrote the manuscript text with editing from David

Gresham.

4.1 Abstract

Copy number variants (CNVs), comprising duplications and deletions of existing

genomic content, contribute to rapid evolutionary adaptation, but can also confer deleterious

effects, and cause disease. Whereas the effects of amplifying individual genes or whole

chromosomes (i.e., aneuploidy) have been studied extensively, much less is known about the

genetic and functional effects of CNVs of varying sizes and structures. Here, we investigated

seven Saccharomyces cerevisiae strains isolated from evolution experiments in

glutamine-limited chemostats that have CNVs of variable structures all of which contain multiple

copies of the gene GAP1. We find that despite being beneficial in glutamine-limited chemostats,

CNVs result in decreased fitness compared with the euploid ancestor in rich media. We used

transposon mutagenesis to investigate mutational tolerance and genetic interactions with CNVs.

We find that CNVs confer mutational tolerance to essential genes and result in new genetic

interactions. Some, but not all CNV strains have more insertions than the euploid in genes
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related to translation, and fewer insertions in genes related to mitochondrial function. We

profiled the transcriptome of each CNV, and find that although amplified genes have increased

expression, dosage compensation may be occurring in some strains. We find that CNV strains

do not exhibit previously described transcriptional signatures of aneuploidy, the environmental

stress response or common aneuploidy gene-expression. Instead, CNV strains tend to

downregulate genes involved in cellular respiration, nucleoside biosynthetic processes, and

small molecule metabolism, and upregulate genes involved in transposition, nucleic acid

metabolic processes, and siderophore transport, though to different degrees in each strain. Our

study reveals the extent to which local and distal mutational tolerance is modulated by CNVs

with implications for genome evolution and diseases with common CNVs, such as cancer.

4.2 Introduction

Evolution occurs through changes to an organism’s genome and selection on the

functional effects of these changes. Genomes can evolve in many ways, including through

single nucleotide changes, structural rearrangements, and deletion and duplication of segments

of DNA. Duplication of segments of DNA, a type of copy number variation (CNV), is a major

force in rapid adaptive evolution and genome evolution. In the short term, amplification of genes

can result in increased expression which provides a selective advantage facilitating rapid

adaptive evolution, (Kondrashov 2012; Myhre et al. 2013). In the long term, amplification of

genes may relax selective constraints, allowing accumulation of mutations on the additional

gene copies and gene evolution through subfunctionalization or neofunctionalization (Freeling,

Scanlon, and Fowler 2015; Innan and Kondrashov 2010; Ohno 1970). Rapid adaptation through

gene amplification is prevalent throughout the tree of life. In particular, gene amplification has

been shown to mediate rapid adaptation to a variety of selective pressures from nutrient

limitation to antibiotics in natural and experimental populations of microbes (Lauer et al. 2018;
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A. M. Selmecki et al. 2009; Todd and Selmecki 2020; Hong and Gresham 2014b; Dhami,

Hartwig, and Fukami 2016; Nair et al. 2008; Pränting and Andersson 2011; Paulander,

Andersson, and Maisnier-Patin 2010; Gresham et al. 2008). Gene amplification is also common

in cancers, and can promote tumorigenesis (Ben-David and Amon 2020). Oncogene

amplification confers enhanced proliferation properties to cells driving their aberrant growth.

Thus, understanding the evolutionary, genetic, and functional consequences of CNVs is of

central importance. The budding yeast, Saccharomyces cerevisiae, has been extensively used

as a model to study the effects of amplifying genes on cellular state, fitness, and genetics.

Copy number variants can range from small duplications and deletions to the gain or

loss of whole chromosomes, known as aneuploidy. Previous studies have investigated the effect

of amplifying individual genes primarily using plasmid libraries with native or inducible promoters

(Moriya 2015). These studies have found that in commonly used laboratory strains around

10-20% of genes are deleterious when overexpressed and 0-5% are beneficial (Ascencio et al.

2021; Sopko et al. 2006; Arita et al. 2021; Douglas et al. 2012).  These effects are dependent on

genetic background as a recent study found significant variation in the number of genes that are

deleterious when overexpressed in 15 genetically diverse yeast lineages (Robinson et al. 2021).

Fitness effects of gene amplification tend to be dependent on both the particular gene amplified

and the environmental context, though most amplified genes are neutral regardless of

environment (Ascencio et al. 2021; Payen et al. 2016). Amongst these studies, there is

conflicting evidence for the Dosage Balance hypothesis hypothesis, which predicts that genes

involved in complexes or with many interactions are more likely to be deleterious when

overexpressed due to stoichiometric imbalances (Birchler and Veitia 2012; Rice and McLysaght

2017b); some studies find that genes that are deleterious when overexpressed are enriched for

protein complexes and protein interactions (Robinson et al. 2021; Makanae et al. 2013),

whereas others studies do not (Ascencio et al. 2021; Sopko et al. 2006; Arita et al. 2021). Single
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gene overexpression libraries have also been used to identify synthetic dosage lethal

interactions with gene deletions (Douglas et al. 2012; Sopko et al. 2006; C. Liu et al. 2009) in

which an overexpressed gene is deleterious in the background of a gene knock out.

Aneuploidy is common in strains of yeast that are not laboratory adapted (Peter et al.

2018; Hose et al. 2015; Gallone et al. 2016; Y. O. Zhu, Sherlock, and Petrov 2016; Scopel et al.

2021), and these aneuploids grow similarly to their euploid counterparts (Hose et al. 2015;

Gasch et al. 2016). Aneuploids also frequently arise in evolution experiments and are

associated with increased fitness (Sunshine et al. 2015; Lauer et al. 2018; Hong and Gresham

2014b; Rancati et al. 2008; Yona et al. 2012; Gresham et al. 2008). However, these adaptive

aneuploids may exhibit antagonistic pleiotropy such that they are deleterious in other

environments (Sunshine et al. 2015; Linder et al. 2017). Seminal studies of one laboratory

strain, W303, found that aneuploids grow more slowly than euploids, regardless of karyotype

(Torres et al. 2007; Sheltzer et al. 2012; Beach et al. 2017), exhibit a transcriptional signature

characteristic of the yeast environmental stress response (ESR) (Torres et al. 2007; Sheltzer et

al. 2012), and result in a variety of cellular stresses, including proteotoxic, metabolic, and mitotic

stress (reviewed in (J. Zhu et al. 2018)). These effects may also be background dependent as a

recent study mapped differences in aneuploidy tolerance between W303 and wild yeast strains

to a single gene, SSD1, which has a truncating mutation in W303 (Hose et al. 2020). SSD1 is a

RNA-binding translational regulator, whose targets include mitochondrial transcripts. Loss of

SSD1 function results in defects in mitochondrial function and proteostasis that enhance

sensitivity to aneuploidy (Hose et al. 2020). In addition to observing different fitness effects,

studies of aneuploids in different genetic backgrounds have found differing results in

transcriptomic dosage compensation, ESR , and proteotoxic stress (Muenzner et al., n.d.; Torres

et al. 2007; Pavelka et al. 2010; Larrimore et al. 2020; Dephoure et al. 2014; Hose et al. 2015;

Gasch et al. 2016; J. Zhu et al. 2018).
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Whereas numerous studies have investigated the effects of single gene amplifications

and aneuploidy, little is known about the effects of CNVs that vary in size and can have complex

structures. One study sought to study the fitness effects of a diverse set of synthetic amplicons

extending from the telomere and ranging in size from 0.4 to 1,000 kb across the genome in

diploid yeast and measured their fitness in three conditions (Sunshine et al. 2015). Through

comparison to single-gene amplifications (Payen et al. 2016) they found that the distribution of

fitness effects for telomeric amplicons was broader than that of single gene amplifications.

Notably, they also found that, of the telomere amplified regions that affected fitness, 94% had

condition-dependent effects. However, much is still unknown if there are common fitness effects,

genetic interactions, or transcriptomic states associated with CNVs more generally.

In this study, we investigated seven strains containing CNVs with variable structures that

all contain the gene GAP1, that were previously isolated from evolution experiments in

glutamine-limited chemostats (Lauer et al. 2018). We found that despite having fitness greater

than or equal to the ancestral euploid in glutamine-limited chemostats, most CNV-containing

lineages have fitness defects in rich media with galactose as a carbon source. We used

transposon mutagenesis to investigate genetic interactions with CNVs, and found both common

and strain specific interactions. We investigated how CNVs alter the transcriptome, and found

that while amplified genes do have increased mRNA expression, some strains appear to exhibit

dosage compensation. We did not observe previously described transcriptional signatures of

aneuploidy in CNV strains; instead, we find that CNV-containing strains tend to have decreased

expression of genes involved in respiration, nucleoside biosynthetic processes, and small

molecule metabolism, and increased expression of genes involved in transposition, nucleic acid

metabolic processes, and siderophore transport. Taken together, our experiments suggest there

are both common and strain specific interactions and transcriptional responses that affect

fitness in yeast with CNVs.
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4.3 Results

4.3.1 GAP1 CNVs confer variable fitness effects

Previously, we performed experimental evolution using the yeast Saccharomyces

cerevisiae in glutamine-limited chemostats for approximately 270 generations (Lauer et al.

2018). The yeast strain (a haploid derivative of S288c) used to inoculate the evolution

experiments contained a fluorescent CNV reporter adjacent to the general amino acid permease

gene, GAP1. We isolated clones from the evolution experiment with GAP1 CNVs on the basis of

increased fluorescence. Using whole genome sequencing and pulsed-field gel electrophoresis,

we defined the structure of the GAP1 CNVs (Lauer et al. 2018). A subset of representative CNV

strains, as well as the euploid GAP1 CNV reporter ancestral strain, were used in this study

(Figure 4.1A; Table 4.S1). The CNV strains range in GAP1 copy number from two (aneu), to

three (trip1, trip2, trip3, trip4, iso), to four (quad) copies; in the number of amplified genes

ranging from 18 to 334; and in the total amount of amplified DNA from ~103,000 to ~670,000

additional nucleotides. The CNV strains have a variety of structures, including an aneuploid

(aneu), inverse triplications characteristic of origin dependent inverse triplication (ODIRA; trip1,

trip2, trip3, trip4), four copies with inversions (quad), and an isochromosome (iso) comprising a

centromere and mirror image of the short arm of chromosome XI. In addition to CNVs, each

strain contains a small number of unique nucleotide variants compared to the ancestor (Table

4.S1).

All CNV strains have fitness greater than or equal to the ancestral euploid strain in the

glutamine-limited environment in which they evolved (Figure 4.1B). However, the CNV strains

grow slower than the euploid strain in a different environment: yeast-peptone-galactose (YPGal)

batch culture (Figure 1C). The fitness benefit in the environment in which they evolved and the

fitness deficit in the alternative environment differ between strains. Fitness benefits and costs do
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not correlate with the number of additional bases or the number of open reading frames in the

CNV region (Figure 4.S1).

Figure 4.1. Strains with GAP1 CNVs differ in structure and fitness. A) We previously evolved a euploid S.
cerevisiae strain in glutamine-limited chemostats and isolated seven strains that have CNVs on Chromosome XI that
include GAP1. The hypothesized structure (Lauer et al. 2018) of each GAP1 CNV is diagrammed; the amplified
region is shown as a colored block with arrows. Arrows pointing right represent copies that maintain their original
orientation, whereas arrows pointing left represent copies that are inverted. The number of genes amplified and the
approximate number of additional bases (quantified as the product of the copy number and size of the amplified CNV
region) are annotated. B) The fitness of evolved strains containing GAP1 CNVs was determined by pairwise
competition experiments with a nonfluorescent reference strain in glutamine-limited chemostats. Error bars are 95%
confidence intervals for the slope of the linear regression. C) Average and standard deviation (error bars) growth rate
relative to the ancestral, euploid strain in YPGal batch culture. Horizontal black lines in B and C denote the ancestral
euploid fitness.

4.3.2 Transposon mutagenesis reveals tolerance to mutation

We sought to investigate the genetic impact of CNVs in a high-throughput manner.

Previous studies using transposon mutagenesis in bacteria and yeast have shown that

transposon insertion density reflects tolerance to mutation and the is an efficient means of

identifying genomic regions essential for cell survival in a specific environment or genetic

background (Michel et al. 2017; Guo et al. 2013; Grech et al. 2019; Segal et al. 2018; Gale et al.

2020; Levitan et al. 2020). We generated Hermes insertion libraries in each CNV strain and in

117

https://paperpile.com/c/fnft5x/obtgD
https://paperpile.com/c/fnft5x/ybhXR+VCEwp+oACex+Kvjao+D24hH+oHG5A
https://paperpile.com/c/fnft5x/ybhXR+VCEwp+oACex+Kvjao+D24hH+oHG5A


two independent replicates of the ancestral euploid strain using modifications of published

methods (Gangadharan et al. 2010; Caudal et al. 2021) (Figure 4.2A; Methods). Briefly,

Hermes transposition was induced in YP Galactose (YPGal) media using batch cultures

undergoing serial transfer, and transposition events were selected using an antibiotic marker.

Insertion sites were identified by targeted PCR, followed by library preparation and deep

sequencing (Methods). Unique insertion sites and the number of reads per insertion site were

identified using a custom bioinformatic pipeline (Methods). As our sequencing and analysis

pipeline cannot differentiate sequence reads that result from unique priming events from PCR

duplicates we quantified the number of unique insertion sites per gene, unless otherwise noted.

The nine libraries exhibited variation in the number of unique insertion sites which scaled with

the total number of reads sequenced (Figure 4.S2; Table 4.S2). To normalize for differences in

sequencing depth, we determined the number of insertions per million reads for analyses

(Methods).

We compared our transposon insertion data to a list of essential genes generated in

YPD (Winzeler et al. 1999), and to relative fitness measurements of genes grown on YPGal

(Costanzo et al. 2021), that were defined using complete open reading frame deletions. In all

strains, essential genes have fewer insertions than non-essential genes (Figure 4.S3), and that

conditionally essential genes (i.e. GAL genes) are depleted in insertions, confirming that

transposon insertion density is a reliable predictor of sequence tolerance to disruptive mutation

in CNV strains.

4.3.3 Gene amplification increases mutational target size

We investigated how gene amplification affects insertion density by considering only

coding sequences (which we refer to as genes) within the CNV region for each CNV strain, and

comparing insertion density with all genes on chromosome XI in the euploid replicates. We find

that in CNV strains, amplified genes have a higher insertion frequency than in the euploid
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(Welch’s two sample t-test, p<0.0001), consistent with increased target size resulting in

increased mutation frequency. Essential genes (Winzeler et al. 1999) have significantly fewer

insertions than non-essential genes in the euploid strain and in unamplified genes in the CNV

strains (Figure 4.S4A, Welch’s two sample t-test, p<0.0001). By contrast, no difference is

observed in mutation frequency between amplified essential and non-essential genes in the

CNV strains (Welch’s two sample t-test, p>0.01) (Figure 4.2B). Using regression analysis, we

observed that the mean number of insertions in a gene in the euploid strains predicts the

number of insertions in a CNV strain, but the slope of the regression line is less than that

expected on the basis of copy number (Figure 4.2C). This is likely due to a compositional data

effect, as the slope of regression performed on unamplified genes in most CNV strains is slightly

less than one (Figure 4.S4B).

The number of insertions in some amplified genes is not well predicted by the model

(i.e., they have large residuals); when the number of insertions is higher than the predicted

value, this may indicate a gene that is particularly sensitive to amplification (Figure 4.2C). For

example, one such gene, UTH1, has been shown to lead to cell death when overexpressed in

the W303 genetic background (Camougrand et al. 2003). UTH1 is a mitochondrial protein

involved in regulating both mitochondrial biogenesis and degradation (Camougrand et al. 2004),

and is regulated by SSD1, whose loss of function is associated with fitness defects in aneuploid

strains of W303 (Hose et al. 2020). Interestingly, though UTH1 is amplified in all CNV strains

except trip1, it only has large residuals in four of these strains (Figure 4.2C). Conversely,

significantly reduced insertional frequency may reflect an advantage due to increased copy

number. For example, YKR005C is depleted in expected mutation frequency in two strains.
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Figure 4.2. Profiling mutation tolerance using insertional mutagenesis. A) Plasmids containing the hermes
transposase regulated by the GALS (truncated GAL1) promoter and a hygromycin resistance gene flanked by the
hermes terminal inverted repeats (TIR) were transformed into each yeast strain. Upon addition of galactose, the
transposase is expressed, and the hygromycin resistance gene flanked by the TIRs is excised from the plasmid and
inserted in the yeast genome. DNA is extracted, digested with restriction enzymes, and circularized. Insertion sites
are identified by inverse PCR and amplicon sequencing. Mutational tolerance is inferred by the number of unique
insertion sites at a given region of the genome. B) Boxplots of unique insertion sites per gene, with individual genes
plotted as points, for essential (red) and non-essential (blue) genes (Winzeler et al. 1999). All genes on Chromosome
XI are displayed for the euploid replicates, eu_1 and eu_2. For the CNV strains, only genes that are amplified within
the CNV region are shown. P-values are indicated by the following: ns: p > 0.01; ****: p < 0.0001. C) Linear
regression models fit to the normalized number of insertions per amplified gene in CNV strains (y-axis) and the mean
number of normalized insertions per gene in the euploid replicates (x-axis). Genes with residuals more than two
standard deviations away from the mean residual value are highlighted in red.
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4.3.4 CNVs result in common and strain specific genetic interactions

Genes that have no insertions events may be essential and intolerant of mutation, or

may have no insertions due to chance. To establish a genome-wide view of differences in

mutational tolerance between CNV strains and the euploid strain, we first identified 327 genes

that have no insertions in either replicate of the euploid strain. Of these, 136 (42%) have

previously been annotated as essential or as having low fitness in galactose. We define this set

of genes as “euploid intolerant”. Many of these had insertions in one or more of the CNV strains

and seven euploid intolerant genes had insertions in all CNV strains (Figure 4.3A). These

seven genes have all been previously annotated as essential or as having low fitness in

galactose. Although four of these genes were amplified in one or more  CNV strains, none are

amplified in all CNV strains (Figure 4.3A), suggesting that mutational tolerance in  the CNV

strains is not simply attributable to increased target size. We also looked for genes that had no

insertions in any CNV strain but did have insertions in both replicates of the euploid strain: we

identified one gene, RRN10. However, it only had one insertion in eu_1 and two insertions in

eu_2, so this is unlikely to be meaningful. This suggests that CNVs do not result in novel genetic

vulnerabilities.

To quantitatively assess genetic interactions between the CNV and all other genes

throughout the genome we quantified differential insertion frequency, using the number of

unique insertion sites per coding sequence, between each CNV strain and the euploid

replicates. To assess the global trend we performed gene set enrichment analysis (GSEA) using

the ranked list of fold change in number of insertions (Figure 4.3B). We found that three strains,

aneu, quad, and trip2, have an increased mutational tolerance in genes annotated with terms

related to translation and mitochondrial gene expression, and decreased mutational tolerance

for genes with functions in the aerobic electron transport chain. We also observed enrichment

for terms that are unique to individual strains. For example, the isochromosome (iso) exhibits
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decreased tolerance for mutations in genes with functions in the  mitotic cell cycle and nuclear

division (Figure 4.3B).

We identified individual genes with differences in insertional tolerance in CNV strains

compared to the ancestral euploid strain (Figure 4.3C). We see a similar trend as in the gene

set enrichment analysis. The aneu, quad, and trip2 CNV strains all have significantly more

insertions than the euploid ancestor in BMH1, which is involved in many processes including

regulation of mitochondrial-nuclear signaling (Z. Liu et al. 2003), carbon metabolism (Dombek,

Kacherovsky, and Young 2004), as well as transcription and chromatin organization (Kumar

2017; Jain, Janning, and Neumann 2021). These strains also have significantly fewer insertions

in genes encoded by the mitochondrial genome, including COX1. Most genes that are

significant in one strain tend to have similar trends in other CNV strains, with few exceptions

(Figure 4.S5A).

Differences in insertion tolerance in genes that are not contained within the CNV reflect

differential genetic interactions. To confirm this we generated complete deletions of the coding

sequence of BMH1 in all strains except trip1, for which we could not obtain a transformant, and

measured growth rates of the single and double mutants in YPGal (Figure 4.3D). We find that

deletion of BMH1 does not significantly affect growth rate in aneu, quad, and trip2, but does

result in reduced growth rate in other strains. We calculated the genetic interaction of BMH1

with the CNV for each strain (Mani et al. 2008), and confirmed positive interactions for these

three strains, consistent with transposon insertion profiles (Figure 4.3E, Figure 4.S5B).
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Figure 4.3. CNV strains have common and allele specific genetic interactions. A) Seven genes have no
insertions in either replicate of the euploid strain, whereas insertions are identified in these genes in all CNV strains.
The gray line represents the median insertions per million per gene across all strains. Numbers indicate the copy
number if a gene is contained within the CNV. B) Enriched GO terms identified using Gene Set Enrichment Analysis
(GSEA). GSEA was applied to a ranked gene list based on log2 fold changes obtained in differential analysis
comparing each CNV insertion profile to the euploid insertion profiles, with the false discovery rate (FDR) for enriched
terms set to 0.05. Terms with adjusted p-value < 0.05 are shown (circle size). Positive enrichment scores (red)
indicate functions that have increased insertions in the CNV strain. Negative enrichment scores (blue) indicate
functions that have decreased insertion frequencies in the CNV strain. C) Significant genes (p.adjust<0.05) from
differential analysis comparing each CNV insertion profile to the euploid insertion profiles. Positive log2 Fold Change
values have more insertions in CNV strains than euploid strains, whereas negative log2 Fold Change values indicate
genes with fewer insertions in the CNV strain than euploid strains. If a gene is amplified the copy number is
annotated. D) Average and standard deviation (error bars) of growth rate relative to the ancestral, euploid strain in
YPGal batch culture. P-values from two-sample t-test are indicated by the following: ns: not significant; *: p < 0.05; **:
p < 0.01; ***: p < 0.001; ****: p < 0.0001. E) Additive genetic interaction (epsilon = double - single*single) for CNV and
BMH1 double mutants, calculated from growth rates shown in (D).

4.3.5 Amplified genes have increased RNA expression

To test how gene expression impacts mutational tolerance in CNV lineages we

performed RNAseq in triplicate on each euploid and CNV strain growing in YPGal, and

quantified gene expression in each CNV strain relative to the euploid ancestor. First, we

investigated genes encoded on chromosome XI for evidence of dosage compensation within the
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CNV region. We found that in each CNV strain, amplified genes have significantly higher mRNA

expression than in the euploid ancestor (t-test p < 0.0001, Figure 4.4A), and expression in

amplified genes is highly correlated with euploid expression (Figure 4.S6). However, for the

aneu, trip3, iso, and quad, the mean increase in mRNA expression is less than the expectation

based on CNV copy number (Figure 4.4B, Table 4.S3, 95% CI), suggesting that dosage

compensation may operate in these strains. Genes on chromosome XI that are not amplified do

not differ significantly from the euploid strain in gene expression (t-test p > 0.05), with the

exception of trip1 and the isochromosome. Trip1 appears to have increased expression of

genes that are on the right arm of chromosome XI but not within the CNV itself, which may be

caused by transcriptional neighborhood effects of that particular CNV structure (Figure 4.4A,

Table 4.S3) (Brooks et al. 2022). The isochromosome appears to have increased expression

extending past the left boundary to the centromere, which could be caused by transcriptional

neighborhood effects, although we cannot rule out misidentification of the CNV boundary

(Figure 4.4A, Table 4.S3).

To test the relationship between gene expression and mutational tolerance we compared

the log2 fold change of transposon insertion frequency with the log2 fold change for mRNA

expression for each CNV strain compared to the euploid strain. If CNV burden is related to a

general cost associated with increased  expression of all amplified genes, or the “mass action”

of the CNV, we expect that the fold change in transposon insertions would positively correlate

with the fold change in mRNA expression. Indeed, we observe a positive relationship between

the increase in insertion frequency and  increase in mRNA expression for the aneuploid strain

(Pearson’s r=0.13, p=0.0237), but no correlation in any of the other strains (p > 0.05) (Figure

4.4C). This supports the hypothesis that adverse effects of CNVs do not stem from the “mass

action” of increased expression of all genes in the CNV, but from a few critical genes that are

deleterious even when slightly overexpressed (Bonney, Moriya, and Amon 2015).
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Figure 4.4. Amplified genes result in increasedmRNA expression but are not associated with increased
mutation frequency. A) Replicate averaged log2 fold change of all genes on chromosome XI, ordered as on the
chromosome, in each CNV strain compared to the euploid ancestor. Black lines denote CNV boundaries. B)
Replicate averaged log2 fold change mRNA expression compared to the euploid for genes that are amplified in each
CNV strain. Black lines indicate expected log2 fold change based on CNV copy number. C) Log2 fold change of
mutational frequency within the CNV for each strain relative to the euploid CNV mRNA expression relative to the
euploid for all amplified genes in each CNV strain.

4.3.6 CNV strains do not exhibit transcriptional signatures of aneuploidy

Previous studies of a laboratory strain of yeast (W303) report a transcriptomic signature

of aneuploidy independent of which chromosome is duplicated (Torres et al. 2007; Terhorst et al.

2020), that is characteristic of the yeast environmental stress response (ESR) (Gasch et al.

2000) and comprises 868 genes. The expression of genes in the ESR are correlated with

growth rate (Brauer et al. 2008) and several studies have shown that strains with higher

degrees of aneuploidy (i.e. more additional base pairs) exhibit lower growth rates and stronger

ESR (Torres et al. 2007; Terhorst et al. 2020). We compared the ESR gene expression profiles
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in our CNV strains and a previous study which identified the ESR as a response to aneuploidy

(Torres et al. 2007). Surprisingly, we find a significant negative correlation for all strains except

trip3, with the strength of the anticorrelation decreasing as growth rate increases (Figure 4.5A,

Figure 4.S7). We ruled out that this was due to aberrant behavior of the euploid strain. Torres et

al. also profiled the gene expression of aneuploid yeast while controlling for growth rate by

growth in a chemostat; ESR gene expression in this data set is significantly positively correlated

with for all CNV strains except trip3, with the strength of the correlation decreasing as growth

rate increases (Figure 4.5B, Figure 4.S8).

Figure 4.5. Global gene expression signatures in CNV strains are distinct from aneuploidy effects. We
compared the mean growth rate of CNV strains in YPGal to A) the pearson correlation between log2 fold change in
mRNA expression in CNV strains vs euploids in this study and the mean log2 fold change in mRNA expression in for
aneuploids vs euploids grown in batch culture in Torres et al. 2007 for 798 ESR genes for which we have complete
data, B) pearson correlation between log2 fold change in mRNA expression in CNV strains vs euploids in this study
and the mean log2 fold change in mRNA expression in for aneuploids vs euploids grown in growth-rate controlled
chemostats in Torres et al. 2007 for 801 ESR genes for which we had complete data, C) pearson correlation between
log2 fold change in mRNA expression in CNV strains vs euploids in this study and the log2 fold change in mRNA
expression in for aneuploids vs euploids in Tsai et al. 2019 for the 215 CAGE genes for which we had complete data.
D) Log2 mRNA expression for 436 genes (rows) significantly differentially expressed in at least one CNV strain
versus the euploid strain. E) Data corresponding to genes from (D) from Torres et al. 2007 aneuploids in batch, Torres
et al. 2007 aneuploids in chemostat, Tsai et al. 2019, Hose et al. 2020 wild aneuploid strains, and Hose et al. wild
aneuploid strains with ssd1 deleted. The former four are compared to closely related euploids, the aneuploids with
ssd1 deletions are compared to their wild-type aneuploid counterparts.
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Recently, a common aneuploidy gene-expression (CAGE) signature across yeast

aneuploid for many different chromosomes that is similar to the transcriptional response to

hypo-osmotic shock was defined in a derivative of the S228c genetic background (Tsai et al.

2019). With the exception of trip3, expression of CAGE genes is moderately positively

correlated between Tsai et al. and our CNV strains (Figure 4.5C, Figure 4.S9). Interestingly,

expression of CAGE genes in Tsai et al. is also positively correlated with expression of CAGE

genes in growth rate controlled aneuploid strains (Figure 4.S10).

4.3.7 Genome-wide gene expression effects of CNVs

From our differential analysis, we identified 436 genes, 341 of which are not located on

chromosome XI, that had significantly altered expression in one or more CNV strains compared

to the euploid strain (log2 fold change > 1.5, Benjamini and Hochberg adjusted p < 0.05, Figure

4.5D). Of the significant genes, 73 are ESR genes and 13 are in the CAGE signature. These

genes have two major clusters; genes that have decreased expression are involved in cellular

respiration, nucleoside biosynthetic processes, and small molecule metabolism, and genes that

have increased expression are involved in transposition, nucleic acid metabolic processes, and

siderophore transport (hypergeometric test p < 0.0001). Similarly, wild yeast strains that are

tolerant of aneuploidy exhibit down-regulation of mitochondrial ribosomal proteins and genes

involved in respiration, and upregulation of oxidoreductases (Hose et al. 2015). The clusters and

enrichment patterns remain even when excluding genes on chromosome 11. Additionally, we

performed GSEA on the log2 fold change for genes in each CNV strain compared to the

euploid. Generally, we see similar enrichment as in Figure 4.5D, with some variation in

particular terms between strains.

There are nine genes that have significantly different expression than the euploid in all

strains and are not on chromosome XI (Figure 4.S11). Three genes have increased expression:

two are retrotransposons and the third, RGI2, is a protein of unknown function that is involved in
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energy metabolism under respiratory conditions (Domitrovic et al. 2010). Repressed genes

include the paralogs MRH1 and YRO2, both of which localize to the mitochondria (Jörg

Reinders et al. 2007; Joerg Reinders et al. 2006); OPT2, an oligopeptide transporter (Wiles et

al. 2006); YGP1, a cell wall-related secretory glycoprotein (Destruelle, Holzer, and Klionsky

1994); and two proteins of unknown function, PNS1 and RTC3.

We compared the genes that are significantly differentially expressed in one or more

CNV strains to the data generated from aneuploid strains in Torres 2007, Tsai 2019, and Hose

2020 (Figure 4.5E). As with comparison to the ESR and CAGE signatures, we see that our

strains are more similar to the aneuploids grown in chemostats in Torres et al. 2007 and the

aneuploids in Tsai 2019 than the aneuploids growing in batch culture and exhibiting the ESR.

Hose et al. compared gene expression in strains aneuploid wild yeast that are tolerant of CNV

to their euploid counterparts and to aneuploid wild yeast with SSD1 deleted. The gene

expression profiles of the wild-type aneuploid wild yeast more closely resemble our strains than

the aneuploid SSD1 mutants, which are more similar to the aneuploids grown in batch culture in

Torres 2007 (Figure 4.5E).

4.3.8 Low fitness is associated with mitochondrial dysfunction

Common genetic interactions and mRNA expression signature in CNV strains appear to

be linked to mitochondrial function and translation, with strains that exhibit stronger profiles

having lower fitness. BMH1, which exhibits positive genetic interactions in most CNV strains

(Figure 4.3E), is a negative regulator of retrograde signaling (da Cunha, Torelli, and

Kowaltowski 2015). We hypothesized that this interaction might occur if mitochondria are

dysfunctional and therefore retrograde signaling is activated. However, CIT2 and DLD3, which

are robustly upregulated in the canonical retrograde response (da Cunha, Torelli, and
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Kowaltowski 2015), do not have significantly different expression from the euploid in any CNV

strain.

Yeast simultaneously ferment and respire galactose (Fendt and Sauer 2010). Therefore,

to test whether CNV lineages have impaired mitochondrial function we tested growth in the

presence of carbonyl-cyanide 3-chlorophenylhydrazone (CCCP), a mitochondrial uncoupling

agent. We found that treating with CCCP nearly abolished growth in two of the three strains that

showed strongest signals differential mitochondrial function, trip2 and quad, whereas the

reduction in growth in other strains was similar to that of the euploid (Figure 4.6A).

Figure 4.6. Growth response to treatment with CCCP. A) Average and standard deviation (error bars) carrying
capacity (i.e. maximum optical density) relative to the ancestral, euploid strain in YPGal batch culture in either control
condition or with 25 µM CCCP.

4.4 Discussion

In this study, we sought to understand the effect of diverse CNVs on genetic interactions

and transcriptomic state. Though investigations of evolutionary trajectories and combinations of

mutations that arise in evolution experiments have suggested that epistasis between CNVs and

other mutations is an important contributor to evolutionary dynamics (Pavani et al. 2021; Lauer

et al. 2018), few studies have systematically investigated genetic interactions with CNVs

(Dodgson et al. 2016). We find that amplification results in relaxed selection against mutation in

essential genes. Additionally, we find both CNV specific genetic interactions and interactions
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that are shared by several strains. To gain further insight into the effects of CNV on the cells, we

performed RNAseq. Whereas amplification results in increased mRNA expression compared to

the euploid, we also observe dosage compensation in several strains. Consistent with a recent

study in the same genetic background as our strains (S288c), we do not find activation of the

ESR in various aneuploids (Larrimore et al. 2020), nor did we observe the CAGE response (Tsai

et al. 2019). Instead, CNVs tend to have increased expression of genes involved in

transposition, nucleic acid metabolic processes, and siderophore transport, and decreased

expression of those involved in cellular respiration, nucleoside biosynthetic processes, and

small molecule metabolism, though the extent to which the expression differed from the euploid

varied between CNV strains.

We have demonstrated that transposon mutagenesis is a powerful tool to investigate

genetic interactions genome-wide in strains with large and complex mutations. Unlike synthetic

genetic array (SGA) analysis, which is commonly used to investigate genetic interactions,

transposon mutagenesis does not require mating the query strain to the deletion collection.

Transposon mutagenesis therefore avoids a some of the issues that are encountered using

SGA: the deletion collection has some inaccuracies (Giaever and Nislow 2014; Ben-Shitrit et al.

2012), other mutations including aneuploidy (T. R. Hughes et al. 2000), and the gene expression

of non-target genes is sometimes impacted by the deletion of neighboring genes (Ben-Shitrit et

al. 2012; Baryshnikova and Andrews 2012) which can result in false positive or false negative

genetic interactions. Furthermore, the requirement to mate the query strain to the deletion

collection means that genetic interactions identified are in a diploid and potentially hybrid (if the

query strain and deletion collection are different) background, which further complicates the

interpretation of results (Dodgson et al. 2016). Despite overcoming some of these challenges,

transposon mutagenesis also has some shortcomings. Transposon insertion efficiency can differ

between genetic backgrounds (Caudal et al. 2021) and ability to detect interactions is
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dependent on the number of insertions identified. Our experimental design induces transposition

in galactose for four days, which may be enough time for additional mutations to also

accumulate, reducing the number of conditions in which genetic interactions can be examined

and power of the experiment to detect loci which tolerate mutation.

A question that naturally arises from our study is why do different CNV structures result

in heterogeneous fitness effects, genetic interactions, and transcriptional responses? One

reason may be the particular composition of the CNV. Both the copy number and the particular

genes amplified likely play a role in the fitness effect. For example, the aneuploid was much less

fit in YPGal than several of the other CNV strains. Previous work has shown that the

amplification of the left arm of chromosome XI has negative fitness effects in other conditions

(Sunshine et al. 2015) - the aneuploid is the only strain with the left arm amplified in our

experiment, and that could be part of the basis of the fitness consequences. Additionally, CNV

strains used here were each isolated from an evolution experiment, and other mutations were

identified. While it seems unlikely that all mutations would modify the effect of the CNV, some

could. For example, tri257, which has fitness, genetic interactions, and transcriptome similar to

the ancestor in YPGal, has a mutation causing a premature stop in SSK2 (Table 4.S1). SSK2 is

a MAP kinase kinase kinase of HOG1 signaling pathway, that controls osmoregulation, which

may attenuate stress from CNV if it is, as Tsai et al. found in aneuploids, similar to hypo-osmotic

stress. Further studies in CNVs of various structures encompassing different regions and in

isogenic backgrounds may help to disentangle these factors.

A large-scale analysis of aneuploidy across over 1,000 S. cerevisiae isolates showed

that genetic background alone (rather than ecology) could predict aneuploidy prevalence

(Scopel et al. 2021), and several studies have shown that tolerance to aneuploidy varies across

genetic backgrounds (Hose et al. 2015; Gasch et al. 2016; Hose et al. 2020; Larrimore et al.

2020). This understanding leads us to important questions: is there a common response to
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aneuploidy and more generally CNV in the genetic backgrounds that do not well tolerate them?

Can we predict which genetic backgrounds will be able to tolerate CNV or be sensitive to CNV?

Hose et al. found that aneuploidy sensitivity in the laboratory strain W303 resulted from

synergistic defects in mitochondrial function and proteostasis. Interestingly, our results also point

to mitochondrial function and translation as important and the least fit strains in our study are

particularly sensitive to mitochondrial stress. The laboratory strain S288c, which was used in

this study, has a hypomorphic allele of HAP1 (Gaisne et al. 1999), which is a heme-responsive

transcriptional activator of genes involved in respiration (L. Zhang and Hach 1999) (notably,

genes with increased expression in CNV strains include siderophores, which chelate iron).

Across many genetically distinct strains of yeast, genes involved in aerobic respiration and the

electron transport chain vary more than any other category during growth in glucose-limited

chemostats (Skelly et al. 2013), and genes involved in mitochondrial function have continuous

variation in fitness effects across different isolates (Caudal et al. 2021). It would be instructive to

study the relationship between mitochondrial function and CNV tolerance.

4.5 Methods

4.5.2 Strains

The euploid ancestral GAP1 CNV reporter and the evolved GAP1 CNV strains were

previously described and characterized in Lauer et al. 2018, and are haploid derivatives of the

reference strain S288C (and more specifically, FY4/5) with a constitutively expressed mCitrine

gene and KanMX G418-resistance cassette inserted 1,118 base pairs upstream of GAP1. This

construct is referred to as the GAP1 CNV reporter. The CNV strains are clonal isolates that

evolved for 150 or 250 generations in glutamine limited chemostats (Lauer et al. 2018).

Each strain was transformed with pSG36_HygMX using the EZ-Yeast™ Transformation

Kit (MP Biomedicals, cat #2100200). Transformants were recovered on YPG agar + 200 µg/mL
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Hygromycin B. A single colony was picked from the plate of transformants to perform each

transposon mutagenesis experiment. Separate transformation and colony selection was

performed for each replicate of the euploid.

To generate BMH1 mutants, we performed high-efficiency yeast transformation into

frozen competent yeast cells for each strain (Gietz and Schiestl 2007a) with an mCherry gene

under control of the constitutively expressed ACT1 promoter (ACT1pr::mCherry::ADH1term) and

marked by the HphMX Hygromycin B-resistance cassette (TEFpr::HygR::TEFterm). The plasmid

DGP363, containing this construct, was used as template for PCR using primers containing the

same BMH1-specific targeting homology, and transformation resulted in a complete deletion of

the BMH1 open reading frame. Transformants were recovered on YPD agar + 400 µg/mL G418

+ 200 µg/mL Hygromycin B, and BMH1 deletion positive transformants were confirmed using

BMH1 specific primers and a HygR primer. We verified that mCitrine copy number remained

unchanged and mCherry fluorescence using a Cytek Aurora flow cytometer.

4.5.2 Growth curves

For each experiment, we inoculated three colonies per strain into 3-5 mL YPGal, and

grew them overnight at 30℃. In triplicate per original colony, we back diluted 5 µL of culture into

195 µL fresh YPGal or YPGal with 25 µM carbonyl-cyanide 3-chlorophenylhydrazone in a

Costar Round Bottom 96 well plate (Ref 3788). We treated the lid with 0.05% Triton X-100 in

20% ethanol to prevent condensation (Brewster 2003). We collected OD600 data over

approximately 48 hours using a Tecan Spark with the following parameters: Temperature

control: On; Target temperature: 30 [°C]; Kinetic Loop; Kinetic cycles: 530; Interval time: Not

defined; Mode: Shaking; Shaking (Double Orbital) Duration: 240 [s]; Shaking (Double Orbital)

Position: Current; Shaking (Double Orbital) Amplitude: 2 [mm]; Shaking (Double Orbital)

Frequency: 150 [rpm]; Mode: Absorbance; Measurement wavelength: 600 [nm]; Number of

flashes: 10; Settle time: 50 [ms]; Mode: Fluorescence Top Reading; Excitation: Monochromator;
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Excitation wavelength: 497 [nm]; ExcitationBandwidth: 30 [nm]; Gain: Calculated From: B5

(50%); Mirror: AUTOMATIC; Number of flashes: 30; Integration Time: 40 [µs]; Lag time: 0 [µs];

Settle time: 0 [µs]; Z-Position mode: From well B5.

Using growthcurver (Sprouffske and Wagner 2016), we fit the OD600 data to a logistic

equation, using the value of the parameter r as the intrinsic growth rate of the population and

the parameter k as the carrying capacity. We checked for and discarded outliers by examining

OD curves and histograms of sigma (goodness of fit). We normalized each growth rate and

carrying capacity to that of the ancestral euploid GAP1 CNV reporter grown in the same plate.

4.5.3 Transposon mutagenesis

A single transformant for each strain was used to inoculate a 30 mL YPD + 200 µg/mL

Hygromycin B, and incubated approximately 24 hours at 30℃ with agitation, until OD5. To

induce transposition, the culture was then diluted to OD0.05 in YPGalactose + 200 µg/mL

Hygromycin B to a final volume of 50 mL, and incubated 24 hours at 30℃ with agitation. The

culture was diluted to 0.05 in 50 mL YPGalactose + 200 µg/mL Hygromycin B and incubate 24

hours three more times, for a total of four serial transfers in YPGalactose + 200 µg/mL

Hygromycin B. The culture was pelleted by centrifugation for five minutes at 4000 rpm, the

supernatant removed, then resuspended to OD0.5 in 50 mL YPD and incubated 24 hours at

30℃ with agitation, then diluted again to OD0.5 in 50 mL YPD and incubated 24 hours at 30℃

with agitation, to release selection to maintain pSG36_HygMX. The cultures were then diluted to

OD0.5 in 100 mL YPD + 200 µg/mL Hygromycin B and incubated 24 hours at 30℃ with

agitation to select for cells with the transposon in the genome. The final culture was pelleted by

centrifugation for five minutes at 4000 rpm, the supernatant removed, resuspended with 1 mL

sterile water, split into four 250 µL aliquots, and pelleted for two minutes at 8000 rpm. The

supernatant was removed and cell pellets were frozen at -20℃ for storage until DNA extraction

was performed.
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4.5.4 Insertion site sequencing

DNA was extracted from cell pellets using the MasterPure™ Yeast DNA Purification Kit

(Lucigen, cat #MPY80200), with an additional initial incubation with zymolase at 37°C to

enhance cell lysis, and using a Glycogen/Sodium Acetate/Ethanol DNA precipitation(Green and

Sambrook 2016). For each sample, 2 μg of DNA was digested with 50 units of DpnII and 5 μL

NEBuffer™ DpnII (NEB, cat #R0543L), in a total volume of 50 μL; and 2 μg of DNA was

digested with 50 units of NlaIII and 5 μL CutSmart® Buffer (NEB, cat #R0125L), in a total

volume of 50 μL, for 16 hours at 37℃. The reactions were heat inactivated, then circularized by

ligation in the same tube with 25 Weiss units T4 Ligase and 40 µL T4 ligase buffer (Thermo

Scientific cat #EL0011) for 6 hr at 22°C, in a volume of 400 µL. Circularized DNA was

precipitated using a Glycogen/Sodium Acetate/Ethanol DNA precipitation (Green and Sambrook

2016). Inverse PCRs for each sample and digestion were performed with primers Hermes_F

and Hermes_R with 0.5 µL of each circularized DNA sample per reaction. PCR was performed

with DreamTaq (ThermoFisher cat #EP0701), with the following program: 2 min at 95°C

followed by 32 cycles of 30 s at 95°C, 30 s at 57.6°C, 3 min at 72°C, and a final extension step

of 10 min at 72°C. The PCRs products were confirmed on 2% agarose gels, and the

concentration was quantified using Qubit™ dsDNA BR Assay Kit.

Library preparation and sequencing were performed using two different library

preparation methods and sequencing set ups.

BGI

For each sample (1728, 1736, and 1740) and digestion 35 PCR were performed as

described above and the PCR products were pooled and cleaned using a Glycogen/Sodium

Acetate/Ethanol DNA precipitation (Green and Sambrook 2016). For each sample, at least 6 µg

at minimum 30 ng/µl was then sent to the BGI (Beijing Genomics Institute) for library preparation
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and sequenced using a paired-end (2 x 100) protocol on a Illumina Hi-Seq 4000 or DNBseq

platform.

NYC

For each sample (all) and digestion 4 PCR were performed as described above and the

PCR products were pooled by sample and cleaned using a Glycogen/Sodium Acetate/Ethanol

DNA precipitation (Green and Sambrook 2016). Five ng of each PCR product pool was used as

input into a modified Nextera XT library preparation. To increase library complexity, for each

sample, two tagmentation reactions were performed. PCR to enrich for fragments with hermes

sequence and add an i5 adaptor were performed on the tagmented DNA using NPM Buffer,

primers Nextera_hermes_enrichment and Nextera_i7_enrichment, and the following program: 3

min at 72°C, then 30 s at 95°C,  followed by 9 cycles of 10 s at 95°C, 30 s at 55°C, 30 s at

72°C, and a final extension step of 5 min at 72°C. The reactions were pooled by sample,

cleaned using AmPure XP beads, and resuspended in 20 µL of molecular grade water, which

was used as input for an indexing and library amplification PCR. Each sample was indexed with

an i7 index from the Nextera XT kit, and amplification of the i5 end was performed with primer

i5_amp (which contains no i5 index), using the 2X KAPA PCR master mix (Roche cat

#KK2611), and the same program described for the PCR after tagmentation.PCR cleanup and

size selection was performed with AmPure XP beads. The fragment size of each library was

measured with an Agilent TapeStation 2200 and qPCR was performed to determine the library

concentration. The libraries were pooled at equimolar concentrations, and sequenced using a

single-end (1 x 150) protocol on an Illumina NextSeq 500. Libraries were prepared once, but

sequenced in two consecutive sequencing runs for increased coverage.
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4.5.5 Transposon insertion sequencing site identification and annotation

Using cutadapt v1.16 (Martin 2011) with the expected hermes TIR sequence on the 5’

end were identified, and the TIR was trimmed. If the TIR was followed by plasmid sequence,

these reads were discarded. For reads sequenced at BGI (paired end sequencing), the read

with the TIR sequence was identified and its mate was discarded. For reads sequenced at NYC

(Nextera based prep, single end sequencing), Nextera transposase sequences were identified

and removed. Reads with a length less than 20 bases after all cleaning steps were discarded,

and the remaining reads were checked for quality using fastqc v0.11.8 (“Babraham

Bioinformatics - FastQC A Quality Control Tool for High Throughput Sequence Data” n.d.) .

Reads were aligned to the modified reference genome using bwa mem v.0.7.15 (Heng Li and

Durbin 2010) and BAMs were generated with samtools v1.9 (H. Li et al. 2009).  Samples

prepared and sequenced by more than one method had high Pearson correlations (0.85-0.94)

in the number of unique insertions identified per gene, and therefore were combined into a

single BAM file before performing downstream analysis. For the majority of the analyses, BAMs

were combined by sample, for ease of processing and to prevent redundant insertion site

identification. BAMs were parsed with a custom python script which identifies the first base of

the read as the position of the insertion. The script output all unique insertion positions and the

number of reads per insertion position. Positions were annotated using bedtools v2.26.0

(Quinlan and Hall 2010) and a custom GFF containing amended annotations for the custom

genome (available on OSF [OSF LINK HERE]). All analyses use unique insertion positions, and

do not take into account the number of reads per unique insertion position. Uniquely identified

insertion sites are supported by an average of 18.6 sequencing reads. The libraries have

between 85,327 and 329,624 unique insertion sites identified, with an average of 176,664

insertion sites, corresponding to approximately one insertion per 69 bases in the yeast genome

(NCBI R64 assembly; STable 2). We normalize for differences in sequencing depth by
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calculating insertions per million: number of unique insertion sites per feature/(total unique

insertion sites/1,000,000). We do not normalize for gene length, as we are comparing genes

between strains, not within strains. All code used for analysis can be found on GitHub

https://github.com/graceave/hermes_analysis.

4.5.6 Genetic interaction analysis

To quantitatively investigate genetic interactions using the transposon sequencing data,

we performed differential analysis using DESeq2 version 1.30.1 (Love, Huber, and Anders

2014), using the number of insertions per gene and comparing each CNV strain to the two

euploid replicates. We used clusterProfiler version 3.18.1 (Guangchuang Yu et al. 2012) to

perform fast gene set enrichment analysis (Korotkevich et al., n.d.) using the ranked log2 fold

change in insertions generated by DESeq2 and GO terms were summarized by semantic

similarity (G. Yu et al. 2010) then by hand for clarity.

To calculate genetic interactions based on growth rates, we first calculate the relative

fitness of each single mutant by:

𝑊
𝑚𝑢𝑡𝑎𝑛𝑡

=
𝑚

𝑚𝑢𝑡𝑎𝑛𝑡

𝑚
𝑤𝑖𝑙𝑑−𝑡𝑦𝑝𝑒

,

where is the intrinsic growth rate of the strain (parameter r from logistic equation used to fit𝑚

growth curves). We then calculated the expected fitness of the double mutant using either the

additive model:

𝐸(𝑊
𝑥𝑦

) = 𝑊
𝑥

+  𝑊
𝑦

+ 1,

Or the multiplicative model:

𝐸(𝑊
𝑥𝑦

) = 𝑊
𝑥

×  𝑊
𝑦
.

We then calculate the genetic interaction:

(Mani et al. 2008).ε = 𝑊
𝑥𝑦

− 𝐸(𝑊
𝑥𝑦

) 
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4.5.7 RNA sequencing

For RNA sequencing, we grew overnight cultures from three replicate colonies per strain

in 5 mL YPGal, then 2 mL (euploid, trip3) or 5 mL (other strains) of overnight culture was

pelleted and subsequently resuspended in 5 mL fresh YPGal. The cultures were allowed to

grow for three hours in fresh YPGal before harvesting cells by vacuum filtration and fixing

immediately in liquid nitrogen, so that all cultures were harvested while cells were proliferating.

RNA was extracted and purified using a hot acid phenol/chloroform and Phase Lock Gels as

described in (Neymotin, Athanasiadou, and Gresham 2014). Samples were enriched for

polyadenylated RNA using the Lexogen Poly(A) RNA Selection Kit V1.5 (cat. # 157.96) and

stranded RNAseq libraries were prepared using the Lexogen CORALL Total RNA-Seq Library

Prep Kit (cat. # 095.96) according to the manufacturer’s protocol. The libraries were pooled at

equimolar concentrations, and sequenced using a paired-end (2 x 150) protocol on an Illumina

NextSeq 500. The resulting fastqs were trimmed, aligned, and UMI deduplicated, and coverage

per feature was calculated using an in-house pipeline which can be found at

https://greshamlab.bio.nyu.edu/wp-content/uploads/2021/11/Windchime_pipeline.nb_.html.

Coverage per feature correlation between replicates was high, with the exception of one

replicate of the quadruplication, which was excluded from further analysis. Trip3 also only had

two replicates, as library preparation failed for one replicate.
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4.6 Supplemental Material

Figure 4.S1 There is no relationship between CNV size and relative fitness. A-B) The fitness of evolved strains
containing GAP1 CNVs was determined by pairwise competition experiments with a nonfluorescent, unevolved
reference strain in glutamine-limited chemostats. C-D) Average growth rate of GAP1 CNVs relative to the ancestral,
euploid strain in YPGal batch culture.

Figure 4.S2 The number of unique insertion sites scales with the number of reads sequenced. The total
number of unique insertion sites identified per library increases with the total number of reads sequenced (using all
methods and sequencing runs).

140



Figure 4.S3. There are fewer insertions in essential genes and genes whose deletion results in low fitness in
YPGal. A) We grouped genes into those that had been previously annotated as essential or non-essential by deletion
and measurement of growth on rich media (yeast peptone dextrose) (Winzeler et al. 1999). B) We grouped genes
into four quartiles based on relative fitness measurements on rich media with 2% galactose from 3704 viable deletion
mutant strains and 782 temperature-sensitive (TS) alleles (Costanzo et al. 2021). The first quartile (Q1, red) contains
genes whose deletion causes the greatest measurable fitness defects, with relative fitness between 0.053 and 0.896.
There was no relative fitness obtained for 21 genes (presumably there was no growth), these are marked NA (grey).  ​​
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Figure 4.S4. Transposon insertions in non-amplified genes. A) Boxplots of unique insertion sites per gene, with
individual genes plotted as points, for essential (red) and non-essential (blue) genes (Winzeler et al. 1999). All genes
on Chromosome XI that are not within the CNV boundaries are shown. P-values from Welch’s t-test are indicated by
the following: ns: p > 0.01; ****: p < 0.0001. B) Linear regression was used to fit the normalized insertions per
non-amplified gene in CNV strains (y-axis) to the mean number of normalized insertions per gene in the euploid
replicates (x-axis), genome-wide. Adjusted p-values and slope from linear regression are annotated.

Figure 4.S5 Genetic interactions of CNV strains. A) Genes that have significantly different insertions in CNV
strains versus euploid. Genes which were significant for at least one CNV strain, from differential analysis comparing
each CNV insertion profile to the euploid insertion profiles. Positive log2FoldChange values have more insertions in
CNV strains than euploid strains, while negative log2FoldChange have fewer insertions in CNV strains than euploid
strains. P-values adjusted with the Benjamini and Hochberg method: *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p <
0.0001. B) Multiplicative genetic interaction for CNV and BMH1 double mutants. Calculated from growth rates shown
in Figure 4.3D.
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Figure 4.S6 mRNA expression of amplified genes is highly correlated with euploid expression. For each CNV,
the subset of genes within the CNV boundaries are shown. Pearson’s correlation coefficient and corresponding
p-value are annotated.
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Figure 4.S7 Pearson correlation between CNV strains and Torres 2007 aneuploids grown in batch culture for
ESR genes. Log2 fold change in mRNA expression comparing CNV or aneuploid  strain to euploid strain. The data
from Torres is the mean for all aneuploid strains measured.

Figure 4.S8 Pearson correlation between CNV strains and Torres 2007 aneuploids grown in chemostats for
ESR genes. Log2 fold change in mRNA expression comparing CNV or aneuploid strain to euploid strain. The data
from Torres is the mean for all aneuploid strains measured.
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Figure 4.S9 Pearson correlation between CNV strains and Tsai 2019 aneuploids for CAGE genes. Log2 fold
change in mRNA expression comparing CNV or aneuploid strain to euploid strain.

Figure 4.S10 Pearson correlation between Torres 2007 aneuploids and Tsai 2019 aneuploids for CAGE genes.
The data from Torres is the mean for all aneuploid strains measured.
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Figure 4.S11 Genes with significantly different mRNA expression from the euploid in all strains that are not
on chromosome XI. Genes with positive log2FoldChange have higher expression in the CNV strain than the euploid
strain.

Table 4.S1. Strain characteristics. More information about SNPs/indels including reference sequence and mutant
sequence can be found in Lauer et al. 2018 S10 Table https://doi.org/10.1371/journal.pbio.3000069.s027.

Strain
name

Gresham
Lab
Name

Clone ID
in Lauer et
al. 2018

Generatio
n Isolated

SNPs/indels

eu DGY1657 NA NA NA

aneu DGY1728 gln_01_c1 150 YNL284C-B missense variant; YPL232W (SSO1) disruptive
inframe deletion

trip1 DGY1734 gln_02_c3 250 YHL002W (HSE1) missense variant; Chr XIV:96555 non-coding
variant; Chr XIV:96603 non-coding variant

trip2 DGY1747 gln_08_c2 150 YMR129W (POM152) missense variant; Chr V:431779
non-coding variant; Chr XII:915075 non-coding variant

trip3 DGY1751 gln_09_c3 250 YOL103W-A missense variant; YNR031C (SSK2) stop gained

trip4 DGY1736 gln_03_c2 250 YJR152W (DAL5) stop lost & splice region variant &
conservative inframe deletion; Chr V:55180 non-coding variant;
Chr X:524178 non-coding variant; Chr X:745685 non-coding
variant

iso DGY1744 gln_07_c1 250 YMR171C (EAR1) missense variant; YJL128C (PBS2) missense
variant; Chr XV:594618 non-coding variant

quad DGY1740 gln_05_c1 150 YOL077C (BRX1) missense variant; YNL338W
frameshift_variant
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Table 4.S2. Hermes mutagenesis library characteristics for uniquely identified insertion sites.
Samp
le

Total
sites

Minimum
reads per
position

Maximum
reads per
position

Mean
reads per
position

Median
reads per
position

eu_1 172384 1 4761 20.09 8

eu_2 136167 1 2966 14.56 5

aneu 301220 1 26598 22.45 4

trip1 95152 1 2722 15.80 4

trip2 85327 1 2071 10.82 3

trip3 122326 1 8531 23.86 6

trip4 329624 1 10567 18.73 5

iso 126562 1 6620 23.58 6

quad 221218 1 8455 17.87 4
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Table 4.S3 T-test for Log2FoldChange of gene expression for genes on chromosome 11. The column log2(copy
number) indicates the expected log2 fold change based on the copy number of the amplified genes. The subset are
either genes on chromosome XI that are amplified (i.e., part of the CNV) or genes on chromosome XI that are not
amplified (i.e., not part of the CNV). The t-test tested if log2FoldChange for the group of genes was significantly
different than zero (i.e., no change from euploid). Values are rounded to the nearest thousandth. 95% confidence
intervals are shown.

strain log2(
copy
number)

Mean
log2
FC

group
1

group2 n statisti
c

p df Con
low

Conf
high

Ha subset

aneu 1 0.748 1 null model 334 22.596 0 326 0.683 0.813 two.sided amplified
genes

trip1 1.584 1.827 1 null model 22 15.493 0 19 1.58 2.074 two.sided amplified
genes

trip2 1.584 1.57 1 null model 46 12.71 0 41 1.32 1.819 two.sided amplified
genes

trip3 1.584 0.737 1 null model 65 11.526 0 62 0.609 0.865 two.sided amplified
genes

trip4 1.584 1.502 1 null model 79 23.635 0 76 1.375 1.628 two.sided amplified
genes

iso 1.584 1.395 1 null model 79 21.478 0 76 1.266 1.525 two.sided amplified
genes

quad 2 1.383 1 null model 18 10.056 0 15 1.09 1.676 two.sided amplified
genes

trip1 0.095 1 null model 293 4.583 0 292 0.054 0.136 two.sided not
amplified
genes

trip2 0.003 1 null model 271 0.084 0.934 270 -0.072 0.078 two.sided not
amplified
genes

trip3 -0.013 1 null model 253 -0.721 0.472 250 -0.048 0.022 two.sided not
amplified
genes

trip4 -0.036 1 null model 239 -1.441 0.151 237 -0.085 0.013 two.sided not
amplified
genes

iso 0.057 1 null model 238 1.721 0.087 236 -0.008 0.122 two.sided not
amplified
genes

quad -0.041 1 null model 297 -1.745 0.082 295 -0.086 0.005 two.sided not
amplified
genes
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Chapter 5: Conclusion

CNVs are a complex class of mutations, with important roles in evolution, and

multifarious functional effects. In chapter two, I contributed to an investigation of the dynamics

with which GAP1 CNVs arise in populations of yeast in glutamine-limited chemostats. In chapter

three, I used the population level dynamics observed in chapter two to infer the formation rate

and selection coefficient associated with GAP1 CNVs in glutamine-limited chemostats. In

chapter four, I investigated the effect of diverse GAP1 CNVs on strain fitness, genetic

interactions, and mRNA expression.

5.1 Summary and Perspectives

5.1.1 Many competing GAP1 CNVs contribute to rapid and repeatable adaptation

Using a fluorescent CNV reporter, we found that GAP1 CNVs arise early in evolution in

glutamine-limited chemostats and sweep through the population to rise to high frequencies, and

this behavior is highly repeatable between replicate experimental populations. To determine if

this behavior was due to a single lineage sweeping, or through many GAP1 CNVs concurrently

rising in frequency in a soft sweep, I combined the CNV reporter with a barcode lineage tracking

library. I evolved these strains in glutamine-limited chemostats and found that in early

generations there is extensive clonal interference, with hundreds to thousands of competing

GAP1 CNV lineages contributing to the rapid increase in frequency of GAP1 CNVs in the

population. However, very few CNVs ever rise to high frequency, and by the end of the

experiment only 20-30 lineages remained. By analyzing which barcodes were found in the CNV

subpopulation and when they arose, I determined that both standing variation and de novo

variants contribute to these evolutionary dynamics. This study gave insights into the dynamics

of CNVs in rapid adaptive evolution.
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5.1.2 Simulation-based inference reveals GAP1 CNVs have high rate and large effects

To estimate the rate at which CNVs are introduced and their fitness effects from the

observed population evolutionary dynamics, I used likelihood-free simulation-based inference

approaches. I compared the performance of two methods: Neural Posterior Estimation (NPE)

and Approximate Bayesian Computation with Sequential Monte Carlo (ABC-SMC) with two

evolutionary models, the Wright-Fisher model and the chemostat model. I found that NPE has

several advantages over ABC-SMC, including more accurate estimation and reduced

computational costs. I used NPE to estimate the GAP1 CNV formation rate and effective

selection coefficient from the GAP1 CNV dynamics, and found they form at a rate of 10-4.7 - 10-4

CNVs per cell division, with selection coefficients of 0.04 - 0.1 per generation. I experimentally

validated these estimates using barcode lineage tracking based estimation of CNV selection

coefficients and pairwise fitness assays of CNV containing clones. This work demonstrated the

utility of neural network based inference methods for estimation of evolutionary parameters from

empirical data.

5.1.3 Diverse GAP1 CNVs have common and strain specific effects

I investigated seven GAP1 CNV strains with various structures which we had previously

isolated from evolution experiments in glutamine-limited chemostats. I found that while CNV

strains were as fit or more fit than the ancestral euploid strain in glutamine-limited chemostats,

most were less fit in rich media. To investigate how CNVs impacted mutational tolerance, I

performed transposon mutagenesis. I found that amplification of essential genes conferred new

mutational tolerance, and CNVs result in novel genetic interactions. Several CNV strains had

genetic interactions with genes involved in translation and mitochondrial function. However, I

also observed strain specific genetic interactions. To better understand the functional effects of

CNVs, I profiled the transcriptome of each CNV strain, and observed that while amplification

results in increased gene expression relative to the euploid strain, some strains exhibited
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dosage compensation, that is, the increase in mRNA was less than what would be expected

based on the copy number. I did not observe previously described transcriptomic signatures of

aneuploidy, instead, I observed that CNV strains tend to downregulate genes involved in cellular

respiration, nucleoside biosynthetic processes, and small molecule metabolism, and upregulate

genes involved in transposition, nucleic acid metabolic processes, and siderophore transport,

though to different degrees in each strain. This study revealed the ways in which CNVs affect

the mutational landscape and transcriptome.

It has been suggested that aneuploidy is a transient solution to strong and abrupt

selective pressures, and that aneuploids will revert back to the euploid number of chromosomes

after sufficient time has elapsed as to allow more specific mutations with fewer associated

tradeoffs to arise (Yona et al. 2012). As my work has shown, different CNV structures may have

different tradeoffs than aneuploidy. Would the tolerance of a particular genetic background to

aneuploidy versus other CNV structures modulate this type of dynamic of CNV as a transient

solution? Furthermore, cells can go from aneuploid to euploid (or vice versa) in a relatively

simple manner, while more complex types of CNV may be less likely to revert to the ancestral

state without causing further mutation or less likely to revert at all. How do all of these factors

impact evolutionary trajectories? One might imagine that some genetic backgrounds might be

more likely to tolerate certain CNVs. As I have shown, these CNVs then change the landscape

of mutational tolerance and genetic interactions. This means that much of an evolutionary

trajectories might be contingent on the type of CNV that arises in response to selection. If we

can at some point predict which genetic backgrounds can tolerate which types of CNVs, this

might give us insight into future evolutionary paths as well.
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5.2 Future directions

5.2.1 Evolutionary dynamics of CNVs

It will be exciting to learn if the insights gleaned from this work, which focused on a

single locus in a single genetic background, are broadly applicable. Performing similar evolution

experiments in different genetic backgrounds, at different loci, and in different environmental

conditions, and using simulation-based inference to infer the underlying rates and effects of

CNVs, will provide further insight into what the general and condition specific aspects of CNV

evolutionary dynamics.

The evolution experiments I have performed have been on relatively short timescales

(less than 300 generations). It would be interesting to see what occurs if these experiments

were carried out for longer periods, especially given the observed stochastic nature of the CNV

dynamics in the later periods of the experimental evolution, and the reduction in the number of

CNV lineages. While the labor of maintaining a chemostat evolution experiment and the

probability of contamination are the primary reasons previous experiments have ended, we

froze down whole population samples from those experiments. Populations of interest, such as

the two populations that were barcode sequenced at several time points, could be used to start

several replicate new evolution experiments. From these, several questions could be answered,

including: does a single CNV eventually fix in the population, and if so, is it the same CNV

lineage in each population? Are CNVs maintained over long time scales or are they eventually

replaced by other variants that are not associated with costs? Do amplified genes accumulate

further mutations that modify their function?

Finally, it would be very interesting to do further experiments exploring how the fitness

effects and mutation rates of GAP1 CNVs and other beneficial mutations interact with each

other to shape evolutionary trajectories. Our experiments and inference procedures determined

that in our evolution experiments GAP1 CNV have high selection coefficients. The strength of
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selection in chemostats can be modulated by increasing or decreasing the dilution rate, which in

turn increases or decreases the steady-state concentration of the limiting nutrient (Gresham and

Hong 2015). Theoretically, this may also modulate the fitness effect of GAP1 CNVs. Similarly,

the population size can be systematically varied by varying the concentration of the limiting

nutrient in the feed media or by varying the volume in the growth vessel (Gresham and Hong

2015). This would allow investigation into how the extent of clonal interference between different

CNV lineages, and between CNVs and other beneficial mutations affects evolutionary dynamics.

5.2.2 Estimating additional parameters underlying evolutionary dynamics

The models that I used in chapter three were relatively simple models, with only two

classes of mutations (GAP1 CNV and other beneficial mutations), and only two parameters

were inferred (GAP1 CNV formation rate and selection coefficient). Additionally, the selection

coefficients used for each class of mutations were a single effective coefficient. This is a

simplification and does not capture the complexity of the evolving population. Future work

should expand the model to include additional parameters to represent different types of CNVs

that might have different rates and effects (e.g., aneuploidy, small tandem duplications, complex

CNV), and represent fitness effects with a distribution instead of a single effective selection

coefficient. These parameters, as well as the rates and effects of other beneficial mutations,

could be simultaneously inferred. This would give greater insight into the parameters underlying

dynamics, as well as the effect on the relationship between different classes of mutation on

evolutionary dynamics.

5.2.3 The basis of CNV (in)tolerance

In order to ascertain if the fitness defects in the three least fit strains in chapter 4 (aneu,

trip2, and quad) are due to the CNVs per se or due to the interaction between the CNVs and

some other variant elsewhere in the genome, the CNV strain could be mated to an euploid
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strain, and sporulated. The resulting tetrads could then be genotyped for CNV, and phenotype

fitness in YPGal and sensitivity to CCCP. If the traits of decreased growth rate in YPGal and

increased sensitivity to CCCP segregate with the CNV, then that would suggest that those traits

are associated with the CNV itself. If those traits are only sometimes associated with the CNV in

the tetrads, that would suggest that they are due to a genetic interaction between the CNV and

another variant that is segregating independently.

Recent work (Hose et al. 2020) points to a relationship between mitochondrial state,

proteostatic state, and aneuploid fitness. It would be interesting to know if this relationship holds

for the CNV strains studied here. In chapter four, I performed fitness assays in rich media with

galactose, and the strains that were least fit in galactose were also the most sensitive to CCCP,

a drug which interferes with mitochondrial function. Mitochondrial state could be further

investigated by staining with a marker such as MitoTracker and using microscopy to examine

mitochondrial morphology. Galactose is simultaneously fermented and respired during

exponential growth. It would be interesting to see if CNV strains exhibit similar sensitivity to

CCCP when growing with glucose as the carbon source, which is fermented during exponential

growth. Furthermore, it would be interesting to know if the CNV strains are also particularly

sensitive to drugs which cause proteostatic stress.

5.2.4 Transposon-mutagenesis as a way to explore many questions

Transposon-mutagenesis is a powerful tool to study mutational tolerance and genetic

interactions. As discussed in chapter 4, it overcomes many of the limitations of synthetic genetic

arrays, which have been used extensively to study genetic interactions. It also has advantages

to CRISPR based methods to ask similar questions: it does not require synthesis of complex

and expensive oligo libraries, it can create heterozygous mutations when there are multiple

copies of the same gene (e.g., in diploids or CNV containing strains), and it does not require

high transformation efficiency (Noorani, Bradley, and de la Rosa 2020). This means it can be
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used to study a wide variety of questions in many different strain backgrounds with relative

ease. In addition to the already discussed applications in investigations of the effects of CNVs,

transposon mutagenesis could be used to investigate genetic interactions with other mutations,

combined with reporters to discover regulators of different processes such as transcription, and

used in other environments to investigate gene by environment interactions.

However, the current protocol for transposon mutagenesis does have some limitations.

First, it requires galactose for induction, which greatly reduces the number of conditions in which

the experiment can be performed. To overcome this, the transposase could be placed under

another inducible promoter. The estradiol-inducible ZEV system, which uses an artificial

transcription factor to rapidly and specifically activate transcription (McIsaac et al. 2013), would

be a good candidate for this, as the artificial transcription factor could be integrated on to the

same plasmid as the transposon. Second, the current protocol requires propagation in the

induction environment (YPGal) for several days. This makes it difficult to distinguish between

mutational tolerance and the fitness effect of mutations, since different insertion mutants will be

competing with each other. To overcome this, the protocol could be altered so that induction

occurs in soft agar. This involves suspending cells in low-percentage agarose medium, which

allows colonies to form separately, avoiding competition between mutants (Panasyuk et al.

2004). This also makes the protocol less laborious to perform.

I believe that an optimized transposon mutagenesis protocol would be a very effective

way to introduce students, particularly undergraduates, to experimental techniques in yeast and

the experience of doing research. There is sufficient flexibility in experimental design (e.g., the

strain used, the environment studied) that an undergraduate and their mentor could design an

experiment together to answer a question that the student is interested in, giving them

ownership over the project. However, the protocol itself is relatively simple, and introduces a

variety of different techniques, including basic microbiology techniques including culturing and
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transformation, DNA extraction and PCR for library preparation, and analysis of sequencing

data. The timing of many steps of the protocol are flexible, and there are several places it can

be paused and resumed, but the entire process if conducted un-interrupted takes only a couple

of weeks, making it suitable for an undergraduate who is simultaneously taking classes, or one

who is working in the lab full time but for only a short while (e.g., in the summer undergraduate

research program). I believe that this technique could be a powerful tool to both involve students

in research and answer interesting questions.
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